共查询到4条相似文献,搜索用时 0 毫秒
1.
Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference 总被引:21,自引:3,他引:21
Twenty-two common British angiosperms were examined for their ability to acclimate photosynthetically to sun and shade conditions. Plants were grown under low irradiance, far-red enriched light (50 μmol m?2 s?1), selected to mimic as closely as possible natural canopy shade, and moderately high light of insufficient irradiance to induce photoinhibitory or photoprotective responses (300 μmol m?2 s?1). Light-and CO2-saturated photosynthetic rates of oxygen evolution (Pmax) and chlorophyll content were measured. Large variation was found in both parameters, and two ‘strategies’ for long-term acclimation were identified: firstly a change in chlorophyll per unit leaf area which was found to correlate positively with photosynthetic capacity, and secondly changes in chlorophyll alb ratio and Pmax, indicative of alterations at the chloroplast level, which were not associated with a change in chlorophyll content per unit leaf area. Combinations of these two strategies may occur, giving rise to the observed diversity in photosynthetic acclimation. The extent and nature of photosynthetic acclimation were compared with an index of shade association, calculated from the association each species has with woodland. It was found that the greatest flexibility for change at the chloroplast level was found in those species possessing an intermediate shade association, whilst acclimation in ‘sun’ species proceeded by a change in chlorophyll content; obligate shade species showed little capacity for acclimation at either the chloroplast or leaf level. A framework for explaining the variation between plant species in leaf-level photosynthetic capacity, in relation to the natural light environment, is presented. This is the first time the potential for light acclimation of photosynthesis in different plant species has been satisfactorily linked to habitat distribution. 相似文献
2.
The chlorophyll content and partitioning of assimilate of bean ( Phaseolus vulgaris L. 'Pinto') plants were determined 6 days after treatment of the second internode (I2 with 5 μg of brassinosteroid (BR), a growth-promoting steroidal lactone. Plants were grown for 6 days under equal levels (90 μmol s-1 m-2 ) of photosynthetic photon flux density (PPFD) provided by cool white fluorescent (CWF) or incandescent (INC) lamps and equal levels of far-red (28 W m-2 , 700–800 nm) radiation provided by the same INC or far-red (FR) fluorescent lamps. Brassinosteroid treatment had no appreciable effect on total biomass production but caused a decrease of 15–20% dry matter distribution in the upper portion of the shoot, a small (4%) but constant increase in dry matter in l2 and a large (11–16%) increase in dry matter in the lower portion of the shoot (especially I1 ). Treatment with BR increased assimilate accumulation in the primary leaves, especially under INC and FR lamps, and reduced dry matter in the trifoliate leaves. BR also caused a 16–21% reduction in total leaf area and even a greater reduction in area of the trifoliate leaves, but significantly increased specific leaf weight of the primary leaves and the first trifoliate leaf and the amount of dry matter in the lateral shoots under all radiation sources. In comparison to controls, BR treatment increased dry matter accumulation in the treated internode 3.3x under CWF and 1.6x under INC or FR. BR treatment also increased chlorophyll content in the primary leaves under all radiation sources and in the trifoliate leaves under CWF and INC lamps. These findings suggest a possible mobilization role of BR and establish the importance of adequate PPFD (and photosynthate) for maximum swelling and splitting response to brassinosteroid. 相似文献
3.
4.
E. M. Mathers D. F. Houlihan I. D. McCarthy L. J. Burren 《Journal of fish biology》1993,43(2):245-263
Groups of recently hatched fry of rainbow trout, Oncorhynchus mykiss were maintained in the laboratory in order to investigate the effects of age, ration level and temperature on whole body growth, nucleic acid concentrations, protein synthesis rates and enzyme activities. In fry of up to 30 days after hatching, which were feeding but still had some yolk sac, no significant change in mean RNA concentration was observed with ration level. In older fry of 50 days or more, when the yolk sac was completely absorbed and exogenous feeding fully established, the concentration of RNA was correlated with the rate of protein growth. RNA concentrations and activities of citrate synthase and lactate dehydrogenase were significantly different between fed and starved fry. As water temperature was raised (from 5 to 15° C), higher rates of protein growth were brought about by an increase in the rate of protein synthesis and also by increased efficiency of retention of synthesized protein (reduced protein turnover). In fed fry, no change in RNA concentration was found with increasing temperature, while the amount of RNA per cell (RNA: DNA) decreased, indicating that increased rates of protein synthesis were due to increased RNA efficiency. 相似文献