共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Wang Xiaoyuan Zhang Hailing Quinn Peter J. 《Applied microbiology and biotechnology》2018,102(10):4319-4330
Applied Microbiology and Biotechnology - l-Valine is one of the three branched-chain amino acids (valine, leucine, and isoleucine) essential for animal health and important in metabolism;... 相似文献
3.
Tobias Bartek Enrico Zönnchen Bianca Klein Robert Gerstmeir Pia Makus Siegmund Lang Marco Oldiges 《Journal of industrial microbiology & biotechnology》2010,37(3):263-270
l-Valine biosynthesis was analysed by comparing different plasmids in pyruvate-dehydrogenase-deficient Corynebacterium glutamicum strains in order to achieve an optimal production strain. The plasmids contained different combinations of the genes ilvBNCDE encoding for the l-valine forming pathway. It was shown that overexpression of the ilvBN genes encoding acetolactate synthase is obligatory for efficient pyruvate conversion and to prevent l-alanine as a by-product. In contrast to earlier studies, overexpression of ilvE encoding transaminase B is favourable in pyruvate-dehydrogenase-negative strains. Its amplification enhanced l-valine formation and avoided extra- and intracellular accumulation of ketoisovalerate. 相似文献
4.
Carbon flux analysis during a pseudo-stationary phase of metabolite accumulation in a genetically engineered strain of Corynebacterium glutamicum, containing plasmids leading to over-expression of the ilvBNCD and panBC operons, has identified the basic metabolic constraints governing the potential of this bacterium to produce pantothenate. Carbon flux converging on pyruvate (75% of glucose uptake) is controlled by anabolic precursor requirements and NADPH demand provoking high carbon loss as CO2 via the pentose pathway. Virtually all the flux of pyruvate is directed into the branched pathway leading to both valine and pantothenate production, but flux towards valine is tenfold higher than that transformed to pantothenate, indicating that significant improvements will only be obtained if carbon flux at the ketoisovalerate branchpoint can be modulated. 相似文献
5.
6.
Threonine dehydratase and acetohydroxy acid synthase are critical enzymes in the l-isoleucine biosynthesis pathway of Corynebacterium glutamicum, but their activities are usually feedback-inhibited. In this study, we characterized a feedback-resistant threonine dehydratase and an acetohydroxy acid synthase from an l-isoleucine producing strain C. glutamicum JHI3-156. Sequence analysis showed that there was only a single amino acid substitution (Phe383Val) in the feedback-resistant threonine dehydratase, and there were three mutated amino acids (Pro176Ser, Asp426Glu, and Leu575Trp) in the big subunit of feedback-resistant acetohydroxy acid synthase. The mutated threonine dehydratase over-expressed in E. coli not only showed completely resistance to l-isoleucine inhibition, but also showed enhanced activity. The mutated acetohydroxy acid synthase over-expressed in E. coli showed more resistance to l-isoleucine inhibition than the wild type. Over-expression of the feedback-resistant threonine dehydratase or acetohydroxy acid synthase in C. glutamicum JHI3-156 led to increase of l-isoleucine production; co-expression of them in C. glutamicum JHI3-156 led to 131.7% increase in flask cultivation, and could produce 30.7g/L l-isoleucine in 72-h fed-batch fermentation. These results would be useful to enhance l-isoleucine production in C. glutamicum. 相似文献
7.
Effect of transport proteins on l-isoleucine production with the l-isoleucine-producing strain Corynebacterium glutamicum YILW 总被引:1,自引:0,他引:1
Xie X Xu L Shi J Xu Q Chen N 《Journal of industrial microbiology & biotechnology》2012,39(10):1549-1556
Previous studies have shown that the deletion of brnQ from the Corynebacterium glutamicum chromosome results in a significant reduction in L-isoleucine uptake rates, while overexpression of brnFE leads to enhanced L-isoleucine export rates. Given that net excretion rates would be an important factor for high titers of L-isoleucine accumulation, we have tested the notion that decreased L-isoleucine uptake combined with increased L-isoleucine excretion will further improve high-yield strains that are currently used for the industrial-scale production of L-isoleucine. To examine the effect of the two carriers on L-isoleucine accumulation in L-isoleucine producer C. glutamicum YILW, we constructed a brnQ deletion mutant (C. glutamicum YILW?brnQ) and two brnFE overexpressors (C. glutamicum YILWpXMJ19brnFE and C. glutamicum YILW?brnQpXMJ19brnFE). Compared to the original strain, the efflux rate of the brnQ mutant increased from 19.0 to 23.6?nmol?min(-1) mg (dry wt)(-1) and its L-isoleucine titer increased from 154.3?mM (20.2?g?l(-1)) to 170.3?mM (22.3?g?l(-1)). The efflux rates of C. glutamicum YILWpXMJ19brnFE and C. glutamicum YILW?brnQpXMJ19brnFE were 33.5 and 39.1?nmol?min(-1) mg (dry wt)(-1), and their L-isoleucine production titers were 197.2?mM (25.9?g?l(-1)) and 221.0?mM (29.0?g?l(-1)), respectively. Our results suggest that modifications of the transport system could provide a promising avenue for further increasing L-isoleucine yield in the L-isoleucine producer. 相似文献
8.
The fermentative production of l-threonine and l-isoleucine with Corynebacterium glutamicum is usually accompanied by the by-production of l-lysine, which shares partial biosynthesis pathway with l-threonine and l-isoleucine. Since the direct precursor for l-lysine synthesis, diaminopimelate, is a component of peptidoglycan and thus essential for cell wall synthesis, reducing l-lysine by-production could be troublesome. Here, a basal strain with eliminated l-lysine production was constructed from the wild type C. glutamicum ATCC13869 by deleting the chromosomal ddh and lysE. Furthermore, the basal strain as well as the ddh single mutant strain was engineered for l-threonine production by over-expressing lysC1, hom1 and thrB, and for l-isoleucine production by over-expressing lysC1, hom1, thrB and ilvA1. Fermentation experiments with the engineered strains showed that (i) deletion of ddh improved l-threonine production by 17%, and additional deletion of lysE further improved l-threonine production by 28%; (ii) deletion of ddh improved l-isoleucine production by 8% and improved cell growth by 21%, whereas additional deletion of lysE had no further influence on both l-isoleucine production and cell growth; (iii) l-lysine by-production was reduced by 95% and 86% in l-threonine and l-isoleucine production, respectively, by deletion of ddh and lysE. This is the first report on improving l-threonine and l-isoleucine production by deleting ddh and lysE in C. glutamicum. The results demonstrate deletion of ddh and lysE as an effective strategy to reduce l-lysine by-production without surrendering the cell growth of C. glutamicum. 相似文献
9.
10.
11.
Single gene overexpression in product pathways such as lysine synthesis has often been employed in metabolic engineering efforts aiming at pathway flux amplification and metabolite overproduction. This approach is limited due to metabolic flux imbalances that often lead to unpredictable physiological responses and suboptimal metabolite productivity. This deficiency can be overcome by the coordinated overexpression of more than one flux controlling genes in a production pathway selected by considering their individual contributions on the cell physiology This concept is demonstrated by the simultaneous overexpression of pyruvate carboxylase and aspartate kinase, two key enzymes in central carbon metabolism and the lysine production pathway in Corynebacterium glutamicum. Contrary to expectations based on the importance of each of these two genes in lysine production, the monocistronic overexpression of either gene results in marginal changes in the overall lysine productivity due to either reduced cell growth or reduced lysine specific productivity. In contrast, the simultaneous amplification of the activities of the two enzymes yielded more than 250% increase of the lysine specific productivity in lactate minimal medium without affecting the growth rate or final cell density of the culture. These results demonstrate that significant flux amplification in complex pathways involving central carbon metabolism is possible through coordinated overexpression of more than one gene in the pathway. This can be achieved either by external, gene expression inducing, controls or controls responding to the physiological cellular state. 相似文献
12.
13.
Functional and structural analyses of threonine dehydratase from Corynebacterium glutamicum. 下载免费PDF全文
Threonine dehydratase activity is an important element in the flux control of isoleucine biosynthesis. The enzyme of Corynebacterium glutamicum demonstrates a marked sigmoidal dependence of initial velocity on the threonine concentration, a dependence that is consistent with substrate-promoted conversion of the enzyme from a low-activity to a high-activity conformation. In the presence of the negative allosteric effector isoleucine, the K0.5 increased from 21 to 78 mM and the cooperativity, as expressed by the Hill coefficient increased from 2.4 to 3.7. Valine promoted opposite effects: the K0.5 was reduced to 12 mM, and the enzyme exhibited almost no cooperativity. Sequence determination of the C. glutamicum gene for this enzyme revealed an open reading frame coding for a polypeptide of 436 amino acids. From this information and the molecular weight determination of the native enzyme, it follows that the dehydratase is a tetramer with a total mass of 186,396 daltons. Comparison of the deduced polypeptide sequence with the sequences of known threonine dehydratases revealed surprising differences from the C. glutamicum enzyme in the carboxy-terminal portion. This portion is greatly reduced in size, and a large gap of 95 amino acids must be introduced to achieve homology. Therefore, the C. glutamicum enzyme must be considered a small variant of threonine dehydratase that is typically controlled by isoleucine and valine but has an altered structure reflecting a topological difference in the portion of the protein most likely to be important for allosteric regulation. 相似文献
14.
Hansmeier N Bartels FW Ros R Anselmetti D Tauch A Pühler A Kalinowski J 《Journal of biotechnology》2004,112(1-2):177-193
The structural S-layer proteins of 28 different Corynebacterium glutamicum isolates have been analyzed systematically. Treatment of whole C. glutamicum cells with detergents resulted in the isolation of S-layer proteins with different apparent molecular masses, ranging in size from 55 to 66 kDa. The S-layer genes analyzed were characterized by coding regions ranging from 1,473 to 1,533 nucleotides coding for S-layer proteins with a size of 490-510 amino acids. Using PCR techniques, the corresponding S-layer genes of the 28 C. glutamicum isolates were all cloned and sequenced. The deduced amino acid sequences of the S-layer proteins showed identities between 69 and 98% and could be grouped into five phylogenetic classes. Furthermore, sequence analyses indicated that the S-layer proteins of the analyzed C. glutamicum isolates exhibit a mosaic structure of highly conserved and highly variable regions. Several conserved regions were assumed to play a key role in the formation of the C. glutamicum S-layers. Especially the N-terminal signal peptides and the C-terminal anchor sequences of the S-layer proteins showed a nearly perfect amino acid sequence conservation. Analyses by atomic force microscopy revealed a committed hexagonal structure. Morphological diversity of the C. glutamicum S-layers was observed in a class-specific unit cell dimension (ranging from 15.2 to 17.4 nm), which correlates with the sequence similarity-based classification. It could be demonstrated that differences in the primary structure of the S-layer proteins were reflected by the S-layer morphology. 相似文献
15.
The Corynebacterium glutamicum panD gene was identified by functional complementation of an Escherichia coli panD mutant strain. Sequence analysis revealed that the coding region of panD comprises 411 bp and specifies a protein of 136 amino acid residues with a deduced molecular mass of 14.1 kDa. A defined C. glutamicum panD mutant completely lacked L-aspartate-alpha-decarboxylase activity and exhibited beta-alanine auxotrophy. The C. glutamicum panD (panDC. g.) as well as the E. coli panD (panDE.c.) genes were cloned into a bifunctional expression plasmid to allow gene analysis in C. glutamicum as well as in E. coli. The enhanced expression of panDC.g. in C. glutamicum resulted in the formation of two distinct proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, leading to the assumption that the panDC.g. gene product is proteolytically processed into two subunits. By increased expression of panDC.g. in C. glutamicum, the activity of L-aspartate-alpha-decarboxylase was 288-fold increased, whereas the panDE.c. gene resulted only in a 4-fold enhancement. The similar experiment performed in E. coli revealed that panDC.g. achieved a 41-fold increase and that panDE.c. achieved a 3-fold increase of enzyme activity. The effect of the panDC.g. and panDE.c. gene expression in E. coli was studied with a view to pantothenate accumulation. Only by expression of the panDC.g. gene was sufficient beta-alanine produced to abolish its limiting effect on pantothenate production. In cultures expressing the panDE.c. gene, the maximal pantothenate production was still dependent on external beta-alanine supplementation. The enhanced expression of panDC.g. in E. coli yielded the highest amount of pantothenate in the culture medium, with a specific productivity of 140 ng of pantothenate mg (dry weight)-1 h-1. 相似文献
16.
17.
Hüser AT Chassagnole C Lindley ND Merkamm M Guyonvarch A Elisáková V Pátek M Kalinowski J Brune I Pühler A Tauch A 《Applied and environmental microbiology》2005,71(6):3255-3268
A "second-generation" production strain was derived from a Corynebacterium glutamicum pantothenate producer by rational design to assess its potential to synthesize and accumulate the vitamin pantothenate by batch cultivation. The new pantothenate production strain carries a deletion of the ilvA gene to abolish isoleucine synthesis, the promoter down-mutation P-ilvEM3 to attenuate ilvE gene expression and thereby increase ketoisovalerate availability, and two compatible plasmids to overexpress the ilvBNCD genes and duplicated copies of the panBC operon. Production assays in shake flasks revealed that the P-ilvEM3 mutation and the duplication of the panBC operon had cumulative effects on pantothenate production. During pH-regulated batch cultivation, accumulation of 8 mM pantothenate was achieved, which is the highest value reported for C. glutamicum. Metabolic flux analysis during the fermentation demonstrated that the P-ilvEM3 mutation successfully reoriented the carbon flux towards pantothenate biosynthesis. Despite this repartition of the carbon flux, ketoisovalerate not converted to pantothenate was excreted by the cell and dissipated as by-products (ketoisocaproate, DL-2,3,-dihydroxy-isovalerate, ketopantoate, pantoate), which are indicative of saturation of the pantothenate biosynthetic pathway. Genome-wide expression analysis of the production strain during batch cultivation was performed by whole-genome DNA microarray hybridization and agglomerative hierarchical clustering, which detected the enhanced expression of genes involved in leucine biosynthesis, in serine and glycine formation, in regeneration of methylenetetrahydrofolate, in de novo synthesis of nicotinic acid mononucleotide, and in a complete pathway of acyl coenzyme A conversion. Our strategy not only successfully improved pantothenate production by genetically modified C. glutamicum strains but also revealed new constraints in attaining high productivity. 相似文献
18.
Aspartate availability was increased in Corynebacterium glutamicum strains to assess its influence on lysine production. Upon addition of fumarate to a strain with a feedback-resistant aspartate kinase, the lysine yield increased from 20 to 30 mM. This increase was accompanied by the excretion of malate and succinate. In this strain, fumaric acid was converted to aspartate by fumarate hydratase, malate dehydrogenase, and aspartate amino transferase activity. To achieve the direct conversion of fumarate to aspartate, shuttle vectors containing the aspA+ (aspartase) gene of Escherichia coli were constructed. These constructions were introduced into C. glutamicum, which was originally devoid of the enzyme aspartase. This resulted in an aspartase activity of 0.3 U/mg (70% of the aspartase activity in E. coli) with plasmid pZ1-9 and an activity of up to 1.05 U/mg with plasmid pCE1 delta. In aspA+-expressing strains, lysine excretion was further increased by 20%. Additionally, in strains harboring pCE1 delta, up to 27 mM aspartate was excreted. This indicates that undetermined limitations in the sequence of reactions from aspartate to lysine exist in C. glutamicum. 相似文献
19.
正自从1957年Kinoshita等首次描述谷氨酸棒杆菌(Corynebacterium glutamicum)为谷氨酸产生菌[1]以来,其已成为用于氨基酸生产的主要菌株。目前,全世界每年利用谷氨酸棒杆菌生产约100万t L-谷氨酸用于食品调味剂和约45万t L-赖氨酸用作食品添加剂[2]。通过谷氨酸棒状杆菌发酵获得谷氨酸的发酵水平已较高,通过进一步优化工艺来提高产量具有较大困难[3]。 相似文献
20.
Influence of increased aspartate availability on lysine formation by a recombinant strain of Corynebacterium glutamicum and utilization of fumarate. 总被引:5,自引:1,他引:5 下载免费PDF全文
Aspartate availability was increased in Corynebacterium glutamicum strains to assess its influence on lysine production. Upon addition of fumarate to a strain with a feedback-resistant aspartate kinase, the lysine yield increased from 20 to 30 mM. This increase was accompanied by the excretion of malate and succinate. In this strain, fumaric acid was converted to aspartate by fumarate hydratase, malate dehydrogenase, and aspartate amino transferase activity. To achieve the direct conversion of fumarate to aspartate, shuttle vectors containing the aspA+ (aspartase) gene of Escherichia coli were constructed. These constructions were introduced into C. glutamicum, which was originally devoid of the enzyme aspartase. This resulted in an aspartase activity of 0.3 U/mg (70% of the aspartase activity in E. coli) with plasmid pZ1-9 and an activity of up to 1.05 U/mg with plasmid pCE1 delta. In aspA+-expressing strains, lysine excretion was further increased by 20%. Additionally, in strains harboring pCE1 delta, up to 27 mM aspartate was excreted. This indicates that undetermined limitations in the sequence of reactions from aspartate to lysine exist in C. glutamicum. 相似文献