首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
In view of its importance for human nutrition, the European Commission funded a collaborative research programme (1998–99) to evaluate the impact of future increases in atmospheric ozone (O3) and carbon dioxide (CO2) concentrations on yield and tuber quality in potato ( Solanum tuberosum L.). This was the first large-scale open-top chamber project to provide field-based data spanning a wide range of European climatic conditions and ozone concentrations for a widely used cultivar, cv. Bintje. Intensive measurements of physiological and developmental effects were made throughout crop growth to improve the mechanistic understanding of the processes involved. Analysis of the experimental results and modelling work based on the extensive database revealed that the increasing tropospheric O3 concentrations predicted under future climatic scenarios in Europe are likely to reduce tuber yield in potato. However, season-long exposure to elevated O3 had both beneficial and detrimental effects on tuber quality. Most of the significant physiological and growth effects occurred during the later stages of crop development, when elevated O3 reduced photosynthesis and promoted senescence. The observed changes in the quality and nutritional attributes of tubers, such as decreased content of reducing sugars and increased nitrogen concentrations, may be attributable to reduced carbohydrate allocation.  相似文献   

2.
The literature on environmental effects on dry matter partitioning in higher plants, in particular crop plants, is reviewed focussing on changes in shoot to root dry weight ratio (S:R). Of particular consistency is the finding that S:R increases with increased nitrogen (N) supply. Relations between nitrogen (N) supply, growth, S:R and tissue N and protein concentration are examined. In some cases, the increase in S:R with increased N supply is likely to have been at least in part an effect on growth and development, but there is unequivocal evidence that N affects S:R independently of growth and development. A positive correlation between S:R and leaf protein concentration is highlighted. It is argued that the N effect on S:R outside the effect on growth and development is related to increased shoot protein concentration. Specifically, shoot and root growth are colimited by local carbon (C) and N (primarily protein) substrate concentrations and shoot growth will increase relative to root growth with increased N substrate availability due to the proximity of the shoot to the C source. It is further argued that results in the literature are consistent with the proposal that macronutrient, water, irradiance, CO2 and temperature effects on S:R are often primarily mediated through their effects on growth and development, and shoot protein concentration and hence shoot growth.  相似文献   

3.
The chlorophyll content and partitioning of assimilate of bean ( Phaseolus vulgaris L. 'Pinto') plants were determined 6 days after treatment of the second internode (I2 with 5 μg of brassinosteroid (BR), a growth-promoting steroidal lactone. Plants were grown for 6 days under equal levels (90 μmol s-1 m-2) of photosynthetic photon flux density (PPFD) provided by cool white fluorescent (CWF) or incandescent (INC) lamps and equal levels of far-red (28 W m-2, 700–800 nm) radiation provided by the same INC or far-red (FR) fluorescent lamps. Brassinosteroid treatment had no appreciable effect on total biomass production but caused a decrease of 15–20% dry matter distribution in the upper portion of the shoot, a small (4%) but constant increase in dry matter in l2 and a large (11–16%) increase in dry matter in the lower portion of the shoot (especially I1). Treatment with BR increased assimilate accumulation in the primary leaves, especially under INC and FR lamps, and reduced dry matter in the trifoliate leaves. BR also caused a 16–21% reduction in total leaf area and even a greater reduction in area of the trifoliate leaves, but significantly increased specific leaf weight of the primary leaves and the first trifoliate leaf and the amount of dry matter in the lateral shoots under all radiation sources. In comparison to controls, BR treatment increased dry matter accumulation in the treated internode 3.3x under CWF and 1.6x under INC or FR. BR treatment also increased chlorophyll content in the primary leaves under all radiation sources and in the trifoliate leaves under CWF and INC lamps. These findings suggest a possible mobilization role of BR and establish the importance of adequate PPFD (and photosynthate) for maximum swelling and splitting response to brassinosteroid.  相似文献   

4.
Twenty-two common British angiosperms were examined for their ability to acclimate photosynthetically to sun and shade conditions. Plants were grown under low irradiance, far-red enriched light (50 μmol m?2 s?1), selected to mimic as closely as possible natural canopy shade, and moderately high light of insufficient irradiance to induce photoinhibitory or photoprotective responses (300 μmol m?2 s?1). Light-and CO2-saturated photosynthetic rates of oxygen evolution (Pmax) and chlorophyll content were measured. Large variation was found in both parameters, and two ‘strategies’ for long-term acclimation were identified: firstly a change in chlorophyll per unit leaf area which was found to correlate positively with photosynthetic capacity, and secondly changes in chlorophyll alb ratio and Pmax, indicative of alterations at the chloroplast level, which were not associated with a change in chlorophyll content per unit leaf area. Combinations of these two strategies may occur, giving rise to the observed diversity in photosynthetic acclimation. The extent and nature of photosynthetic acclimation were compared with an index of shade association, calculated from the association each species has with woodland. It was found that the greatest flexibility for change at the chloroplast level was found in those species possessing an intermediate shade association, whilst acclimation in ‘sun’ species proceeded by a change in chlorophyll content; obligate shade species showed little capacity for acclimation at either the chloroplast or leaf level. A framework for explaining the variation between plant species in leaf-level photosynthetic capacity, in relation to the natural light environment, is presented. This is the first time the potential for light acclimation of photosynthesis in different plant species has been satisfactorily linked to habitat distribution.  相似文献   

5.
6.
Groups of recently hatched fry of rainbow trout, Oncorhynchus mykiss were maintained in the laboratory in order to investigate the effects of age, ration level and temperature on whole body growth, nucleic acid concentrations, protein synthesis rates and enzyme activities. In fry of up to 30 days after hatching, which were feeding but still had some yolk sac, no significant change in mean RNA concentration was observed with ration level. In older fry of 50 days or more, when the yolk sac was completely absorbed and exogenous feeding fully established, the concentration of RNA was correlated with the rate of protein growth. RNA concentrations and activities of citrate synthase and lactate dehydrogenase were significantly different between fed and starved fry. As water temperature was raised (from 5 to 15° C), higher rates of protein growth were brought about by an increase in the rate of protein synthesis and also by increased efficiency of retention of synthesized protein (reduced protein turnover). In fed fry, no change in RNA concentration was found with increasing temperature, while the amount of RNA per cell (RNA: DNA) decreased, indicating that increased rates of protein synthesis were due to increased RNA efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号