首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We combined three modern technologies of single base polymorphism detection in human genome: ligase detection reaction, rolling circle amplification and IMAGE hydro-gel microarrays. Polymorphism in target DNA was tested by selective ligation on microarray. Product of the ligase reaction was determined in microarray gel pads by rolling circle amplification. Two different methods were compared. In first, selective ligation of short oligonucleotides immobilized on microarray was used with subsequent amplification on preformed circle probe ("common circle"). The circle probe was designed especially for human genome research. In second variant, allele-specific padlock probes that may be circularized by selective ligation were immobilized on microarray. Polymorphism of codon 72 in human p53 gene was used as a biological model. It was shown that LDR/RCA on microarray is a quantitative reaction and gives high discrimination of alleles. Principles and perspectives of selective ligation and rolling circle amplification are being discussed.  相似文献   

2.
增强PCR和全基因组扩增是当前微量DNA分析的主要策略,但是,由于DNA模板量过少,受随机效应影响显著,往往不能得到可靠的DNA分型结果.本文提出一种新的检验策略:PLP-LDR-HRCA,尝试微量DNA检材的SNPs分型研究.选择rs17750303位点,并设计等位基因特异性锁式探针,采用连接酶检测反应来识别等位基因,而后采用超分支滚环扩增反应来放大检测信号.结果表明,PLP-LDR-HRCA反应特异性好,灵敏度高,能够直接鉴别微量基因组DNA模板中待测SNP位点,rs17750303纯合型样品(AA型或CC型)和杂合型样品(AC型)准确分型所需最少模板量分别为20pg和30pg.对于增强PCR和全基因组扩增技术不能有效检验的微量检材,PLP-LDR-PCR策略独具优势,可能具有较大的开发价值.  相似文献   

3.
Single-nucleotide polymorphisms (SNPs) have proven to be powerful genetic markers for a variety of genetic applications, e.g., association studies leading to dissection of both monogenetic and complex diseases. However, no single SNP genotyping method has been broadly accepted. In the present study, we compared and refined two promising methods with potential for research and for diagnostic SNP genotyping: Amplifluor allele-specific polymerase chain reaction (PCR) and ligation detection reaction (LDR)-TaqMan. The methods are based on allele-specific primer extension and allele-specific ligation, respectively. Since LDR-TaqMan had previously been tested on just Arabidopsis thaliana, we adjusted the method for the more complex human genome. Amplifluor allele-specific PCR has a single-step and closed-tube format, whereas the LDR-TaqMan assay comprises two simple steps. Contrary to the primer-extension-based method, the ligation-based method can be multiplexed. Refining the LDR-TaqMan technique, we successfully replaced a previously suggested three-step multiplexing procedure with a less laborious two-step approach. Comparing refined LDR-TaqMan with Amplifluor allele-specific PCR in a family-based study, both techniques appeared similar with respect to high robustness and accuracy. As both approaches utilize primers with common tails, all SNPs can be assayed with the same couple of fluorescence reporting reagents, ensuring low establishing and running expenses.  相似文献   

4.
滚环扩增(rollingcircleamplification,RCA)技术是一种新的分子生物学检测方法。该方法不仅可以在体外等温条件下对核酸进行高度特异性的检测,而且还可通过线性或指数扩增来进行信号级联放大,其灵敏度能达到1个拷贝的核酸分子,因此,可用于痕量分子的检测。目前,滚环扩增技术广泛应用于全基因组DNA检测、核酸测序、单核苷酸多态性、DNA芯片及蛋白质芯片分析等领域。  相似文献   

5.
A mutation detection strategy based on multiplex PCR followed by multiplex allele-specific oligonucleotide probe ligation was developed to detect single nucleotide substitutions in ras oncogenes, a common genetic abnormality in many human cancers. Mutation-specific probes are synthesized for each possible single-base, nonsilent mutation in codons 12, 13, and 61 of H-, K-, and N-ras oncogenes. Mutations are identified by competitive oligonucleotide probe ligation to detect normal and /or mutant genotypes in one reaction. Three probes (one common and two allelic probes) are needed for analysis of each mutation. Probes hybridized to target ras oncogene DNA are joined by a thermostable ligase if there are no mismatches at their junctions; temperature cycling results in a linear increase in product. Common probes are labeled with fluorochromes, and allelic probes each have different lengths. Ligation products are analyzed by denaturing polyacrylamide gel electrophoresis on a fluorescent DNA sequencer. We have applied this technology to identify ras mutations in pancreatic cancers and lung cancers and in patients with myelodysplastic syndromes and leukemias.  相似文献   

6.

Background

Rolling circle amplification of ligated probes is a simple and sensitive means for genotyping directly from genomic DNA. SNPs and mutations are interrogated with open circle probes (OCP) that can be circularized by DNA ligase when the probe matches the genotype. An amplified detection signal is generated by exponential rolling circle amplification (ERCA) of the circularized probe. The low cost and scalability of ligation/ERCA genotyping makes it ideally suited for automated, high throughput methods.

Results

A retrospective study using human genomic DNA samples of known genotype was performed for four different clinically relevant mutations: Factor V Leiden, Factor II prothrombin, and two hemochromatosis mutations, C282Y and H63D. Greater than 99% accuracy was obtained genotyping genomic DNA samples from hundreds of different individuals. The combined process of ligation/ERCA was performed in a single tube and produced fluorescent signal directly from genomic DNA in less than an hour. In each assay, the probes for both normal and mutant alleles were combined in a single reaction. Multiple ERCA primers combined with a quenched-peptide nucleic acid (Q-PNA) fluorescent detection system greatly accellerated the appearance of signal. Probes designed with hairpin structures reduced misamplification. Genotyping accuracy was identical from either purified genomic DNA or genomic DNA generated using whole genome amplification (WGA). Fluorescent signal output was measured in real time and as an end point.

Conclusions

Combining the optimal elements for ligation/ERCA genotyping has resulted in a highly accurate single tube assay for genotyping directly from genomic DNA samples. Accuracy exceeded 99 % for four probe sets targeting clinically relevant mutations. No genotypes were called incorrectly using either genomic DNA or whole genome amplified sample.  相似文献   

7.
8.
9.
10.
While microarrays hold considerable promise in large-scale biology on account of their massively parallel analytical nature, there is a need for compatible signal amplification procedures to increase sensitivity without loss of multiplexing. Rolling circle amplification (RCA) is a molecular amplification method with the unique property of product localization. This report describes the application of RCA signal amplification for multiplexed, direct detection and quantitation of nucleic acid targets on planar glass and gel-coated microarrays. As few as 150 molecules bound to the surface of microarrays can be detected using RCA. Because of the linear kinetics of RCA, nucleic acid target molecules may be measured with a dynamic range of four orders of magnitude. Consequently, RCA is a promising technology for the direct measurement of nucleic acids on microarrays without the need for a potentially biasing preamplification step.  相似文献   

11.

Background

Single nucleotide polymorphisms (SNPs) are the foundation of powerful complex trait and pharmacogenomic analyses. The availability of large SNP databases, however, has emphasized a need for inexpensive SNP genotyping methods of commensurate simpliCity, robustness, and scalability. We describe a solution-based, microtiter plate method for SNP genotyping of human genomic DNA. The method is based upon allele discrimination by ligation of open circle probes followed by rolling circle amplification of the signal using fluorescent primers. Only the probe with a 3' base complementary to the SNP is circularized by ligation.

Results

SNP scoring by ligation was optimized to a 100,000 fold discrimination against probe mismatched to the SNP. The assay was used to genotype 10 SNPs from a set of 192 genomic DNA samples in a high-throughput format. Assay directly from genomic DNA eliminates the need to preamplify the target as done for many other genotyping methods. The sensitivity of the assay was demonstrated by genotyping from 1 ng of genomic DNA. We demonstrate that the assay can detect a single molecule of the circularized probe.

Conclusions

Compatibility with homogeneous formats and the ability to assay small amounts of genomic DNA meets the exacting requirements of automated, high-throughput SNP scoring.  相似文献   

12.
We describe a new approach for labeling of unique sequences within dsDNA under nondenaturing conditions. The method is based on the site-specific formation of vicinal nicks, which are created by nicking endonucleases (NEases) at specified DNA sites on the same strand within dsDNA. The oligomeric segment flanked by both nicks is then substituted, in a strand displacement reaction, by an oligonucleotide probe that becomes covalently attached to the target site upon subsequent ligation. Monitoring probe hybridization and ligation reactions by electrophoretic mobility retardation assay, we show that selected target sites can be quantitatively labeled with excellent sequence specificity. In these experiments, predominantly probes carrying a target-independent 3′ terminal sequence were employed. At target labeling, thus a branched DNA structure known as 3′-flap DNA is obtained. The single-stranded terminus in 3′-flap DNA is then utilized to prime the replication of an externally supplied ssDNA circle in a rolling circle amplification (RCA) reaction. In model experiments with samples comprised of genomic λ-DNA and human herpes virus 6 type B (HHV-6B) DNA, we have used our labeling method in combination with surface RCA as reporter system to achieve both high sequence specificity of dsDNA targeting and high sensitivity of detection. The method can find applications in sensitive and specific detection of viral duplex DNA.  相似文献   

13.
An improved approach for increasing the multiplex level of single nucleotide polymorphism (SNP) typing by adapter ligation-mediated allele-specific amplification (ALM-ASA) has been developed. Based on an adapter ligation, each reaction requires n allele-specific primers plus an adapter-specific primer that is common for all SNPs. Thus, only n+1 primers are used for an n-plex PCR amplification. The specificity of ALM-ASA was increased by a special design of the adapter structure and PCR suppression. Given that the genetic polymorphisms in the liver enzyme cytochrome P450 CYP2D6 (debrisoquine 4-hydroxylase) have profound effects on responses of individuals to a particular drug, we selected 17 SNPs in the CYP2D6 gene as an example for the multiplex SNP typing. Without extensive optimization, we successfully typed 17-plex SNPs in the CYP2D6 gene by ALM-ASA. The results for genotyping 70 different genome samples by the 17-plex ALM-ASA were completely consistent with those obtained by both Sanger's sequencing and PCR restriction fragment length polymorphism (PCR-RFLP) analysis. ALM-ASA is a potential method for SNP typing at an ultra-low cost because of a high multiplex level and a simple optimization step for PCR. High-throughput SNP typing could be readily realized by coupling ALM-ASA with a well-developed automation device for sample processing.  相似文献   

14.
A simple isothermal nucleic-acid amplification reaction, primer generation–rolling circle amplification (PG–RCA), was developed to detect specific nucleic-acid sequences of sample DNA. This amplification method is achievable at a constant temperature (e.g. 60°C) simply by mixing circular single-stranded DNA probe, DNA polymerase and nicking enzyme. Unlike conventional nucleic-acid amplification reactions such as polymerase chain reaction (PCR), this reaction does not require exogenous primers, which often cause primer dimerization or non-specific amplification. Instead, ‘primers’ are generated and accumulated during the reaction. The circular probe carries only two sequences: (i) a hybridization sequence to the sample DNA and (ii) a recognition sequence of the nicking enzyme. In PG–RCA, the circular probe first hybridizes with the sample DNA, and then a cascade reaction of linear rolling circle amplification and nicking reactions takes place. In contrast with conventional linear rolling circle amplification, the signal amplification is in an exponential mode since many copies of ‘primers’ are successively produced by multiple nicking reactions. Under the optimized condition, we obtained a remarkable sensitivity of 84.5 ymol (50.7 molecules) of synthetic sample DNA and 0.163 pg (~60 molecules) of genomic DNA from Listeria monocytogenes, indicating strong applicability of PG–RCA to various molecular diagnostic assays.  相似文献   

15.
We present an optimized probe design for copy number variation (CNV) and SNP genotyping in the Plasmodium falciparum genome. We demonstrate that variable length and isothermal probes are superior to static length probes. We show that sample preparation and hybridization conditions mitigate the effects of host DNA contamination in field samples. The microarray and workflow presented can be used to identify CNVs and SNPs with 95% accuracy in a single hybridization, in field samples containing up to 92% human DNA contamination.  相似文献   

16.
We developed a rapid and simple method to identify single-nucleotide polymorphisms (SNPs) in the human mitochondrial tRNA genes. This method is based on a universal, functionalized, self-assembled monolayer, XNA on Gold chip platform. A set of probes sharing a given allele-specific sequence with a single base substitution near the middle of the sequence was immobilized on chips and the chips were then hybridized with fluorescence-labeled reference targets produced by asymmetric polymerase chain reaction from patient DNA. The ratio of the hybridization signals from the reference and test targets with each probe was then calculated. A ratio of above 3 indicates the presence of a wild-type sequence and a ratio of below 0.3 indicates a mutant sequence. We tested the sensitivity of the chip for known mutations in tRNA(Leu(UUR)) and tRNA(Lys) genes and found that it can also be used to discriminate multiple mutations and heteroplasmy, two typical features of human mitochondrial DNA. The XNA on Gold biochip method is a simple and rapid microarray method that can be used to test rapidly and reliably any SNP in the mitochondrial genome or elsewhere. It will be particularly useful for detecting SNPs associated with human diseases.  相似文献   

17.
Amplification of source DNA is a nearly universal requirement for molecular biology applications. The primary methods currently available to researchers are limited to in vivo amplification in Escherichia coli hosts and the polymerase chain reaction. Rolling-circle DNA replication is a well-known method for synthesis of phage genomes and recently has been applied as rolling circle amplification (RCA) of specific target sequences as well as circular vectors used in cloning. Here, we demonstrate that RCA using random hexamer primers with 29 DNA polymerase can be used for strand-displacement amplification of different vector constructs containing a variety of insert sizes to produce consistently uniform template for end-sequencing reactions. We show this procedure to be especially effective in a high-throughput plasmid production sequencing process. In addition, we demonstrate that whole bacterial genomes can be effectively amplified from cells or small amounts of purified genomic DNA without apparent bias for use in downstream applications, including whole genome shotgun sequencing.  相似文献   

18.
汪维鹏  倪坤仪  周国华 《遗传》2006,28(2):219-225
建立了一种基于DNA适配器连接介导的等位基因特异性扩增法测定多重SNP。以CYP2D6基因中的5个SNP位点(100C>T,1661G>C,1758G>T,2470T>C和2850C>T)为例,用PCR法预扩增得一段含所有待测SNP位点的长片段,然后用限制性内切酶将其消化成短片段,在连接酶的作用下与设计的DNA适配器(adapter)相连;该适配器的一端与限制性内切酶降解后留下的粘性末端相同,另一端带有一段公共序列。在两管中加入与适配器连接的片段作为PCR扩增模板,并分别加入SNP特异性引物和一种适配器特异性的通用引物进行PCR扩增,最后用凝胶电泳法分离PCR扩增产物。由于每管与SNP的两种特异性引物中的一种对应,可以根据每管中扩增片段的大小判断SNP的类型。通过凝胶电泳法可以一次分离与5种SNP类型相对应的引物特异性延伸反应产物;采用该法成功测定了20名健康中国人的CYP2D6基因中5个SNP位点的基因多态性,与限制性片段长度多态性法(RFLP)测定结果完全一致。该方法采用n+1种引物(n种SNP特异性引物和一种通用引物)进行n重PCR反应,极大提高了PCR反应的特异性,结果准确,可用于同时测定多个SNP位点。

  相似文献   

19.
柑桔溃疡病菌滚环扩增检测体系的建立   总被引:3,自引:0,他引:3  
根据柑桔溃疡病菌(Xanthomonas axonopodis pv.citri,Xac)独有的蛋白基因序列和锁式探针公共连接序列分别设计特异性的锁式探针及其扩增引物,优化系列反应条件,建立了特异性的柑桔溃疡病菌滚环扩增体系.初步检测结果表明该体系能够特异性地检出Xac的菌体细胞及其DNA,而检测不出供试的其它植物病原细菌和柑桔叶面常见的多种附生细菌;对Xac靶片段克隆质粒DNA的检测灵敏度为10 2 copy/μL,对Xac菌悬液的检测灵敏度为20 cfu/μL,比常规PCR的检测灵敏度稍高.用滚环扩增技术和常规PCR技术对田间采集的实际样品进行了检测,两种方法的检测结果没有显著差异(P>0.01).由于锁式探针的公共连接序列对扩增的条件要求一致,本体系的建立可以为植物病原微生物多靶标检测和病害检疫检验提供新的技术支撑.  相似文献   

20.
We have microfabricated a flow-through biochip for the analysis of single base mutations in genomic DNA using two different materials: (1) a polycarbonate (PC) chip for performing a primary polymerase chain reaction (PCR) followed by an allele-specific ligation detection reaction (LDR) and (2) a poly(methyl methacrylate) (PMMA) chip for the detection of the LDR products using a universal array platform. The operation of the device was demonstrated by detecting low-abundant DNA mutations in gene fragments (K-ras) that carry point mutations with high diagnostic value for colorectal cancers. The PC microchip was used for sequential PCR/LDR in a continuous-flow format, in which the following three steps were carried out: (1) exponential amplification of gene fragments from genomic DNA; (2) mixing of the resultant PCR product with a LDR mixture via a Y-shaped passive micromixer and (3) ligation of two primers only when the particular mutation was present in the genomic DNA. A PMMA chip was employed as the microarray device, where zip code sequences (24-mer), which were complementary to sequences present on the discriminating primer, were micro-printed into fluidic channels embossed into the PMMA substrate. We successfully demonstrate the ability to detect one mutant DNA in 80 normal sequences with the integrated microfluidic device. The PCR/LDR/hybridization assay using the microchips performed the entire assay at a relatively fast processing speed: 18.7 min for PCR, 8.1 min for LDR, 5 min for hybridization, 10 min for washing and 2.6 min for fluorescence scanning (total processing time=ca. 50 min) with an order of magnitude reduction in reagents compared to bench-top formats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号