首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used iterative association mapping to identify a susceptibility gene for age-related macular degeneration (AMD) on chromosome 10q26, which is one of the most consistently implicated linkage regions for this disorder. We employed linkage analysis methods, followed by family-based and case-control association analyses, using two independent data sets. To identify statistically the most likely AMD-susceptibility allele, we used the Genotype-IBD Sharing Test (GIST) and conditional haplotype analysis. To incorporate the two most important known AMD risk factors--smoking and the Y402H variant of the complement factor H gene (CFH)--we used logistic regression modeling to test for gene-gene and gene-environment interactions in the case-control data set and used the ordered-subset analysis to account for genetic linkage heterogeneity in the family-based data set. Our results strongly implicate a coding change (Ala69Ser) in the LOC387715 gene as the second major identified AMD-susceptibility allele, confirming earlier suggestions. This variant's effect on AMD is statistically independent of CFH and is of similar magnitude to the effect of Y402H. The overall effect is driven primarily by a strong association in smokers, since we observed significant evidence for a statistical interaction between the LOC387715 variant and a history of cigarette smoking. This gene-environment interaction is supported by statistically independent family-based and case-control analysis methods. We estimate that CFH, LOC387715, and cigarette smoking together explain 61% of the population-attributable risk (PAR) of AMD. The adjusted PAR percentage estimates are 20% for smoking, 36% for LOC387715, and 43% for CFH. We demonstrate, for the first time, that a genetic susceptibility coupled with a modifiable lifestyle factor such as cigarette smoking confers a significantly higher risk of AMD than either factor alone.  相似文献   

2.
Age-related macular degeneration (AMD) is a disease with multifactorial etiology characterized by irreversible loss of central visual acuity. The discovery of susceptive single-nucleotide polymorphisms (SNPs) has progressed our understanding of AMD. Complement factor H (CFH) gene Y402H polymorphism and high-temperature requirement A-1 (HTRA1) LOC387715 gene A69S polymorphisms are the most important SNPs reported in the literature. Determination of genetic risk factors and genotype-phenotype relationship in AMD may result in rapid and cost-effective therapeutic applications for young and old population. In this study, we hypothesized a potential association between CFH gene Y402H and HTRA1 LOC387715 gene A69S polymorphism in Turkish AMD patients. In blood samples from a total of 252 individuals, 147 clinically diagnosed as AMD and the others control, polymorphic sites in CFH, Y402H (Tsp509I T/C), and HTRA1, LOC387715 A69S (FnuHI G/T), were determined by polymerase chain reaction-restriction fragment length polymorphism analysis. There was significant difference between CFH genotypes in the AMD group, TT 21.8%, TC 48.3%, and CC 29.9%, and in the control subjects, TT 45% (p=0.003), TC 41% (p=0.0001), and CC 14% (p=0.0001). Further, the A69S polymorphism of LOC387715 was investigated and found to be significantly associated with AMD. LOC387715 genotypes in the AMD group were GG 30.6%, GT 38.1%, and TT 31.3% and in the control subjects were GG 59% (p=0.027), GT 39% (p=0.0001), and TT 2% (p=0.0001), respectively. We also found that Y402H C and A69S T allele were associated with AMD. This is the first study showing that Y402H and LOC387715 are associated with AMD in Turkish population.  相似文献   

3.

Background

Age-related maculopathy (ARM) is a common cause of visual impairment in the elderly populations of industrialized countries and significantly affects the quality of life of those suffering from the disease. Variants within two genes, the complement factor H (CFH) and the poorly characterized LOC387715 (ARMS2), are widely recognized as ARM risk factors. CFH is important in regulation of the alternative complement pathway suggesting this pathway is involved in ARM pathogenesis. Two other complement pathway genes, the closely linked complement component receptor (C2) and complement factor B (CFB), were recently shown to harbor variants associated with ARM.

Methods/Principal Findings

We investigated two SNPs in C2 and two in CFB in independent case-control and family cohorts of white subjects and found rs547154, an intronic SNP in C2, to be significantly associated with ARM in both our case-control (P-value 0.00007) and family data (P-value 0.00001). Logistic regression analysis suggested that accounting for the effect at this locus significantly (P-value 0.002) improves the fit of a genetic risk model of CFH and LOC387715 effects only. Modeling with the generalized multifactor dimensionality reduction method showed that adding C2 to the two-factor model of CFH and LOC387715 increases the sensitivity (from 63% to 73%). However, the balanced accuracy increases only from 71% to 72%, and the specificity decreases from 80% to 72%.

Conclusions/Significance

C2/CFB significantly influences AMD susceptibility and although accounting for effects at this locus does not dramatically increase the overall accuracy of the genetic risk model, the improvement over the CFH-LOC387715 model is statistically significant.  相似文献   

4.
Many reports in different populations have demonstrated linkage of the 10q24–q26 region to schizophrenia, thus encouraging further analysis of this locus for detection of specific schizophrenia genes. Our group previously reported linkage of the 10q24–q26 region to schizophrenia in a unique, homogeneous sample of Arab-Israeli families with multiple schizophrenia-affected individuals, under a dominant model of inheritance. To further explore this candidate region and identify specific susceptibility variants within it, we performed re-analysis of the 10q24-26 genotype data, taken from our previous genome-wide association study (GWAS) (Alkelai et al, 2011). We analyzed 2089 SNPs in an extended sample of 57 Arab Israeli families (189 genotyped individuals), under the dominant model of inheritance, which best fits this locus according to previously performed MOD score analysis. We found significant association with schizophrenia of the TCF7L2 gene intronic SNP, rs12573128, (p = 7.01×10−6) and of the nearby intergenic SNP, rs1033772, (p = 6.59×10−6) which is positioned between TCF7L2 and HABP2. TCF7L2 is one of the best confirmed susceptibility genes for type 2 diabetes (T2D) among different ethnic groups, has a role in pancreatic beta cell function and may contribute to the comorbidity of schizophrenia and T2D. These preliminary results independently support previous findings regarding a possible role of TCF7L2 in susceptibility to schizophrenia, and strengthen the importance of integrating linkage analysis models of inheritance while performing association analyses in regions of interest. Further validation studies in additional populations are required.  相似文献   

5.
Age-related macular degeneration (AMD) is a complex disorder of the central retina with readily increasing socio-economic impact on the societies of industrialized countries. With a prevalence of about 12% in the population over 80 years of age, advanced forms of AMD are nowadays the most common cause of blindness in the elderly. The risk of developing AMD is influenced by exogenous and endogenous factors. Although smoking is a well-established environmental component, the first clues to genetic influences resulted from twin studies and familial aggregation analyses. Recent work has identified genetic variants in two genomic regions at 1q32 and 10q26, which independently confer high risks for developing AMD. While association signals at 1q32 were shown to culminate over the complement factor H (CFH) gene, implicating innate immunity and inflammation in the etiology of AMD, the functional contribution of the LOC387715/HTRA1 (HtrA serine peptidase 1) gene locus still remains to be elucidated. In coming years it is to be expected, however, that our knowledge of the genetic factors and their cellular roles in the retina will further deepen and therefore will fundamentally change patient management.  相似文献   

6.
Age-related maculopathy (ARM), or age-related macular degeneration, is one of the most common causes of visual impairment in the elderly population of developed nations. In a combined analysis of two previous genomewide scans that included 391 families, containing up to 452 affected sib pairs, we found linkage evidence in four regions: 1q31, 9p13, 10q26, and 17q25. We now have added a third set of families and have performed an integrated analysis incorporating 530 families and up to 736 affected sib pairs. Under three diagnostic models, we have conducted linkage analyses using parametric (heterogeneity LOD [HLOD] scores under an autosomal dominant model) and nonparametric (Sall statistic) methods. There is ongoing evidence of susceptibility loci within the 1q31, 10q26, and 17q25 regions. If we treat the third set of families as a replication set, then two regions (10q26 and 17q25) are replicated, with LOD scores >1.0. If we pool all our data together, then four regions (1q31, 2q14.3, 10q26, and 17q25) show HLOD or Sall scores > or =2.0. Within the 1q31 region, we observed an HLOD of 2.72 (genomewide P=.061) under our least stringent diagnostic model, whereas the 17q25 region contained a maximal HLOD of 3.53 (genomewide P=.007) under our intermediate diagnostic model. We have evaluated our results with respect to the findings from several new independent genomewide linkage studies and also have completed ordered subset analyses (OSAs) with apolipoprotein E alleles, smoking history, and age at onset as stratifying covariates. The OSAs generate the interesting hypothesis that the effect of smoking on the risk of ARM is accentuated by a gene in the 10q26 region--a region implicated by four other studies.  相似文献   

7.

Background

Variants in the complement cascade genes and the LOC387715/HTRA1, have been widely reported to associate with age-related macular degeneration (AMD), the most common cause of visual impairment in industrialized countries.

Methods/Principal Findings

We investigated the association between the LOC387715 A69S and complement component C3 R102G risk alleles in the Finnish case-control material and found a significant association with both variants (OR 2.98, p = 3.75×10−9; non-AMD controls and OR 2.79, p = 2.78×10−19, blood donor controls and OR 1.83, p = 0.008; non-AMD controls and OR 1.39, p = 0.039; blood donor controls), respectively. Previously, we have shown a strong association between complement factor H (CFH) Y402H and AMD in the Finnish population. A carrier of at least one risk allele in each of the three susceptibility loci (LOC387715, C3, CFH) had an 18-fold risk of AMD when compared to a non-carrier homozygote in all three loci. A tentative gene-gene interaction between the two major AMD-associated loci, LOC387715 and CFH, was found in this study using a multiplicative (logistic regression) model, a synergy index (departure-from-additivity model) and the mutual information method (MI), suggesting that a common causative pathway may exist for these genes. Smoking (ever vs. never) exerted an extra risk for AMD, but somewhat surprisingly, only in connection with other factors such as sex and the C3 genotype. Population attributable risks (PAR) for the CFH, LOC387715 and C3 variants were 58.2%, 51.4% and 5.8%, respectively, the summary PAR for the three variants being 65.4%.

Conclusions/Significance

Evidence for gene-gene interaction between two major AMD associated loci CFH and LOC387715 was obtained using three methods, logistic regression, a synergy index and the mutual information (MI) index.  相似文献   

8.
To examine the genetic basis of age-related macular degeneration (ARMD), a degenerative disease of the retinal pigment epithelium and neurosensory retina, we conducted a genomewide scan in 34 extended families (297 individuals, 349 sib pairs) ascertained through index cases with neovascular disease or geographic atrophy. Family and medical history was obtained from index cases and family members. Fundus photographs were taken of all participating family members, and these were graded for severity by use of a quantitative scale. Model-free linkage analysis was performed, and tests of heterogeneity and epistasis were conducted. We have evidence of a major locus on chromosome 15q (GATA50C03 multipoint P=1.98x10-7; empirical P< or =1.0x10-5; single-point P=3.6x10-7). This locus was present as a weak linkage signal in our previous genome scan for ARMD, in the Beaver Dam Eye Study sample (D15S659, multipoint P=.047), but is otherwise novel. In this genome scan, we observed a total of 13 regions on 11 chromosomes (1q31, 2p21, 4p16, 5q34, 9p24, 9q31, 10q26, 12q13, 12q23, 15q21, 16p12, 18p11, and 20q13), with a nominal multipoint significance level of P< or =.01 or LOD > or =1.18. Family-by-family analysis of the data, performed using model-free linkage methods, suggests that there is evidence of heterogeneity in these families. For example, a single family (family 460) individually shows linkage evidence at 8 loci, at the level of P<.0001. We conducted tests for heterogeneity, which suggest that ARMD susceptibility loci on chromosomes 9p24, 10q26, and 15q21 are not present in all families. We tested for mutations in linked families and examined SNPs in two candidate genes, hemicentin-1 and EFEMP1, in subsamples (145 and 189 sib pairs, respectively) of the data. Mutations were not observed in any of the 11 exons of EFEMP1 nor in exon 104 of hemicentin-1. The SNP analysis for hemicentin-1 on 1q31 suggests that variants within or in very close proximity to this gene cause ARMD pathogenesis. In summary, we have evidence for a major ARMD locus on 15q21, which, coupled with numerous other loci segregating in these families, suggests complex oligogenic patterns of inheritance for ARMD.  相似文献   

9.
BACKGROUND AND AIMS: Age-related macular degeneration (AMD) is the leading cause of blindness in the Western World. It is now evident that both genetic and environmental factors contribute to disease susceptibility. We tested the hypotheses that (a) a common coding SNP in the LOC387715 gene is associated with advanced AMD (geographic atrophy or choroidal neovascularization), and (b) that modifiable environmental exposures alter AMD susceptibility associated with this SNP. METHODS: A case-control association analysis was performed on participants (530 advanced AMD cases and 280 controls) ascertained as part of the multi-center Age-Related Eye Disease Study. AMD status was determined by the reading center from fundus photographs using the AREDS AMD grading categorization. Environmental risk factor exposure data was collected from participants whose DNA was also genotyped for the LOC387715 gene SNP rs10490924. Multivariate logistic regression analyses were performed. RESULTS AND CONCLUSIONS: The number of risk alleles at the LOC387715 SNP was associated with advanced AMD, with odds ratios (OR) = 3.0 (95% confidence interval (CI) 2.1-4.3) for the GT heterozygous genotype and OR = 12.1 (5.6-26.5) for the homozygous TT risk genotype, after controlling for demographic and behavioral risk factors. The LOC387715 SNP was associated with both forms of advanced AMD. Current cigarette smoking and body mass index were independently related to AMD, controlling for genotype. However, there was no statistical interaction between LOC387715 genotype and smoking with regard to advanced AMD development.  相似文献   

10.

Background

Preeclampsia is a serious pregnancy complication, demonstrating a complex pattern of inheritance. The elucidation of genetic liability to preeclampsia remains a major challenge in obstetric medicine. We have adopted a positional cloning approach to identify maternal genetic components, with linkages previously demonstrated to chromosomes 2q, 5q and 13q in an Australian/New Zealand familial cohort. The current study aimed to identify potential functional and structural variants in the positional candidate gene TNFSF13B under the 13q linkage peak and assess their association status with maternal preeclampsia genetic susceptibility.

Methodology/Principal Findings

The proximal promoter and coding regions of the positional candidate gene TNFSF13B residing within the 13q linkage region was sequenced using 48 proband or founder individuals from Australian/New Zealand families. Ten sequence variants (nine SNPs and one single base insertion) were identified and seven SNPs were successfully genotyped in the total Australian/New Zealand family cohort (74 families/480 individuals). Borderline association to preeclampsia (p = 0.0153) was observed for three rare SNPs (rs16972194, rs16972197 and rs56124946) in strong linkage disequilibrium with each other. Functional evaluation by electrophoretic mobility shift assays showed differential nuclear factor binding to the minor allele of the rs16972194 SNP, residing upstream of the translation start site, making this a putative functional variant. The observed genetic associations were not replicated in a Norwegian case/control cohort (The Nord-Trøndelag Health Study (HUNT2), 851 preeclamptic and 1,440 non-preeclamptic women).

Conclusion/Significance

TNFSF13B has previously been suggested to contribute to the normal immunological adaption crucial for a successful pregnancy. Our observations support TNFSF13B as a potential novel preeclampsia susceptibility gene. We discuss a possible role for TNFSF13B in preeclampsia pathogenesis, and propose the rs16972194 variant as a candidate for further functional evaluation.  相似文献   

11.
Here, we present the results of two genome-wide scans in two diverse populations in which a consistent use of recently introduced migraine-phenotyping methods detects and replicates a locus on 10q22-q23, with an additional independent replication. No genetic variants have been convincingly established in migraine, and although several loci have been reported, none of them has been consistently replicated. We employed the three known migraine-phenotyping methods (clinical end diagnosis, latent-class analysis, and trait-component analysis) with robust multiple testing correction in a large sample set of 1675 individuals from 210 migraine families from Finland and Australia. Genome-wide multipoint linkage analysis that used the Kong and Cox exponential model in Finns detected a locus on 10q22-q23 with highly significant evidence of linkage (LOD 7.68 at 103 cM in female-specific analysis). The Australian sample showed a LOD score of 3.50 at the same locus (100 cM), as did the independent Finnish replication study (LOD score 2.41, at 102 cM). In addition, four previously reported loci on 8q21, 14q21, 18q12, and Xp21 were also replicated. A shared-segment analysis of 10q22-q23 linked Finnish families identified a 1.6-9.5 cM segment, centered on 101 cM, which shows in-family homology in 95% of affected Finns. This region was further studied with 1323 SNPs. Although no significant association was observed, four regions warranting follow-up studies were identified. These results support the use of symptomology-based phenotyping in migraine and suggest that the 10q22-q23 locus probably contains one or more migraine susceptibility variants.  相似文献   

12.
Several linkage studies across multiple population groups provide convergent support for a susceptibility locus for schizophrenia--and, more recently, for bipolar disorder--on chromosome 6q13-q26. We genotyped 192 European-ancestry and African American (AA) pedigrees with schizophrenia from samples that previously showed linkage evidence to 6q13-q26, focusing on the MOXD1-STX7-TRARs gene cluster at 6q23.2, which contains a number of prime candidate genes for schizophrenia. Thirty-one screening single-nucleotide polymorphisms (SNPs) were selected, providing a minimum coverage of at least 1 SNP/20 kb. The association observed with rs4305745 (P=.0014) within the TRAR4 (trace amine receptor 4) gene remained significant after correction for multiple testing. Evidence for association was proportionally stronger in the smaller AA sample. We performed database searches and sequenced genomic DNA in a 30-proband subsample to obtain a high-density map of 23 SNPs spanning 21.6 kb of this gene. Single-SNP analyses and also haplotype analyses revealed that rs4305745 and/or two other polymorphisms in perfect linkage disequilibrium (LD) with rs4305745 appear to be the most likely variants underlying the association of the TRAR4 region with schizophrenia. Comparative genomic analyses further revealed that rs4305745 and/or the associated polymorphisms in complete LD with rs4305745 could potentially affect gene expression. Moreover, RT-PCR studies of various human tissues, including brain, confirm that TRAR4 is preferentially expressed in those brain regions that have been implicated in the pathophysiology of schizophrenia. These data provide strong preliminary evidence that TRAR4 is a candidate gene for schizophrenia; replication is currently being attempted in additional clinical samples.  相似文献   

13.
Genome-wide association studies (GWASs) assess correlation between traits and DNA sequence variation using large numbers of genetic variants such as single nucleotide polymorphisms (SNPs) distributed across the genome. A GWAS produces many trait-SNP associations with low p-values, but few are replicated in subsequent studies. We sought to determine if characteristics of the genomic loci associated with a trait could be used to identify initial associations with a higher chance of replication in a second cohort. Data from the age-related eye disease study (AREDS) of 100,000 SNPs on 395 subjects with and 198 without age-related macular degeneration (AMD) were employed. Loci highly associated with AMD were characterized based on the distribution of genotypes, level of significance, and clustering of adjacent SNPs also associated with AMD suggesting linkage disequilibrium or multiple effects. Forty nine loci were highly associated with AMD, including 3 loci (CFH, C2/BF, LOC387715/HTRA1) already known to contain important genetic risks for AMD. One additional locus (C3) reported during the course of this study was identified and replicated in an additional study group. Tag-SNPs and haplotypes for each locus were evaluated for association with AMD in additional cohorts to account for population differences between discovery and replication subjects, but no additional clearly significant associations were identified. Relying on a significant genotype tests using a log-additive model would have excluded 57% of the non-replicated and none of the replicated loci, while use of other SNP features and clustering might have missed true associations.  相似文献   

14.
The importance of the HLA-DR locus to multiple sclerosis (MS) susceptibility was assessed in 542 sib pairs with MS and in their families. By genotyping 1,978 individuals for HLA-DRB1 alleles, we confirmed the well-established association of MS with HLA-DRB1*15 (HLA-DRB1*1501 and HLA-DRB5*0101), by the transmission/disequilibrium test (chi2=138.3; P<.0001). We obtained significant evidence of linkage throughout the whole data set (mlod=4.09; 59.9% sharing). Surprisingly, similar sharing was also observed in 58 families in which both parents lacked the DRB1*15 allele (mlod=1.56; 62.7% sharing; P=.0081). Our findings suggest that the notion that HLA-DRB1*15 is the sole major-histocompatibility-complex determinant of susceptibility in northern-European populations with MS may be incorrect. It remains possible that the association of MS with HLA-DRB1*15 is due to linkage disequilibrium with a nearby locus and/or to the presence of disease-influencing allele(s) in DRB1*15-negative haplotypes.  相似文献   

15.
Previous linkage studies in schizophrenia have been discouraging due to inconsistent findings and weak signals. Genetic heterogeneity has been cited as one of the primary culprits for such inconsistencies. We have performed a 10-cM autosomal genomewide linkage scan for schizophrenia susceptibility regions, using 29 multiplex families of Ashkenazi Jewish descent. Although there is no evidence that the rate of schizophrenia among the Ashkenazim differs from that in other populations, we have focused on this population in hopes of reducing genetic heterogeneity among families and increasing the detectable effects of any particular locus. We pursued both allele-sharing and parametric linkage analyses as implemented in Genehunter, version 2.0. Our strongest signal was achieved at chromosome 10q22.3 (D10S1686), with a nonparametric linkage score (NPL) of 3.35 (genomewide empirical P=.035) and a dominant heterogeneity LOD score (HLOD) of 3.14. Six other regions gave NPL scores >2.00 (on chromosomes 1p32.2, 4q34.3, 6p21.31, 7p15.2, 15q11.2, and 21q21.2). Upon follow-up with an additional 23 markers in the chromosome 10q region, our peak NPL score increased to 4.27 (D10S1774; empirical P=.00002), with a 95% confidence interval of 12.2 Mb for the location of the trait locus (D10S1677 to D10S1753). We find these results encouraging for the study of schizophrenia among Ashkenazi families and suggest further linkage and association studies in this chromosome 10q region.  相似文献   

16.
The association of some diseases with specific alleles of certain genetic markers has been difficult to explain. Several explanations have been proposed for the phenomenon of association, e.g. the existence of multiple, interacting genes (epistasis) or a disease locus in linkage disequilibrium with the marker locus. One might suppose that when marker data from families with associated diseases are analyzed for linkage, the existence of the association would assure that linkage will be found, and found at a tight recombination fraction. In fact, however, linkage analyses of some diseases associated with HLA, as well as diseases associated with alleles at other loci located throughout the genome, show significant evidence against linkage, and others show loose linkage, to the puzzlement of many researchers. In part, the puzzlement arises because linkage analysis is ideal for looking for loci that are necessary, even if not sufficient, for disease expression but may be much less useful for finding loci that are neither necessary nor sufficient for disease expression (so-called susceptibility loci). This work explores what happens when one looks for linkage to susceptibility loci. A susceptibility locus in this case means that the allele increases risk but is neither necessary nor sufficient for disease expression. It might be either an allele at the marker locus itself that is increasing susceptibility or an allele at a locus in linkage disequilibrium with the marker. This work uses computer simulation to examine how linkage analyses behave when confronted with data from such a model.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Genome scans in Icelandic, Australian and New Zealand, and Finnish families have localized putative susceptibility loci for preeclampsia/ eclampsia to chromosome 2. The locus mapped in the Australian and New Zealand study (designated PREG1) was thought to be the same locus as that identified in the Icelandic study. In both these studies, two distinct quantitative trait locus (QTL) regions were evident on chromosome 2. Here, we describe our fine mapping of the PREG1 locus and a genetic analysis of two positional candidate genes. Twenty-five additional microsatellite markers were genotyped within the 74-cM linkage region defined by the combined Icelandic and Australian and New Zealand genome scans. The overall position and shape of the localization evidence obtained using nonparametric multipoint analysis did not change from that seen previously in our 10-cM resolution genome scan; two peaks were displayed, one on chromosome 2p at marker D2S388 (107.46 cM) and the other on chromosome 2q at 151.5 cM at marker D2S2313. Using the robust two-point linkage analysis implemented in the Analyze program, all 25 markers gave positive LOD scores with significant evidence of linkage being seen at marker D2S2313 (151.5 cM), achieving a LOD score of 3.37 under a strict diagnostic model. Suggestive evidence of linkage was seen at marker D2S388 (107.46 cM) with a LOD score of 2.22 under the general diagnostic model. Two candidate genes beneath the peak on chromosome 2p were selected for further analysis using public single nucleotide polymorphisms (SNPs) within these genes. Maximum LOD scores were obtained for an SNP in TACR1 (LOD = 3.5) and for an SNP in TCF7L1 (LOD = 3.33), both achieving genome-wide significance. However, no evidence of association was seen with any of the markers tested. These data strongly support the presence of a susceptibility gene on chromosome 2p11-12 and substantiate the possibility of a second locus on chromosome 2q23.  相似文献   

18.
Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder. To date four genes have been established to either cause early-onset autosomal-dominant AD (APP, PSEN1, and PSEN2(1-4)) or to increase susceptibility for late-onset AD (APOE5). However, the heritability of late-onset AD is as high as 80%, (6) and much of the phenotypic variance remains unexplained to date. We performed a genome-wide association (GWA) analysis using 484,522 single-nucleotide polymorphisms (SNPs) on a large (1,376 samples from 410 families) sample of AD families of self-reported European descent. We identified five SNPs showing either significant or marginally significant genome-wide association with a multivariate phenotype combining affection status and onset age. One of these signals (p = 5.7 x 10(-14)) was elicited by SNP rs4420638 and probably reflects APOE-epsilon4, which maps 11 kb proximal (r2 = 0.78). The other four signals were tested in three additional independent AD family samples composed of nearly 2700 individuals from almost 900 families. Two of these SNPs showed significant association in the replication samples (combined p values 0.007 and 0.00002). The SNP (rs11159647, on chromosome 14q31) with the strongest association signal also showed evidence of association with the same allele in GWA data generated in an independent sample of approximately 1,400 AD cases and controls (p = 0.04). Although the precise identity of the underlying locus(i) remains elusive, our study provides compelling evidence for the existence of at least one previously undescribed AD gene that, like APOE-epsilon4, primarily acts as a modifier of onset age.  相似文献   

19.
Primary osteoarthritis (OA) is a common late-onset arthritis that demonstrates a complex mode of transmittance with both joint-site and gender-specific heterogeneity. We have previously linkage-mapped an OA susceptibility locus to a 12-cM interval at chromosome 16p12.3-p12.1 in a cohort of 146 affected female sibling-pair families ascertained by total hip replacement (female-THR families), with a maximum multipoint LOD score of 1.7. Despite the low LOD score, we were encouraged to investigate this interval further following the report of a linkage to the same interval in an Icelandic pedigree with an early-onset form of hip OA. Using public databases, we searched the interval for plausible candidates and concluded that the gene encoding the interleukin 4 receptor chain (IL4R) was a particularly strong candidate based on its known role in cartilage homeostasis. We genotyped nine common single nucleotide polymorphisms (SNPs) from within IL4R, including six non-synonymous SNPs, in the 146 probands from our female-THR families (stage 1) and in an independent cohort of 310 female-THR cases (stage 2). We compared allele frequencies with those of 399 age-matched female controls. All individuals were UK Caucasians. The minor alleles of two SNPs demonstrated association in both stages, with the most significant association having a P-value of 0.004 with an odds ratio (OR) of 2.1. These two SNPs defined two associated SNP groups. Inheriting a minor SNP allele from both groups was a particular risk factor (OR=2.4, P=0.0008). Our data suggest that functional variants within the IL4R gene predispose to hip OA in Caucasian females.  相似文献   

20.
Three prostate cancer susceptibility genes have been reported to be linked to different regions on chromosome 1: HPC1 at 1q24-25, PCAP at 1q42-43, and CAPB at 1p36. Replication studies analyzing each of these regions have yielded inconsistent results. To evaluate linkage across this chromosome systematically, we performed multipoint linkage analyses with 50 microsatellite markers spanning chromosome 1 in 159 hereditary prostate cancer families (HPC), including 79 families analyzed in the original report describing HPC1 linkage. The highest lod scores for the complete dataset of 159 families were observed at 1q24-25 at which the parametric lod score assuming heterogeneity (hlod) was 2.54 (P=0.0006) with an allele sharing lod of 2.34 (P=0.001) at marker D1S413, although only weak evidence was observed in the 80 families not previously analyzed for this region (hlod=0.44, P=0.14, and allele sharing lod=0.67, P=0.08). In the complete data set, the evidence for linkage across this region was very broad, with allele sharing lod scores greater than 0.5 extending approximately 100 cM from 1p13 to 1q32, possibly indicating the presence of multiple susceptibility genes. Elsewhere on chromosome 1, some evidence of linkage was observed at 1q42-43, with a peak allele sharing lod of 0.56 (P=0.11) and hlod of 0.24 (P=0.25) at D1S235. For analysis of the CAPB locus at 1p36, we focused on six HPC families in our collection with a history of primary brain cancer; four of these families had positive linkage results at 1p36, with a peak allele sharing lod of 0.61 (P=0.09) and hlod of 0.39 (P=0.16) at D1S407 in all six families. These results are consistent with the heterogeneous nature of hereditary prostate cancer, and the existence of multiple loci on chromosome 1 for this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号