首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
ABSTRACT: BACKGROUND: The Gram negative anaerobe Fusobacterium nucleatum has been implicated in the aetiology of periodontal diseases. Although frequently isolated from healthy dental plaque, its numbers and proportion increase in plaque associated with disease. One of the significant physico-chemical changes in the diseased gingival sulcus is increased environmental pH. When grown under controlled conditions in our laboratory, F. nucleatum subspecies polymorphum formed mono-culture biofilms when cultured at pH 8.2. Biofilm formation is a survival strategy for bacteria, often associated with altered physiology and increased virulence. A proteomic approach was used to understand the phenotypic changes in F. nucleatum cells associated with alkaline induced biofilms. The proteomic based identification of significantly altered proteins was verified where possible using additional methods including quantitative real-time PCR (qRT-PCR), enzyme assay, acidic end-product analysis, intracellular polyglucose assay and Western blotting. RESULTS: Of 421 proteins detected on two-dimensional electrophoresis gels, spot densities of 54 proteins varied significantly (p < 0.05) in F. nucleatum cultured at pH 8.2 compared to growth at pH 7.4. Proteins that were differentially produced in biofilm cells were associated with the functional classes; metabolic enzymes, transport, stress response and hypothetical proteins. Our results suggest that biofilm cells were more metabolically efficient than planktonic cells as changes to amino acid and glucose metabolism generated additional energy needed for survival in a sub-optimal environment. The intracellular concentration of stress response proteins including heat shock protein GroEL and recombinational protein RecA increased markedly in the alkaline environment. A significant finding was the increased abundance of an adhesin, Fusobacterial outer membrane protein A (FomA). This surface protein is known for its capacity to bind to a vast number of bacterial species and human epithelial cells and its increased abundance was associated with biofilm formation. CONCLUSION: This investigation identified a number of proteins that were significantly altered by F. nucleatum in response to alkaline conditions similar to those reported in diseased periodontal pockets. The results provide insight into the adaptive mechanisms used by F. nucleatum biofilms in response to pH increase in the host environment.  相似文献   

2.
Ji S  Shin JE  Kim YC  Choi Y 《Molecules and cells》2010,30(6):519-526
The role of Fusobacterium nucleatum in oral health and disease is controversial. We have previously shown that F. nucleatum invades gingival epithelial cells. However, the destiny of the internalized F. nucleatum is not clear. In the present study, the intracellular destiny of F. nucleatum and its cytopathic effect on gingival epithelial cells were studied. The ability of F. nucleatum and seven other oral bacterial species to invade immortalized human gingival epithelial (HOK-16B) cells were compared by confocal microscopy and flow cytometry. F. nucleatum had the highest invasive capacity, comparable to that of Porphyromonas gingivalis, a periodontal pathogen. Confocal microscopic examination revealed colocalization of internalized F. nucleatum with endosomes and lysosomes. Examination by transmission electron microscopy revealed that most intracellular F. nucleatum was located within vesicular structures with single enclosed membranes. Furthermore, F. nucleatum could not survive within gingival epithelial cells and had no cytopathic effects on host cells. Interestingly, endosomal maturation played a role in induction of the antimicrobial peptides human beta defensin (HBD)-2 and -3 by F. nucleatum from gingival epithelial cells. F. nucleatum is destined to enter an endocytic degradation pathway after invasion and has no cytopathic effect on gingival epithelial cells, which may cast new light on the role of F. nucleatum in the pathogenesis of periodontitis.  相似文献   

3.
Fusobacterium nucleatum is a Gram-negative anaerobe associated with various human infections, including periodontal diseases and preterm birth. A novel FadA adhesin was recently identified for host-cell binding. It consists of 129 amino acid residues, with an 18-amino acid signal peptide. Expression of FadA in Escherichia coli enhanced bacterial binding to host epithelial and endothelial cells. In both E. coli and F. nucleatum, FadA exists in two forms, the intact pre-FadA and the secreted mature FadA (mFadA), with pre-FadA anchored in the inner membrane and mFadA secreted outside the bacteria. Pre-FadA and mFadA formed high M(r) complexes. When each form was purified to a single species, mFadA was soluble at neutral pH, whereas pre-FadA was insoluble. Pre-FadA became soluble when mixed with mFadA or under acidic pH. When fluorescence-labeled mFadA alone was added to the epithelial cells, no binding was detected. However, when mixed with nonlabeled pre-FadA, binding and invasion of mFadA into epithelial cells was observed. FadA is a unique bacterial adhesin/invasin in that it utilizes its own two forms for both structural and functional purposes. The pre-FadA-mFadA complex is probably anchored in the inner membrane and protrudes through the outer membrane. Internalization of the pre-FadA-mFadA ensures invasion of the bacteria into the host cells.  相似文献   

4.
Bacterial biofilms have been found to develop on root surfaces outside the apical foramen and be associated with refractory periapical periodontitis. However, it is unknown which bacterial species form extraradicular biofilms. The present study aimed to investigate the identity and localization of bacteria in human extraradicular biofilms. Twenty extraradicular biofilms, used to identify bacteria using a PCR-based 16S rRNA gene assay, and seven root-tips, used to observe immunohistochemical localization of three selected bacterial species, were taken from 27 patients with refractory periapical periodontitis. Bacterial DNA was detected from 14 of the 20 samples, and 113 bacterial species were isolated. Fusobacterium nucleatum (14 of 14), Porphyromonas gingivalis (12 of 14), and Tannellera forsythensis (8 of 14) were frequently detected. Unidentified and uncultured bacterial DNA was also detected in 11 of the 14 samples in which DNA was detected. In the biofilms, P. gingivalis was immunohistochemically detected in all parts of the extraradicular biofilms. Positive reactions to anti-F. nucleatum and anti-T. forsythensis sera were found at specific portions of the biofilm. These findings suggested that P. gingivalis, T. forsythensis, and F. nucleatum were associated with extraradicular biofilm formation and refractory periapical periodontitis.  相似文献   

5.
Stratified epithelia of the oral cavity are continually exposed to bacterial challenge that is initially resisted by neutrophils and epithelial factors, including antimicrobial peptides of the beta-defensin family. Previous work has shown that multiple signaling pathways are involved in human beta-defensin (hBD)-2 mRNA regulation in human gingival epithelial cells stimulated with a periodontal bacterium, Fusobacterium nucleatum, and other stimulants. The goal of this study was to further characterize these pathways. The role of NF-kappaB in hBD-2 regulation was investigated initially due to its importance in inflammation and infection. Nuclear translocation of p65 and NF-kappaB activation was seen in human gingival epithelial cells stimulated with F. nucleatum cell wall extract, indicating possible involvement of NF-kappaB in hBD-2 regulation. However, hBD-2 induction by F. nucleatum was not blocked by pretreatment with two NF-kappaB inhibitors, pyrrolidine dithiocarbamate and the proteasome inhibitor, MG132. To investigate alternative modes of hBD-2 regulation, we explored involvement of mitogen-activated protein kinase pathways. F. nucleatum activated p38 and c-Jun NH(2)-terminal kinase (JNK) pathways, whereas it had little effect on p44/42. Furthermore, inhibition of p38 and JNK partially blocked hBD-2 mRNA induction by F. nucleatum, and the combination of two inhibitors completely blocked expression. Our results suggest that NF-kappaB is neither essential nor sufficient for hBD-2 induction, and that hBD-2 regulation by F. nucleatum is via p38 and JNK, while phorbol ester induces hBD-2 via the p44/42 extracellular signal-regulated kinase pathway. Studies of hBD-2 regulation provide insight into how its expression may be enhanced to control infection locally within the mucosa and thereby reduce microbial invasion into the underlying tissue.  相似文献   

6.
Fusobacterium nucleatum is a common oral anaerobe associated with gingivitis, periodontal disease and preterm deliveries. Coaggregation among oral bacteria is considered to be a significant factor in dental plaque development. Adhesion to host cells was suggested to be important for the F. nucleatum virulence associated with oral inflammation and with preterm births. An uncharacterized fusobacterial galactose inhibitible adhesin mediates coaggregation of F. nucleatum 12230 and F. nucleatum PK1594 with the periodontal pathogen Porphyromonas gingivalis. This adhesin is also involved with the attachment of both fusobacterial strains to host cells. However, it has been suggested that additional unidentified fusobacterial adhesins are involved in F. nucleatum virulence associated with preterm births. In this study, a fluorescence-based high throughput sensitive and reproducible method was developed for measuring bacterial coaggregation and bacterial attachment to mammalian cells. Using this method we found that coaggregation of F. nucleatum 4H with P. gingivalis and its attachment to murine macrophages is less inhibitible by galactose than that of F. nucleatum PK1594. These findings suggest that F. nucleatum 4H can serve as a model organism for identifying nongalactose inhibitible F. nucleatum adhesins considered to be involved in fusobacterial attachment to mammalian cells.  相似文献   

7.
Okuda T  Kokubu E  Kawana T  Saito A  Okuda K  Ishihara K 《Anaerobe》2012,18(1):110-116
The formation of biofilm by anaerobic, Gram-negative bacteria in the subgingival crevice plays an important role in the development of chronic periodontitis. The aim of this study was to characterize the role of coaggregation between Fusobacterium nucleatum and Prevotella species in biofilm formation. Coaggregation between F. nucleatum and Prevotella species was determined by visual assay. Effect of co-culture of the species on biofilm formation was assessed by crystal violet staining. Effect of soluble factor on biofilm formation was also examined using culture supernatant and two-compartment co-culture separated by a porous membrane. Production of autoinducer-2 (AI-2) by the organisms was evaluated using Vibrio harveyi BB170. Cells of all F. nucleatum strains coaggregated with Prevotella intermedia or Prevotella nigrescens with a score of 1-4. Addition of ethylenediamine tetraacetic acid or l-lysine inhibited coaggregation. Coaggregation disappeared after heating of P. intermedia or P. nigrescens cells, or Proteinase K treatment of P. nigrescens cells. Co-culture of F. nucleatum ATCC 25586 with P. intermedia or P. nigrescens strains increased biofilm formation compared with single culture (p < 0.01); co-culture with culture supernatant of these strains, however, did not enhance biofilm formation by F. nucleatum. Production of AI-2 in Prevotella species was not related to enhancement of biofilm formation by F. nucleatum. These findings indicate that physical contact by coaggregation of F. nucleatum strains with P. intermedia or P. nigrescens plays a key role in the formation of biofilm by these strains.  相似文献   

8.
A defining characteristic of the suspected periodontal pathogen Fusobacterium nucleatum is its ability to adhere to a plethora of oral bacteria. This distinguishing feature is suggested to play an important role in oral biofilm formation and pathogenesis, with fusobacteria proposed to serve as central 'bridging organisms' in the architecture of the oral biofilm bringing together species which would not interact otherwise. Previous studies indicate that these bacterial interactions are mediated by galactose- or arginine-inhibitable adhesins although genetic evidence for the role and nature of these proposed adhesins remains elusive. To characterize these adhesins at the molecular level, the genetically transformable F. nucleatum strain ATCC 23726 was screened for adherence properties, and arginine-inhibitable adhesion was evident, while galactose-inhibitable adhesion was not detected. Six potential arginine-binding proteins were isolated from the membrane fraction of F. nucleatum ATCC 23726 and identified via mass spectroscopy as members of the outer membrane family of proteins in F. nucleatum . Inactivation of the genes encoding these six candidates for arginine-inhibitable adhesion and two additional homologues revealed that only a mutant derivative carrying an insertion in Fn1526 (now designated as radD ) demonstrated significantly decreased co-aggregation with representatives of the Gram-positive 'early oral colonizers'. Lack of the 350 kDa outer membrane protein encoded by radD resulted in the failure to form the extensive structured biofilm observed with the parent strain when grown in the presence of Streptococcus sanguinis ATCC 10556. These findings indicate that radD is responsible for arginine-inhibitable adherence of F. nucleatum and provides definitive molecular evidence that F. nucleatum adhesins play a vital role in inter-species adherence and multispecies biofilm formation.  相似文献   

9.
Skår CK  Krüger PG  Bakken V 《Anaerobe》2003,9(6):305-312
Fusobacterium nucleatum is associated with periodontitis in humans, and is a central member of the dental biofilm. Heat shock proteins (HSPs) of many different bacteria have been considered to play important roles during inflammations and infections. We have identified and characterised the HSP60 and HSP70, the Escherichia coli GroEL and DnaK homologues, respectively, in F. nucleatum ATCC 10953. The N-terminal 22 amino acid residues of HSP60 exhibited up to 63.6% identity with members of the HSP60 heat shock protein family of some selected bacterial species, while the N-terminal of 25 residues of HSP70 revealed up to 80% identity with members of the HSP70 family. The subcellular localisation of HSP60 and HSP70 was analysed by immunoblotting of bacterial cell fractions and immunoelectron microscopy of whole cells. HSP60 and HSP70 were localised in the cytosol, associated with membranes and extracellular fractions. These results are consistent with localisation for HSPs found in other micro-organisms, which further lead to the suggestion of a potential role in the pathogenesis of infectious diseases.  相似文献   

10.
Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these same bacterial species, were incubated under anaerobic conditions with a human oral epithelial cell line, OKF4, for up to 24h. Gro-1α, IL1α, IL-6, IL-8, TGFα, Fractalkine, MIP-1α, and IP-10 were shown to be produced in response to a range of the planktonic or biofilm forms of these species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and chemokines, except MIP-1α. Generally, the biofilms of all species inhibited Gro-1α, TGFα, and Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1α, IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact with host cell receptors to trigger pathways of responses that appear quite divergent from individual bacteria.  相似文献   

11.
Okuda T  Okuda K  Kokubu E  Kawana T  Saito A  Ishihara K 《Anaerobe》2012,18(1):157-161
The formation of dental plaque biofilm by specific Gram-negative rods and spirochetes plays an important role in the development of periodontal disease. The aim of this study was to characterize biofilm formation by Fusobacterium nucleatum and Capnocytophaga ochracea. Coaggregation between F. nucleatum and Capnocytophaga species was determined by visual assay. Biofilm formation was assessed by crystal violet staining. Enhancement of biofilm formation by F. nucleatum via soluble factor of C. ochracea was evaluated by addition of culture supernatant and a two-compartment separated co-culture system. Production of autoinducer-2 by the tested organisms was evaluated using Vibrio harveyi BB170. F. nucleatum strains coaggregated with C. ochracea ATCC 33596 or ONO-26 strains. Ethylenediamine tetraacetic acid, N-acetyl-d-galactosamine or lysine inhibited coaggregation. Heating or proteinase K treatment of F. nucleatum cells affected coaggregation, whereas the same treatment of C. ochracea cells did not. Co-culture of F. nucleatum with C. ochracea in the same well resulted in a statistically significant increase in biofilm formation. Enhancement of F. nucleatum biofilm formation by a soluble component of C. ochracea was observed using the two-compartment co-culture system (P < 0.05) and confirmed by addition of culture supernatant of C. ochracea (P < 0.01). The present findings indicate that induction of coaggregation and intracellular interaction by release of a diffusible molecule by C. ochracea play a significant role in the formation of biofilm by F. nucleatum and C. ochracea.  相似文献   

12.
Fusobacterium nucleatum is a Gram-negative oral anaerobe, capable of systemic dissemination causing infections and abscesses, often in mixed-species, at different body sites. We have shown previously that F. nucleatum adheres to and invades host epithelial and endothelial cells via a novel FadA adhesin. In this study, vascular endothelial (VE)-cadherin, a member of the cadherin family and a cell-cell junction molecule, was identified as the endothelial receptor for FadA, required for F. nucleatum binding to the cells. FadA colocalized with VE-cadherin on endothelial cells, causing relocation of VE-cadherin away from the cell-cell junctions. As a result, the endothelial permeability was increased, allowing the bacteria to cross the endothelium through loosened junctions. This crossing mechanism may explain why the organism is able to disseminate systemically to colonize in different body sites and even overcome the placental and blood-brain barriers. Co-incubation of F. nucleatum and Escherichia coli enhanced penetration of the endothelial cells by the latter in the transwell assays, suggesting F. nucleatum may serve as an 'enabler' for other microorganisms to spread systemically. This may explain why F. nucleatum is often found in mixed infections. This study reveals a possible novel dissemination mechanism utilized by pathogens.  相似文献   

13.
Stenotrophomonas maltophilia is an emerging nosocomial bacterial pathogen associated with several infectious diseases and opportunistic infections, especially in immunocompromised patients. These bacteria adhere avidly to medical implants and catheters forming a biofilm that confers natural protection against host immune defences and different antimicrobial agents. The nature of the bacterial surface factors involved in biofilm formation on inert surfaces and in adherence of S. maltophilia to epithelial cells is largely unknown. In this study, we identified and characterized fimbrial structures produced by S. maltophilia grown at 37 degrees C. The S. maltophilia fimbriae 1 (SMF-1) are composed of a 17 kDa fimbrin subunit which shares significant similarities with the N-terminal amino acid sequences of several fimbrial adhesins (G, F17, K99 and 20K) found in Escherichia coli pathogenic strains and the CupA fimbriae of Pseudomonas aeruginosa. All of the clinical S. maltophilia isolates tested produced the 17 kDa fimbrin. Antibodies raised against SMF-1 fimbriae inhibited the agglutination of animal erythrocytes, adherence to HEp-2 cells and biofilm formation by S. maltophilia. High resolution electron microscopy provided evidence of the presence of fimbriae acting as bridges between bacteria adhering to inert surfaces or to cultured epithelial cells. This is the first characterization of fimbriae in this genus. We provide compelling data suggesting that the SMF-1 fimbriae are involved in haemagglutination, biofilm formation and adherence to cultured mammalian cells.  相似文献   

14.
Hydrophobicity of the solid surface and microbial cell surface is important factor for the development of biofilms applied in bioengineering systems. An adsorption of phenanthrene was used for analysis of the hydrophobicity of support fibers and bacterial cell surfaces within the biofilter of wastewater. The adsorption of phenanthrene was measured by synchronous fluorescence spectrometry. Cell surface hydrophobicity does not depend on the fixation procedure, pH of microbial suspension, and has no clear correlation with an adherence of the cells to hexadecane droplets. Notwithstanding high hydrophobicity of bacterial cells, the hydrophobicity of intact biofilm is determined by the hydrophobicity of the support fibers. New indexes were proposed to evaluate the reactor performance related with hydrophobic interactions within the biofilm. These indexes showed that significant share of hydrophobic sites within the nitrifying biofilm is protected from the hydrophobic interactions between the cells and environment.  相似文献   

15.
D.J. Bradshaw, P.D. Marsh, G.K. Watson and C. Allison. 1997. Anaerobic bacteria are found commonly as components of mixed culture biofilms in many aerated habitats, including the mouth. Previous studies showed that anaerobes could survive in planktonic and biofilm communities in aerated conditions when part of a community including facultative and/or aerobic species, and the numbers and proportions of anaerobic species increased as biofilms aged. When the obligate anaerobes were grown in the absence of aerobic/facultative species, however, they were unable to grow in either the planktonic or biofilm culture. The mean survival times of organisms in the aerated culture containing four anaerobic species varied from around 5 min for Fusobacterium nucleatum and Veillonella dispar , to less than 4 min for Porphyromonas gingivalis and Prevotella nigrescens . In addition, in this culture, the biofilm mode of growth did not provide a haven for these bacteria in the absence of oxygen-consuming species.  相似文献   

16.
Enzymatic removal and disinfection of bacterial biofilms.   总被引:8,自引:2,他引:8       下载免费PDF全文
C Johansen  P Falholt    L Gram 《Applied microbiology》1997,63(9):3724-3728
Model biofilms of Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas fluorescens, and Pseudomonas aeruginosa were made on steel and polypropylene substrata. Plaque-resembling biofilms of Streptococcus mutans, Actinomyces viscosus, and Fusobacterium nucleatum were made on saliva-coated hydroxyapatite. The activity of enzymes against bacterial cells in biofilm was measured by fluorescence microscopy and an indirect conductance test in which evolution of carbon dioxide was measured. Glucose oxidase combined with lactoperoxidase was bactericidal against biofilm bacteria but did not remove the biofilm from the substrata. A complex mixture of polysaccharide-hydrolyzing enzymes was able to remove bacterial biofilm from steel and polypropylene substrata but did not have a significant bactericidal activity. Combining oxidoreductases with polysaccharide-hydrolyzing enzymes resulted in bactericidal activity as well as removal of the biofilm.  相似文献   

17.
Biofilms on food processing equipment cause food spoilage and pose a hazard to consumers. The bacterial community on steel surfaces in a butcher's shop was characterized, and bacteria representative of this community enriched from minced pork were used to study biofilm retention. Stainless steel (SS) was compared to two novel nanostructured sol-gel coatings with differing hydrophobicity. Surfaces were characterized with respect to roughness, hydrophobicity, protein adsorption, biofilm retention, and community composition of the retained bacteria. Fewer bacteria were retained on the sol-gel coated surfaces compared to the rougher SS. However, the two sol-gel coatings did not differ in either protein adsorption, biofilm retention, or microbial community composition. When polished to a roughness similar to sol-gel, the SS was colonized by the same amount of bacteria as the sol-gel, but the bacterial community contained fewer Pseudomonas cells. In conclusion, biofilm retention was affected more by surface roughness than chemical composition under the condition described in this study.  相似文献   

18.
Adherence of pathogenic bacteria is often an essential first step in the infectious process. The ability of bacteria to adhere to one another, or to coaggregate, may be an important factor in their ability to colonize and function as pathogens in the periodontal pocket. Previously, a strong and specific coaggregation was demonstrated between two putative periodontal pathogens, Fusobacterium nucleatum and Porphyromonas gingivalis. The interaction appeared to be mediated by a protein adhesin on the F. nucleatum cells and a carbohydrate receptor on the P. gingivalis cells. In this investigation, we have localized the adhesin activity of F. nucleatum T18 to the outer membrane on the basis of the ability of F. nucleatum T18 vesicles to coaggregate with whole cells of P. gingivalis T22 and the ability of the outer membrane fraction of F. nucleatum T18 to inhibit coaggregation between whole cells of F. nucleatum T18 and P. gingivalis T22. Proteolytic pretreatment of the F. nucleatum T18 outer membrane fraction resulted in a loss of coaggregation inhibition, confirming the proteinaceous nature of the adhesin. The F. nucleatum T18 outer membrane fraction was found to be enriched for several proteins, including a 42-kDa major outer membrane protein which appeared to be exposed on the bacterial cell surface. Fab fragments prepared from antiserum raised to the 42-kDa outer membrane protein were found to partially but specifically block coaggregation. These data support the conclusion that the 42-kDa major outer membrane protein of F. nucleatum T18 plays a role in mediating coaggregation with P. gingivalis T22.  相似文献   

19.
The pathogenesis of periodontitis involves the interplay of microbiota present in the subgingival plaque and the host responses. Inflammation and destruction of periodontal tissues are considered to result from the response of a susceptible host to a microbial biofilm containing gram-negative pathogens. Antimicrobial peptides are important contributors to maintaining the balance between health and disease in this complex environment. These include several salivary antimicrobial peptides such as β-defensins expressed in the epithelium and LL-37 expressed in both epithelium and neutrophils. Among gram-negative bacteria implicated in periodontal diseases, Fusobacterium nucleatum, is one of the most interesting. This review will focus on expression, function, regulation and functional efficacy of antimicrobial peptides against F. nucleatum. We are looking for how the presence of F. nucleatum induces secretion of peptides which have an impact on host cells and modulate immune response.  相似文献   

20.
Coaggregation assays were performed to investigate interactions between oral Bifidobacterium adolescentis and other oral bacterial species. Bifidobacterium adolescentis OLB6410 isolated from the saliva of healthy humans did not coaggregate with Actinomyces naeslundii JCM8350, Streptococcus mitis OLS3293, Streptococcus sanguinis JCM5708, Veillonella parvula ATCC17745 or Porphyromonas gingivalis OB7124, but it did coaggregate with Fusobacterium nucleatum JCM8532. Subsequent examination of biofilm formation on saliva-coated hydroxyapatite discs using FISH revealed that B. adolescentis OLB6410 could not directly adhere to the coated discs. It did, however, adhere to biofilms of A. naeslundii, V. parvula, and F. nucleatum, although it did not coaggregate with A. naeslundii nor with V. parvula. These results suggest that the adhesion of B. adolescentis to tooth surfaces is mediated by other oral bacteria. Heat- or proteinase K-treated F. nucleatum could not coaggregate with B. adolescentis. Similarly, the coaggregation and coadhesion of proteinase K-treated B. adolescentis were strongly inhibited. It is therefore probable that proteinaceous factors on the cellular surface of B. adolescentis and F. nucleatum are involved in their interaction. The data presented in this study add to our understanding of bifidobacterial colonization in the human oral cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号