首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glycogen-bound polyphosphate kinase has been isolated from a crude extract of Sulfolobus acidocaldarius by isopycnic centrifugation in CsCl. Divalent cations (Mn2+ greater than Mg2+) stimulated the reaction. The enzyme does not require the presence of histones for its activity; it is inhibited strongly by phosphate and slightly by fluoride. The protein from the glycogen complex migrated in a sodium dodecyl sulfate-polyacrylamide gel as a 57-kilodalton protein band; after isoelectric focusing it separated into several spots in the pH range of 5.6 to 6.7.  相似文献   

2.
We report the molecular characterization and the detailed study of the recombinant maltooligosyl trehalose synthase mechanism from the thermoacidophilic archaeon Sulfolobus acidocaldarius. The mts gene encoding a maltooligosyl trehalose synthase was overexpressed in Escherichia coli using the T7-expression system. The purified recombinant enzyme exhibited optimum activity at 75 degrees C and pH 5 with citrate-phosphate buffer and retained 60% of residual activity after 72 h of incubation at 80 degrees C. The recombinant enzyme was active on maltooligosaccharides such as maltotriose, maltotetraose, maltopentaose and maltoheptaose. Investigation of the enzyme action on maltooligosaccharides has brought much insight into the reaction mechanism. Results obtained from thin-layer chromatography suggested a possible mechanism of action for maltooligosyl trehalose synthase: the enzyme, after converting the alpha-1,4-glucosidic linkage to an alpha-1,1-glucosidic linkage at the reducing end of maltooligosaccharide glc(n) is able to release glucose and maltooligosaccharide glc(n-1) residues. And then, the intramolecular transglycosylation and the hydrolytic reaction continue, with the maltooligosaccharide glc(n-1) until the initial maltooligosaccharide is reduced to maltose. An hypothetical mechanism of maltooligosyl trehalose synthase acting on maltooligosaccharide is proposed.  相似文献   

3.
Inorganic polyphosphate (polyP) is obtained by the polymerization of the terminal phosphate of ATP through the action of the enzyme polyphosphate kinase (PPK). Despite the presence of polyP in every living cell, a gene homologous to that of known PPKs is missing from the currently sequenced genomes of Eukarya, Archaea, and several bacteria. To further study the metabolism of polyP in Archaea, we followed the previously published purification procedure for a glycogen-bound protein of 57 kDa with PPK as well as glycosyl transferase (GT) activities from Sulfolobus acidocaldarius (R. Skórko, J. Osipiuk, and K. O. Stetter, J. Bacteriol. 171:5162–5164, 1989). In spite of using recently developed specific enzymatic methods to analyze polyP, we could not reproduce the reported PPK activity for the 57-kDa protein and the polyP presumed to be the product of the reaction most likely corresponded to glycogen-bound ATP under our experimental conditions. Furthermore, no PPK activity was found associated to any of the proteins bound to the glycogen-protein complex. We cloned the gene corresponding to the 57-kDa protein by using reverse genetics and functionally characterized it. The predicted product of the gene did not show similarity to any described PPK but to archaeal and bacterial glycogen synthases instead. In agreement with these results, the recombinant protein showed only GT activity. Interestingly, the GT from S. acidocaldarius was phosphorylated in vivo. In conclusion, our results convincingly demonstrate that the glycogen-protein complex of S. acidocaldarius does not contain a PPK activity and that what was previously reported as being glycogen-bound PPK is a bacterial enzyme-like thermostable glycogen synthase.  相似文献   

4.
Calmodulin-dependent glycogen synthase kinase   总被引:9,自引:0,他引:9  
A cAMP-independent glycogen synthase kinase has been purified from rabbit liver. This kinase is completely dependent on the presence of calmodulin and Ca2+ for activity. Half-maximal activation required about 0.1 microM calmodulin. Complete inhibition was obtained in the presence of ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid or trifluoperazine. This calmodulin-dependent synthase kinase does not phosphorylate phosphorylase, myosin light chain, casein, or histone. It rapidly incorporates 0.4 to 0.5 mol of 32P/mol of synthase subunit into the NH2-terminal domain, resulting in partial inactivation of glycogen synthase. These results indicate the existence of a calmodulin-dependent kinase which may be specific for glycogen synthase.  相似文献   

5.
Treatment of a sodium dodecyl sulfate-polyacrylamide gel with periodic acid-Schiff (PAS) stain or blotting with Galanthus nivalis agglutinin revealed the presence of several glycosylated polypeptides in a partially purified detergent extract of the membrane fraction of Sulfolobus solfataricus. One of the glycoproteins comigrated with the membrane-associated protein-serine/threonine kinase from S. solfataricus, which had been radiolabeled by autophosphorylation with [(32)P]ATP in vitro. Treatment with a chemical deglycosylating agent, trifluoromethanesulfonic acid, abolished PAS staining and reduced the M(r) of the protein kinase from approximately 67,000 to approximately 62,000. Protein kinase activity also adhered to, and could be eluted from, agarose beads containing bound G. nivalis agglutinin. Glycosylation of the protein kinase implies that at least a portion of this integral membrane protein resides on the external surface of the cell membrane.  相似文献   

6.
7.
cis-polyprenyl diphosphate synthases are involved in the biosynthesis of the glycosyl carrier lipid in most organisms. However, only little is known about this enzyme of archaea. In this report, we isolated the gene of cis-polyprenyl diphosphate synthase from a thermoacidophilic archaeon, Sulfolobus acidocaldarius, and characterized the recombinant enzyme.  相似文献   

8.
Glycogen synthase I (EC 2.4.1.11) from rat and from rabbit skeletal muscle was phosphorylated in vitro by glycogen synthase kinase 4 (EC 2.7.1.37) to the extent of 0.8 phosphates/subunit. For both phosphorylated enzymes, the activity ratio (activity without glucose 6-P divided by activity with 8 mM glucose 6-P) was 0.8 when determined with low concentrations of glycogen synthase and/or short incubation times. However, the activity ratio was 0.5 with high enzyme concentrations and longer incubation times. It was found that the lower activity ratios result largely from UDP inhibition of activity measured in the absence of glucose 6-P. Inhibition by UDP was much less pronounced for glycogen synthase I, indicating that a major consequence of phosphorylation by glycogen synthase kinase 4 is an increased sensitivity to UDP inhibition.  相似文献   

9.
Porzio E  Merone L  Mandrich L  Rossi M  Manco G 《Biochimie》2007,89(5):625-636
The phosphotriesterase PTE, identified in the soil bacterium Pseudomonas diminuta, is thought to have evolved in the last several decades to degrade the pesticide paraoxon with proficiency approaching the limit of substrate diffusion (k(cat)/K(M) of 4 x 10(7)M(-1)s(-1)). It belongs to the amidohydrolase superfamily, but its evolutionary origin remains obscure. The enzyme has important potentiality in the field of the organophosphate decontamination. Recently we reported on the characterization of an archaeal member of the amidohydrolase superfamily, namely Sulfolobus solfataricus, showing low but significant and extremely thermostable paraoxonase activity (k(cat)/K(M) of 4 x 10(3)M(-1)s(-1)). Looking for other thermostable phosphotriesterases we assayed, among others, crude extracts of Sulfolobus acidocaldarius and detected activity. Since the genome of S. acidocaldarius has been recently reported, we identified there an open reading frame highly related to the S. solfataricus enzyme. The gene was cloned, the protein overexpressed in Escherichia coli, purified, and proven to have paraoxonase activity. A comparative analysis detected some significant differences between the two archaeal enzymes.  相似文献   

10.
Recently, the Surface (S)-layer glycoprotein of the thermoacidophilic crenarchaeote Sulfolobus acidocaldarius was found to be N-glycosylated with a heterogeneous family of glycans, with the largest having a composition Glc(1)Man(2)GlcNAc(2) plus 6-sulfoquinovose. However, genetic analyses of genes involved in the N-glycosylation process in Crenarchaeota were missing so far. In this study we identify a gene cluster involved in the biosynthesis of sulfoquinovose and important for the assembly of the S-layer N-glycans. A successful markerless in-frame deletion of agl3 resulted in a decreased molecular mass of the S-layer glycoprotein SlaA and the flagellin FlaB, indicating a change in the N-glycan composition. Analyses with nanoLC ES-MS/MS confirmed the presence of only a reduced trisaccharide structure composed of Man(1) GlcNAc(2) , missing the sulfoquinovose, a mannose and glucose. Biochemical studies of the recombinant Agl3 confirmed the proposed function as a UDP-sulfoquinovose synthase. Furthermore, S. acidocaldarius cells lacking agl3 had a significantly lower growth rate at elevated salt concentrations compared with the background strain, underlining the importance of the N-glycosylation to maintain an intact and stable cell envelope, to enable the survival of S. acidocaldarius in its extreme environment.  相似文献   

11.
A modified procedure for extraction and purification of hydrolyzed archaebacterial lipids is described. Lipids were extracted from Sulfolobus acidocaldarius using a Soxhlet extraction procedure followed by trichloroacetic acid solvent-extraction of the residue. The yield of total extractable material by this protocol was 14% which, after a two-phase wash, yielded 10% lipid. Modifications to the published steps for purifying the subsequently hydrolyzed lipids were developed to purify glycerol dialkyl nonitol tetraether (GDNT). The nearly colorless final macrocyclic product was characterized by TLC, IR, NMR, and mass spectrometry.  相似文献   

12.
13.
Plasma membranes of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius (DSM 639) display a pyrophosphate-hydrolyzing activity [M. Lübben & G. Sch?fer (1987) Eur. J. Biochem. 164, 533-540]. In our present work, we solubilized and purified this pyrophosphatase to homogeneity. It consists of a single subunit with a molecular mass of 17-18 kDa, forming an oligomer of 70 kDa under native conditions. Edman degradation revealed 30 amino acids of the N-terminus. The enzyme cleaves phosphoric-acid-anhydride bonds independently of monovalent or divalent cations. Temperature and pH optima of 75 degrees C and 3.5-3.7, respectively, characterize it as an ectoenzyme. Membrane lipids of Sulfolobus stimulate the activity. The dolichol-pyrophosphate-complexing peptide-antibiotic bacitracin inhibited growth of Sulfolobus. A possible function of the acid pyrophosphatase is the hydrolysis of dolichol pyrophosphate in connection with glycosylation reactions of membrane proteins.  相似文献   

14.
15.
16.
A form of glycogen synthase kinase designated GSK-M3 was purified 4000-fold from rat skeletal muscle by phosphocellulose, Affi-Gel blue, Sephacryl S-300 and carboxymethyl-Sephadex column chromatography. Separation of GSK-M from the catalytic subunit of the cAMP-dependent protein kinase was facilitated by converting the catalytic subunit to the holoenzyme form by addition of the regulatory subunit prior to the gel filtration step. GSK-M had an apparent Mr 62,000 (based on gel filtration), an apparent Km of 11 microM for ATP, and an apparent Km of 4 microM for rat skeletal muscle glycogen synthase. The kinase had very little activity with 0.2 mM GTP as the phosphate donor. Kinase activity was not affected by the addition of cyclic nucleotides, EGTA, heparin, glucose 6-P, glycogen, or the heat-stable inhibitor of cAMP-dependent protein kinase. Phosphorylation of glycogen synthase from rat skeletal muscle by GSK-M reduced the activity ratio (activity in the absence of Glc-6-P/activity in the presence of Glc-6-P X 100) from 90 to 25% when approximately 1.2 mol of phosphate was incorporated per mole of glycogen synthase subunit. Phosphopeptide maps of glycogen synthase obtained after digestion with CNBr or trypsin showed that this kinase phosphorylated glycogen synthase in serine residues found in the peptides containing the sites known as site 2, which is located in the N-terminal CNBr peptide, and site 3, which is located in the C-terminal CNBr peptide of glycogen synthase. In addition to phosphorylating glycogen synthase, GSK-M phosphorylated inhibitor 2 and activated ATP-Mg-dependent protein phosphatase. Activation of the protein phosphatase by GSK-M was dependent on ATP and was virtually absent when ATP was replaced with GTP. GSK-M had minimal activity toward phosphorylase b, casein, phosvitin, and mixed histones. These data indicate that GSK-M, a major form of glycogen synthase kinase from rat skeletal muscle, differs from the known glycogen synthase kinases isolated from rabbit skeletal muscle.  相似文献   

17.
To elucidate the phylogenic status of the archaebacterium and mechanisms of acidophily, membrane bound ATPase, cytochromes and NADH dehydrogenase of a thermoacidophilic archaebacterium,Sulfolobus acidocaldarius, were studied. Typea cytochrome was found in the membrane. The organism was sensitive to cyanide and azide, and though cytochromec is lacking in this organism, these respiratory poisons inhibited a terminal oxidase, when assayed with cytochromec from other sources. NADH dehydrogenase was highly purified from the crude extract of the cells. The enzyme was able to transfer electrons from NADH to caldariellaquinone, a unique benzothiophenequinone in the genusSulfolobus. Thus, the enzyme is a possible member of the respiratory chain. Membrane fraction contained two types of ATPase, one was active at neutral pH and slightly activated by sulfate; the other was an acid apyrase and inhibited by sulfate. Typical characteristics of F0F1ATPase could not be found in these enzymes. These results suggest that (1) the thermoacidophilic archaebacteria are phylogenically distant from both eubacteria and eukaryotes, (2) the archaebacterial thermoacidophiles can be classified in a different subgroup from methanogens and extreme halophiles, and (3) in spite of the aerobic nature of the organism, the energy yielding mechanisms appear quite unique, when compared to those of other aerobes and mitochondria.  相似文献   

18.
A type II restriction endonuclease (SuaI) has been isolated from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. The enzyme is an isoschizomer of BspRI. It does not cut S. acidocaldarius DNA, as the recognition sequence GGCC in this DNA contains modified nucleotide(s). The enzyme is most active at 60-70 degrees C and is highly thermostable.  相似文献   

19.
The membranes of Sulfolobus, a thermoacidophilic archaebacterium showed two types of ATP hydrolyzing activity. One was that of a neutral ATPase at an optimum pH around 6.5. This enzyme was activated by 10 mM sulfate with a shift of optimum pH to 5. In these respects, the enzyme was similar to membrane-bound ATPase of Thermoplasma, another thermoacidophilic archaebacterium, reported by Searcy and Whatley [1982) Zbl. Bakt. Hyg., I. Abt. Orig. C3, 245-257). The enzyme hydrolyzed ATP and other NTPs, but not ADP or AMP. It was highly thermostable, but irreversibly inactivated in 0.1 M HCl. The other activity was that of an acidic apyrase at an optimum pH around 2.5. This enzyme was extremely stable toward high temperature and acid and inhibited by sulfate. Both of these ATP hydrolyzing enzymes were resistant to N,N'-dicyclohexylcarbodiimide (DCCD), azide, oligomycin, N'-ethylmaleimide, p-chloromercuribenzoate, orthovanadate, or ouabain. Sulfolobus ATPases differ from F1 and other transport ATPases so far described.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号