首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Peroxisomes were isolated by sucrose density gradient centrifugationfrom mesophyll and bundle sheath protoplasts of a C4 plant,Panicum miliaceum L. The equilibrium density in the gradientwas 1.25 for bundle sheath peroxisomes and 1.23 for mesophyllperoxisomes, the former density being similar to that of peroxisomesof wheat mesophyll protoplasts. Photorespiratory and other microbody enzymes were assayed forthe peroxisomes of P. miliaceum to detect possible differentiationat an enzyme level. The specific activities of photorespiratoryenzymes, except for hydroxypyruvate reductase, in bundle sheathperoxisomes were 40–60% of those in wheat peroxisomes,when compared on a protein basis, and only 20–30% in mesophyllperoxisomes. However, peroxisomes from both cell types containedsignificant levels of all the enzymes involved in the photorespiratoryglycolate pathway, when compared with castor bean glyoxysomes.The activity of hydroxypyruvate reductase in the peroxisomesof P. miliaceum was comparable to or higher than that in wheatperoxisomes. Two ß-oxidation enzymes and urate oxidasewere detected in the peroxisomes in a similar level to thatin wheat peroxisomes. These results suggest that the peroxisomes of mesophyll andbundle sheath cells of P. miliaceum are essentially similarto those of C3 plants, and that they cannot be differentiatedexcept for a difference in equilibrium density in a sucrosegradient. (Received December 24, 1984; Accepted April 9, 1985)  相似文献   

2.
Bundle sheath protoplasts (BSP) were isolated and purified fromfour C4 species of the phosphoenolpyruvate (PEP) carboxykinasetype (Panicum maximum, P. texanum, Chloris gayana and Eriochloaborumensis), and cell organellses were separated from the BSPextract by differential centrifugation or sucrose density gradientcentrifugation. Separation of the organelles was ascertainedby the distribution of marker enzymes for chloroplasts, mitochondria,peroxisomes and cytoplasm. Contrary to the previous report [Rathnamand Edwards (1975) Arch. Biochem. Biophys. 171: 214], the distributionof PEP carboxykinase in BSP of P. maximum was the same as thatof UDP-glucose pyrophosphorylase, a marker for cytoplasm, andPEP carboxykinase activity was not recovered in the intact chloroplasts.The same results were obtained with P. texanum, C. gayana andE. borumensis. Therefore, we conclude that PEP carboxykinase is exclusivelylocalized in the cytoplasm of bundle sheath cells of C4 plants. (Received July 23, 1983; Accepted October 17, 1983)  相似文献   

3.
Chloroplasts, mitochondria and cytoplasm, isolated from pea,wheat, maize and sorghum mesophyll protoplasts, contain distinctforms of superoxide dismutase (SOD). In all species evaluated,chloroplasts exhibited a single cyanide-sensitive SOD. Thischloroplastic enzyme was the most anionic SOD observed in wholeleaf and protoplast extracts and constitutes 50–80% ofthe total soluble SOD. Pea and wheat protoplasts had only onecytoplasmic SOD, a cyanide-sensitive form of intermediate mobility;maize and sorghum had two such cytoplasmic enzymes. A singlecyanide-insensitive SOD was present in extracts from both C3and C4 tissues and was associated with mitochondria. Although bundle sheath cells of sorghum and maize are knownto be deficient in Photosystem II, there was no apparent differencein SOD between mesophyll and bundle sheath cells. Mesophyllprotoplasts and bundle sheath strands from these C4 plants containedthe same forms of SOD. Levels of soluble SOD were similar, ona chlorophyll basis, in the two cell types as was distributionof activity among the various forms of the enzyme. (Received May 19, 1980; )  相似文献   

4.
Kanai R  Edwards GE 《Plant physiology》1973,51(6):1133-1137
Mesophyll protoplasts and bundle sheath strands of maize (Zea mays L.) leaves have been isolated by enzymatic digestion with cellulase. Mesophyll protoplasts, enzymatically released from maize leaf segments, were further purified by use of a polyethylene glycol-dextran liquid-liquid two phase system. Bundle sheath strands released from the leaf segments were isolated using filtration techniques. Light and electron microscopy show separation of the mesophyll cell protoplasts from bundle sheath strands. Two varieties of maize isolated mesophyll protoplasts had chlorophyll a/b ratios of 3.1 and 3.3, whereas isolated bundle sheath strands had chlorophyll a/b ratios of 6.2 and 6.6. Based on the chlorophyll a/b ratios in mesophyll protoplasts, bundle sheath cells, and whole leaf extracts, approximately 60% of the chlorophyll in the maize leaves would be in mesophyll cells and 40% in bundle sheath cells. The purity of the preparations was also evident from the exclusive localization of phosphopyruvate carboxylase (EC 4.1.1.31) and NADP-dependent malate dehydrogenase (EC 1.1.1) in mesophyll cells and ribulose 1,5-diphosphate carboxylase (EC 4.1.1.39), phosphoribulokinase (EC 2.7.1.19), and “malic enzyme” (EC 1.1.1.40) in bundle sheath cells. NADP-glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.13) was found in both mesophyll and bundle sheath cells, while ribose 5-phosphate isomerase (EC 5.3.1.6) was primarily found in bundle sheath cells. In comparison to the enzyme activities in the whole leaf extract, there was about 90% recovery of the mesophyll enzymes and 65% recovery of the bundle sheath enzymes in the cellular preparations.  相似文献   

5.
Mesophyll and bundle sheath protoplasts were differentiallyisolated for the first time from leaves of a C3-C4 intermediate,Flaveria ramosissima. Protoplasts were partially purified fromleaf digests following differential centrifugation and flotationon dextran step-gradients. Two mesophyll and one bundle sheathfraction were obtained, with relative purities of the preparationsdetermined visually as >95% for mesophyll and >80% forbundle sheath. Representative C3 and C4 photosynthetic enzymes had substantialactivities, on a chlorophyll basis, in all three protoplastpreparations. The activity of phosphoenolpyruvate carboxylasewas highest in the lower density mesophyll fraction and lowestin the bundle sheath fraction. Conversely, the activity of NADP-malicenzyme was highest in the bundle sheath, and lowest in the lightermesophyll preparation. Ribulose 1,5-bisphosphate carboxylase/oxygenasehad similar activity in all three preparations, as did glycolateoxidase. However, glycine decarboxylase was about 3-fold enrichedin the bundle sheath fraction. The data indicate that the partialcompartmentation of photorespiratory metabolism may contributealong with limited C4 photosynthesis to reducing photorespirationin this intermediate species. (Received April 27, 1988; Accepted June 17, 1988)  相似文献   

6.
A procedure is described for isolating and purifying mesophyll protoplasts and bundle sheath protoplasts of the C4 plant Panicum miliaceum. Following enzymic digestion of leaf tissue, mesophyll protoplasts and bundle sheath protoplasts are released and purified by density centrifugation. The lower density of mesophyll protoplasts allowed rapid separation of the two protoplast types. Evidence for separation of mesophyll protoplasts and bundle sheath protoplasts (up to 95% purity) is provided from light microscopy (based on size difference in both chloroplasts and protoplasts), levels of marker enzymes in the preparations (i.e. pyruvate, Pi dikinase and phosphoenolpyruvate carboxylase for mesophyll and ribulose-1,5-bisphosphate carboxylase for bundle sheath), and differences in substrate-dependent O2 evolution by chloroplasts isolated from protoplasts.  相似文献   

7.
Salsola arbusculiformis is identified as a C3–C4intermediatespecies based on anatomical, biochemical and physiological characteristics.This is the first report of a naturally occurring intermediatespecies in the Chenopodiaceae, the family with the largest numberof C4species amongst the dicots. In the genus Salsola, mostspecies have Salsoloid anatomy with Kranz type bundle sheathcells and C4photosynthesis, while a few species have Sympegmoidanatomy and were found to have non-Kranz type bundle sheathcells and C3photosynthesis. In the cylindrical leaves of C4Salsolawith Salsoloid type anatomy, there is a continuous layer ofdistinct, chlorenchymatous Kranz type bundle sheath cells surroundedby a single layer of mesophyll cells; whereas species with Sympegmoidtype anatomy have an indistinct bundle sheath with few chloroplastsand multiple layers of chlorenchymatous mesophyll cells. However,S. arbusculiformis has intermediate anatomical features. Whileit has two-to-three layers of mesophyll cells, characteristicof Sympegmoid anatomy, it has distinctive, Kranz-like bundlesheath cells with numerous chloroplasts and mitochondria. Measurementsof its CO2compensation point and CO2response of photosynthesisshow S. arbusculiformis functions as an intermediate specieswith reduced levels of photorespiration. The primary means ofreducing photorespiration is suggested to be by refixing photorespiredCO2in bundle sheath cells, since analysis of photosyntheticenzymes (activity and immunolocalization) and14CO2labellingof initial fixation products suggests minimal operation of aC4cycle. Copyright 2001 Annals of Botany Company Immunolocalization, photosynthetic enzymes, C3–C4intermediate, C4-plants, leaf anatomy, Chenopodiaceae, Salsola arbusculiformis  相似文献   

8.
The intercellular localization of enzymes involved in starch metabolism and the kinetic properties of ADPglucose pyrophosphorylase were studied in mesophyll protoplasts and bundle sheath strands separated by cellulase digestion of Zea mays L. leaves. Activities of starch synthase, branching enzyme, and ADPglucose pyrophosphorylase were higher in the bundle sheath, whereas the degradative enzymes, starch phosphorylase, and amylase were more evenly distributed and slightly higher in the mesophyll. ADPglucose pyrophosphorylase partially purified from the mesophyll and bundle sheath showed similar apparent affinities for Mg2+, ATP, and glucose-1-phosphate. The pH optimum of the bundle sheath enzyme (7.0-7.8) was lower than that of the mesophyll enzyme (7.8-8.2). The bundle sheath enzyme showed greater activation by 3-phosphoglycerate than did the mesophyll enzyme, and also showed somewhat higher apparent affinity for 3-phosphoglycerate and lower apparent affinity for the inhibitor, orthophosphate. The observed activities of starch metabolism pathway enzymes and the allosteric properties of the ADPglucose pyrophosphorylases appear to favor the synthesis of starch in the bundle sheath while restricting it in the mesophyll.  相似文献   

9.
Mesophyll protoplasts and bundle sheath cells were prepared by enzymatic digestion of leaves of Alternanthera tenella, a C3-C4 intermediate species. The intercellular distribution of selected photosynthetic, photorespiratory and respiratory (mitochondrial) enzymes in these meso-phyll and bundle sheath cells was studied. The activity levels of photosynthetic enzymes such as PEP carboxylase (EC 4.1.1.31) or NAD-malic enzyme (EC 1.1.1.39) and photorespiratory enzymes such as glycolate oxidase (EC 1.1.3.1) or NADH-hydroxypyruvate reductase (EC 1.1.1.29) were similar in the two cell types. The activity levels of mitochondrial TCA cycle enzymes such as citrate synthase (EC 4.1.3.7) or fumarase (EC 4.2.1.2) were 2- to 3-fold higher in bundle sheath cells. On the other hand, the activity levels of mitochondrial photorespiratory enzymes, namely glycine decarboxylase (EC 2.1.2.10) and serine hydroxymethyltransferase (EC 2.1.2.1), were 6-9-fold higher in bundle sheath cells than in mesophyll protoplasts. Such preferential localization of mitochondria enriched with the glycine-decarboxylating system in the inner bundle sheath cells would result in efficient refixa-tion of CO2 from not only photorespiration but also dark respiration before its exit from the leaf. We propose that predominant localization of mitochondria specialized in glycine decarboxylation in bundle sheath cells may form the basis of reduced photorespiration in this C3-C4 intermediate species.  相似文献   

10.
Intact chloroplasts were isolated from mesophyll and bundlesheath protoplasts of a C4 plant, Panicum miliaceum L., to measurethe uptake of [1-14C]pyruvate into their sorbitol-impermeablespaces at 4?C by the silicone oil filtering centrifugation method.When incubated in the dark, both chloroplasts showed similarslow kinetics of pyruvate uptake, and the equilibrium internalconcentrations were almost equal to the external levels. Whenincubated in the light, only mesophyll chloroplasts showed remarkableenhancement of the uptake, the internal concentration reaching10–30 times of the external level after 5 min incubation.The initial uptake rate of the mesophyll chloroplasts was enhancedabout ten fold by light and was saturated with increasing pyruvateconcentration; Km and Vmax were 0.2–0.4 mM and 20–40µmol(mg Chl)–1 h–1, respectively. The lightenhancement was abolished by DCMU and uncoupling reagents suchas carbonylcyanide-m-chlorophenylhydrazone and nigericin. Theseresults indicate the existence of a light-dependent pyruvatetransport system in the envelope of mesophyll chloroplasts ofP. miliaceum. The uptake activity of mesophyll chloroplastsboth in the light and the dark was inhibited by sulfhydryl reagentssuch as mersalyl and p-chloromercuriphenylsulfonate, but thebundle sheath activity was insensitive to the reagents. Thesefindings are further evidence for the differentiation of mesophylland bundle sheath chloroplasts of a C4 plant with respect tometabolite transport. (Received July 3, 1986; Accepted October 8, 1986)  相似文献   

11.
Oxygen inhibition of leaf slice photosynthesis in Panicum milioides increased from 20% to 30% at 21% O2 in the presence of maleate, a phosphoenolpyruvate carboxylase inhibitor. The increased O2 sensitivity was completely reversed by the addition of malate and aspartate, the stable products of the phosphoenolpyruvate carboxylase reaction. The C4 acids, malate and aspartate, also reduced O2 inhibition of photosynthesis by isolated bundle sheath strands, but not mesophyll protoplasts. Similarly, only bundle sheath strands exhibited an active C4 acid-dependent O2 evolution. Compartmentation of C4 cycle enzymes, with pyruvate, Pi dikinase in the mesophyll and NAD-malic enzyme in the bundle sheath, was demonstrated. It is concluded that reduced photorespiration in P. milioides is due to a limited potential for C4 photosynthesis permitting an increase in pCO2 at the site of bundle sheath ribulosebisphosphate carboxylase.  相似文献   

12.
The leaves of maize seedlings contain two principal isozymesof fructose 1,6-bisphosphate aldolase (E.C. 4.1.2.13 [EC] ), one chloroplasticand one cytosolic (Gasperini and Pupillo, 1982). Mesophyll protoplastswere separated from bundle sheath (BS) strands of both light-grownand dark-grown maize leaves. Aldolase isozymes were separatedfrom extracts of chloroplasts, etioplasts, protoplasts and BSstrands by column isoelectric focusing. The major isozyme ofgreen leaves (pI 4.2) was exclusively in BS chloroplasts, andthere was no evidence of other isozymes occurring in BS tissue.The cytosolic isozyme (pI 6.7) was present in protoplasts ofmesophyll cells, where it may limit the synthesis of hexose-phosphates(estimated activity of 9.4 µmol h–1 g–1 fr.wt.) together with lower activities of an acidic form (pI 4.6).Etiolated leaves contained significant amounts of the pI 6.7isozyme in both mesophyll and BS cells, but also minor activitiesof one or more acidic forms with pI values of 4.4–4.7(average pI 4.6) which appear to be located partly in BS etioplasts.The main developmental events for maize leaf aldolase afterillumination were a moderate decrease of cytosolic isozyme (pI6.7) which disappears from the BS within hours and a large,gradual increase of the BS plastid isozyme (pI 4.2). The isoformwith a pI 4.6 also increased rapidly to a low, steady activityin greening mesophyll protoplasts. Key words: C4, fructose 1,6-bisphosphate, aldolase, Zea mays  相似文献   

13.
In Zea mays L. (cv. XL 72 A) leaves sulphur deficiency causedreduction of soluble protein and chlorophyll contents, whereasATP sulphurylase (EC 2.7.7.4 [EC] ) and O-acetylserine sulphydrylase(EC 4.2.95.9 [EC] ) activities increased with the increasing of S-deprivationtime. The two enzymes exhibited the maximum activity after 5d (ATP sulphurylase) and 3 d (O-acetylserine sulphydrylase)from the beginning of deprivation period. The activities weredifferently distributed between mesophyll protoplasts and bundlesheath strands. The results suggest that the activity of thetwo enzymes may be induced sequentially and differently regulatedin the two types of cells. Key words: ATP sulphurylase, Bundle sheath strands, Mesophyll protoplasts, O-acetylserine sulphydrylase, Sulphur deprivation, Zea  相似文献   

14.
Enzymes of the C4, C3 pathway and photorespiration have beenanalyzed for P. hians and P. milioides, which have chlorenchymatousbundle sheath cells in the leaves. On whole leaf extracts thelevels of PEP carboxylase are relatively low compared to C4species, RuDP carboxylase is typical of C3 species, and enzymesof photorespiratory metabolism appear somewhat intermediatebetween C3 and C4. Substantial levels of PEP carboxylase, RuDPcarboxylase, and photorespiratory enzymes were found in bothmesophyll and bundle sheath cells. Low levels of C4-acid decarboxylatingenzymes may limit the capacity for C4 photosynthesis in P. hiansand P. milioides. The results on enzyme activity and distributionbetween mesophyll and bundle sheath cells are consistent withCO2 fixation via C3 pathway in these two species. 1 This research was supported by the College of Agriculturaland Life Sciences, University of Wisconsin, Madison; and bythe University of Wisconsin Research Committee with funds fromthe Wisconsin Alumni Research Foundation; and by the NationalScience Foundation Grant BMS 74-09611. (Received September 16, 1975; )  相似文献   

15.
Maize seedlings were grown in pots either with or without preconditionedseeds of the parasitic weed, Striga hermonthica. After between4 and 8 weeks, net photosynthesis in the leaves of maize plantsinfected with Striga decreased compared to leaves of uninfectedcontrol plants. The activities of four enzymes of photosyntheticmetabolism were, however, little affected by infection. A pulse-chaseexperiment using 14CO2 showed that C4 acids were the main earlyproducts of assimilation even when the rate of photosynthesiswas much decreased by infection, but more radio-activity appearedin glycine and serine than in leaves of healthy maize plants.Leaves of infected maize required longer to reach a steady rateof photosynthesis upon enclosure in a leaf chamber than leavesof uninfected plants after similar treatment. Electron microscopy of transverse sections of the leaves ofinfected maize indicated that the cell walls in the bundle sheathand vascular tissue were less robust than in leaves of healthyplants. The results suggest that infection with Striga causesan increase in the permeability of cell walls in the bundlesheath, leakage of CO2 from the bundle sheath cells and decreasedeffectiveness of C4 photosynthesis in host leaves. Key words: Zea mays, Striga hermonthica, photosynthesis, photorespiration, enzyme activity  相似文献   

16.
The activities of Hill reaction and photosynthetic 14CO2 fixationin bundle sheath strands enzymatically isolated from millet(Panicum miliaceum) were 3–15 times as high as those observedin corn (Zea mays). In both preparations, 3-phosphoglyceratewas the initial 14CO2 fixation product and the radioactivitywas incorporated into sucrose and insoluble compounds (glucose-polymers)during the later period. After 20 sec of photosynthetic 14CO2fixation, the percent of 14C incorporated into sugar phosphatesin millet was about 3 times as high as that in corn, while incorn, the percent of 14C in 3-phosphoglycerate was higher thanthat observed in millet throughout the experimental period.When 14C-phosphoglycerate was added to the isolated bundle sheathstrands, the rates of transfer of the radioactivity to dihydroxyacetonephosphate and sugar diphosphates in millet were significantlyhigher than those in corn. These results indicate that in thebundle sheath strands isolated from corn in which photosystemII activity is deficient, the reductive pentose cycle is impairedat the reduction step of 3-phosphoglycerate to glyceraldehydephosphate due to the limited supply of NADPH through the photoelectrontransport system. In contrast, the bundle sheath strands isolatedfrom millet which have adequate photosystem II activity cancarry out normal photosynthetic CO2 fixation. (Received January 23, 1975; )  相似文献   

17.
Ultrastructural studies of leaves of seven Panicum species in or closely related to the Laxa group and classified as C3, C4 or C3-C4 intermediate were undertaken to examine features associated with C3 and C4 photosynthesis. The C3 species Panicum rivulare Trin. had few organelles in bundle sheath cell profiles (2 chloroplasts, 1.1 mitochondria, and 0.3 peroxisomes per cell section) compared to an average of 10.6 chloroplasts, 17.7 mitochondria, and 3.2 peroxisomes per bundle sheath cell profile for three C3-C4 species, Panicum milioides Nees ex Trin., Panicum decipiens Nees ex Trin. and Panicum schenckii Hack. However, two other C3 species, Panicum laxum Sw. and Panicum hylaeicum Mez, contained about 0.7, 0.5, and 0.3 as many chloroplasts, mitochondria, and peroxisomes, respectively, as in bundle sheath cell profiles of the C3-C4 species. Chloroplasts and mitochondria in bundle sheath cells were larger than those in mesophyll cells for the C4 species Panicum prionitis Griseb. and the C3-C4 species, but in C3 species the organelles were similar in size or were smaller in the bundle sheath cells. The C3-C4 species and P. laxum and P. hylaeicum exhibited an unusually close association of organelles in bundle sheath cells with mitochondria frequently surrounded in profile by chloroplasts. The high concentrations in bundle sheath cells of somewhat larger organelles than in mesophyll cells correlates with the reduced photorespiration of the C3-C4 species.  相似文献   

18.
The activities of certain enzymes related to the carbon assimilation pathway in whole leaves, mesophyll cell extracts, and bundle sheath extracts of the C4 plant Panicum miliaceum have been measured and compared on a chlorophyll basis. Enzymes of the C4 dicarboxylic acid pathway—phosphoenolpyruvate carboxylase and NADP-malic dehydrogenase—were localized in mesophyll cells. Carbonic anhydrase was also localized in mesophyll cell extracts. Ribose 5-phosphate isomerase, ribulose 5-phosphate kinase, and ribulose diphosphate carboxylase—enzymes of the reductive pentose phosphate pathway—were predominantly localized in bundle sheath extracts. High activities of aspartate and alanine transaminases and glyceraldehyde-3-P dehydrogenase were found about equally distributed between the photosynthetic cell types. P. miliaceum had low malic enzyme activity in both mesophyll and bundle sheath extracts.  相似文献   

19.
Mesophyll chloroplasts capable of assimilating 1.2 µmolesCO2 per milligram chlorophyll per hour were isolated from 7-day-oldcorn (Zea mays, Nagano No. 1) leaves. Addition of phosphoenolpyruvateincreased the rate of CO2 fixation in light up to 22 µmolesper milligram chlorophyll per hour, whole exogenously addedribose 5-phosphate and adenosine triphosphate brought aboutonly small increases. The CO2 fixation products were mostlymalate and aspartate. Bundle sheath strands isolated from the same plants were capableof assimilating 3–26 µmoles CO2 per milligram chlorophyllper hour. The fixation rate increased 3- to 5-fold on additionof ribose 5-phosphate and adenosine triphosphate, while exogenousphosphoenolpyruvate had no effect. The bulk of early productsof light-induced CO2 fixation were phosphate esters. These results indicate that corn mesophyll chloroplasts initiallyfix CO2 by phoenolpyruvate carboxylase and that reductive pentosephosphate cycle occurs in corn bundle sheath cells, but notin the mesophyll chloroplasts. (Received January 25, 1974; )  相似文献   

20.
The influence of varying light intensity and quality on thecarbon labelling patterns in Rumex vesicarius (a C3 plant),Setaria italica (a malate-formingC4 plant), and Amaranthus paniculatus(an aspartate-forming C4 plant) was studied. In A. paniculatusand B. vesicarius blue light decreased the transfer of radioactivityto sugars and starch but in S. italica only slightly decreasedradioactivity in sugar phosphates, sucrose, and insolubles.Negligible transfer was observed from the C4 acids to sugarphosphates, sucrose, and starch under dim blue-green and blue-yellowlights in S. italica and A. paniculatus. Blue light favouredthe formation of malate, aspartate, and alanine in all threeplants. The differential effect of blue and red light suggesteda variation in the mechanisms of C4-photosynthesis in Setariaand Amaranthus. Leaves of S. italica and A. paniculatus were allowed to photosynthesizein 14CO2 for 5 s and then the distribution of the labelled productsbetween the mesophyll and the bundle sheath cells was determinedduring subsequent photosynthesis in 12CO2. Malate and aspartatewhich appeared initially in the mesophyll layer moved rapidlyinto the bundle sheath cells. Phosphoglyceric acid originatingin the bundle sheath moved swiftly to the mesophyll layer. Sugarphosphates were recovered from both the mesophyll and the bundlesheath cells. Most of the starch was found in the bundle sheathcells while sucrose and alanine were localized in the mesophyllcells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号