首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metarhizium flavouiride conidia formulated in oil or water were exposed to simulated solar radiation. Radiation below 320 nm killed conidia and caused delays in the germination of survivors; germination was greater after 48 h of incubation than after 24 h. UV exposure of conidia formulated in oil for 2 h reduced germination from 99% to 37.5% after incubation for 48 h. Exposure of conidia in water to UV for 1 h resulted in 4.7% germination after 24 h incubation compared with 36.5% for conidia formulated in oil. The addition of 1% oxybenzone resulted in 81.9% conidial germination after 3 h exposure and 48 h incubation compared with 28.1% in oil without the sunscreen.  相似文献   

2.
Ultraviolet radiation (UV) can reduce the effectiveness of fungi used for biological control; therefore, this study examined the photostabilising effect of water- and oil-soluble UV protectants on conidium germination of Plectosporium alismatis and Colletotrichum orbiculare, pathogens with potential as biocontrol agents, and the ability of conidia of C. orbiculare to cause disease. Formulation in riboflavin (1%), proline (1%), propyl gallate (1%), melanin (0.1%) and ascorbic acid (5%) increased the germination of UVB-exposed conidia of P. alismatis to levels found in the dark control without causing a delay in germination. Formulation in (a) pyridoxin (5%), (b) an nC24 mineral oil (5%), and (c) ECCO 1422 (5% in the mineral oil) also resulted in germination similar to the control but germination was delayed. Protection was provided to conidia of C. orbiculare treated with 1% aqueous solutions of proline and folic acid in vitro. Formulation of conidia of C. orbiculare in a 5% aqueous emulsion of the mineral oil and aqueous solutions of melanin (0.01%), proline and tyrosine (both at 1%) significantly increased anthracnose development above control levels on leaf discs of Xanthium spinosum exposed to UVB dose of 16.7 kJ m-2. After exposure to natural sunlight at a UVB dose of 2.2 kJ m-2, anthracnose development was greater on leaf discs inoculated with conidia of C. orbiculare formulated in 1% aqueous solutions of ascorbic acid (1%), proline (1%), tyrosine (1%) and melanin (0.01%), or in 5% aqueous emulsions of a canola-derived oil and the mineral oil than by conidia formulated in water alone. Therefore, a range of compounds can provide conidia with protection from UVB. Of these, propyl gallate and oils similar to the mineral oil are likely to be cost effective. Such formulations can be combined with suitable application times to increase mycoherbisitat efficiency.  相似文献   

3.
The impact of culture age on conidial yields, germination and tolerance to UV exposure of freshly harvested and dry conidia produced by five entomopathogenic fungal (EPF) isolates was studied. Beauveria bassiana, Metarhizium anisopliae, Lecanicillium lecanii and Lecanicillium muscarium were grown on potato dextrose agar (PDA) medium for 7 or 14 days at 25°C. While the age of cultures had a significant impact on the germination rate of conidia produced by isolates L. lecanii CBS 122.175 and B. bassiana LMSA 1.01.093, other EPF isolates germinated at the same rate regardless of the culture age. When exposed to UV radiation, conidia produced by all isolates germinated at a lower rate compared to the non-irradiated conidia, although this decrease in germination (20–80% decrease) was unaffected by the culture age. Air-drying had only a slight impact on conidial germination (0–60% decrease). Under the conditions of this study, the stability of irradiated conidia produced by M. anisopliae LMSA 1.01.197 and B. bassiana CBS 110.25 was significantly increased when conidia were dried prior to UV exposure. This increase in tolerance to stress of dried conidia might be caused, at least partially, by the low metabolic activity associated with dehydration.  相似文献   

4.
Recent reduction in the ozone shield due to manufactured chlorofluorocarbons raised considerable interest in the ecological and physiological consequences of UV‐B radiation (λ=280–315 nm) in macroalgae. However, early life stages of macroalgae have received little attention in regard to their UV‐B sensitivity and UV‐B defensive mechanisms. Germination of UV‐B irradiated spores of the intertidal green alga Ulva pertusa Kjellman was significantly lower than in unexposed controls, and the degree of reduction correlated with the UV doses. After exposure to moderate levels of UV‐B irradiation, subsequent exposure to visible light caused differential germination in an irradiance‐ and wavelength‐dependent manner. Significantly higher germination was found at higher photon irradiances and in blue light compared with white and red light. The action spectrum for photoreactivation of germination in UV‐B irradiated U. pertusa spores shows a major peak at 435 nm with a smaller but significant peak at 385 nm. When exposed to December sunlight, the germination percentage of U. pertusa spores exposed to 1 h of solar radiation reached 100% regardless of the irradiation treatment conditions. After a 2‐h exposure to sunlight, however, there was complete inhibition of germination in PAR+UV‐A+UV‐B in contrast to 100% germination in PAR or PAR+UV‐A. In addition to mat‐forming characteristics that would act as a selective UV‐B filter for settled spores under the parental canopy, light‐driven repair of germination after UV‐B exposure could explain successful continuation of U. pertusa spore germination in intertidal settings possibly affected by intense solar UV‐B radiation.  相似文献   

5.
Solar radiation, particularly its UV wavelengths, greatly influences conidium survival and this study looked at the impact of radiation and its interactions with temperature on Plectosporium alismatis and Colletotrichum orbiculare, two fungi that are potential mycoherbistats. UV radiation, rather than temperature, was found to be the primary cause of conidium mortality; however, there were interactions between these factors leading to the enhancement of the lethal effects of UVB on conidium germination at high temperatures. C. orbiculare was more sensitive than P. alismatis with conidium germination being halved by UVB doses of 1.47 and 13.1 kJ m-2, respectively, for the two pathogens. Conidium mortality was dose-dependent and for P. alismatis exposed to a dose of 3.7 kJ m-2 reciprocity was observed. However, for C. orbiculare equivalent doses were not reciprocal as higher doses for short periods were more lethal than lower doses of longer duration. Low UVB doses only caused delays in conidium germination, whereas higher doses killed conidia and caused delays in the germination of any survivors. Radiation also affected appressorium formation. Appressorium formation was stimulated by UVA and was dose dependent with P. alismatis requiring a higher dose than C. orbiculare to initiate formation. Microcycle conidiation by P. alismatis was observed following exposure to sunlight. This knowledge of how conidia of these potential mycoherbistats react to climate suggests that rapid conidium germination and appressorium formation could be achieved by manipulation of the time at which they are applied in the field. Conidia could be applied so that they receive sufficient UVA to stimulate appressorium formation but without receiving a dose that would significantly affect conidium germination. However, for this, additional protection from UVB may be needed.  相似文献   

6.
This paper presents results on the effect of light, temperature and substrate during spore formation on the germinability of conidia in Colletotrichum falcatum. Light seems to have no effect on the germination of conidia unless the cultures were exposed to a high intensity of light during sporulation, in which case the spores showed a reduced germination and an increased appressoria formation. Conidia produced at temperatures higher than the optimum showed better germination and less appressoria formation than the spores produced at the temperature optimum for the growth and sporulation of the fungus. A similar increase in germination was also observed in conidia obtained from inoculated sugarcane leaves as compared to those produced on culture media. The light type virulent isolates of C. falcatum showed greater sensitivity to all these treatments than the dark type weakly pathogenic isolates.  相似文献   

7.
Aims:  To investigate the effects of fluorescent light intensity, sunlight intensity and temperature on photoreactivation of Escherichia coli after low-pressure (LP) and medium-pressure (MP) ultraviolet (UV) disinfection.
Methods and Results:  Two E. coli strains were irradiated with LP and MP UV lamps, and exposed to various fluorescent light (0–23 kLux) and sunlight intensities (1–80 kLux), and temperatures (4–50°C). Escherichia coli concentrations were enumerated at hourly intervals to determine photoreactivation rates and final photoreactivation levels. Higher photoreactivation rates and levels were observed with increasing fluorescent light intensities, while high sunlight intensity (>12 kLux) caused a one-log decrease in E. coli concentrations. When exposed to near-optimum growth temperatures (23–37°C), photoreactivation levels were higher than those with too high (50°C) or too low (4°C) temperatures. Overall, photoreactivation following MP UV disinfection was lower than that following LP UV disinfection.
Conclusions:  Photoreactivation of bacteria following UV disinfection can be a problem in tropical countries where sunlight is abundant and temperatures are high, unless high sunlight intensity is present or if MP UV disinfection is employed.
Significance and Impact of the Study:  With the increased use of UV disinfection, it is imperative that photoreactivation be taken into account in the design of reactors based on site-specific conditions of temperature and light intensity exposure.  相似文献   

8.
The effects of moisture content and temperature on the medium-term (3-4 months) storage of conidia of Metarhizium flavoviride were investigated. Conidia harvested after 24 days of culturing on rice showed greater tolerance to long storage than conidia from 12-day cultures. The moisture content of the conidia was of greatest importance; at harvest from the culture, conidial moisture contents could be 40%, while the optimal moisture content for storage was found to be 4-5%. Dried conidia stored in oil benefited from the addition of dried silica gel, as did conidia stored as powder. A range of mineral oils proved satisfactory for storage, and when dried silica gel was added to suspensions, germination levels were 79.8% after 105 days at 28-32 C. Dried conidia stored in oil maintained germination levels of up to 96 and 85% after 80 days at 10-14 C and 28-32 C respectively. Dried conidia stored as powder retained germination levels of 95% at 10-14 C, but only up to 27% at 28-32 C. In another experiment, dried conidia maintained greater than 90% germination over 128 days, with or without silica gel at 10 - 14 C or -15 - -18 C.  相似文献   

9.
Airborne fungal spores are known carriers of allergen. Correlations between spore counts and allergen concentrations are poor. It is known that germination increases allergen release, implicating spore viability as a determinant of allergen release. During aerial dispersal, spores can be exposed to prolonged periods of ultraviolet (UV) light which can reduce viability of spores. We examined the relation between spore viability and allergen release in two experiments: firstly spores from culture were treated with a UV wavelength of 254?nm (not present in sunlight reaching the earth's surface) or autoclaved, and secondly, spores were exposed to simulated sunlight over three days. In both studies viability was measured (by germination on agar and by metabolic activity with nitro-blue tetrazolium vital stain) and allergen release by the Halogen immunoassay. The UV light reduced the proportion of spores able to germinate but did not affect metabolic activity or allergen release. Autoclaving reduced the proportion of spores releasing allergen by half (p<0.0001). Three days' exposure to simulated sunlight correlated negatively with spore germination and metabolic activity (p<0.0001), but did not affect allergen release (p=0.799). In conclusion, simulated sunlight reduced the metabolic activity and germinability of spores however the proportion releasing allergen remained unaffected. These findings suggest that spore counts may reflect allergen concentrations in the air if spores are dead or dormant. The contribution of viable spores to concentrations of airborne allergen, as well as the role of germination in allergen delivery to the respiratory tract, remains to be resolved.  相似文献   

10.
Comparative observations of Bipolaris sorokiniana and Curvularia geniculata conidia germination as influenced by culture age and temperature showed some distinct differences, but generally established the ability of these organisms to function under similar conditions. Total germination of B. sorokiniana conidia was favored by increasing culture age from 20 to 60 days and temperature to 25°C; total conidia germination of C. geniculata was favored by increasing temperature to 25°C, but increasing culture age decreased germination. These reactions seem associated with conidia age. Maximum proportional intra-population germination of conidia of each organism also varied with culture age and temperature. At temperatures of 5°C and 15°C, amplitude of maximum proportional germination of both organisms increased as culture age was increased from 20 to 40 days and then decreased among 60-day-old cultures. At 25°C and above, amplitude of maximum proportional germination of conidia of both organisms decreased from each older culture. Progressively increasing temperature at a given culture age increased the amplitude of maximum proportional germination up to 25°C for conidia of B. sorokiniana, but generally decreased it for conidia of C. geniculata (except 20-day-old cultures). Frequency (specific 2 h interval) of maximum proportional intrapopulation germination of B. sorokiniana shifted from 6 h to 2 h in response to increasing temperature and culture age; conidia from youngest cultures of C. geniculata shifted to intervals of 4 h and 2 h in response to increasing temperature to 25°C, but among conidia from 60-day-old cultures, frequency shifted to 6 h intervals at all temperatures. Above 25°C, maximum proportional germination of C. geniculata conidia from cultures of all ages occurred at 6 h. It was concluded that the germination response of B. sorokiniana and C. geniculata conidia to temperature and culture age (and, subsequently, conidia age) are enough similar that these organisms could function in a potential ‘disease complex’ on Poa pratensis and Agrostis palustris.  相似文献   

11.
The effect of temperature ranging from 5-30 degrees C on in vitro vegetative growth and conidial germination of isolates of the entomophthoralean fungus Furia gastropachae was investigated. Eleven isolates were used for growth studies; two from Maryland, six from New York, and three from Ontario. A subset of four isolates, one each from Maryland and New York and two from Ontario, were used in conidial germination experiments. Growth and germination were significantly associated with temperature for all isolates, occurring throughout the range 5-30 degrees C, though both processes were inhibited to varying degrees at upper and lower extremes. Temperature optima for growth ranged from 20 to 27 degrees C, and for germination from 20 to 25 degrees C. Although significant variability was observed among isolates in growth at temperatures above 13 degrees C, temperature optima were not significantly different among isolates, and variability did not appear to relate to the geoclimatic origins of the isolates. In contrast, germination responses to temperature did appear to be related to geographic origin. Furia gastropachae isolates from New York and Maryland germinated more slowly at 10 degrees C than did Ontario isolates, although the percentage of conidia ultimately germinating at each temperature was the same for all isolates. The New York and Maryland isolates performed much better at 30 degrees C, with significantly greater overall germination and secondary conidial discharge, than the Ontario isolates. Compared with other isolates at 30 degrees C, Ontario isolates were the least active, often failing to successfully discharge any secondary conidia.  相似文献   

12.
[目的]评价球孢白僵菌固体发酵产物的干燥温度对产后分生孢子性能的影响.[方法]采用28℃2和35℃组合的7种恒温或变温处理干燥发酵产物,分析收获的分生孢子质量.[结果]变温干燥可显著降低产后孢子粉的杂菌污染.干燥温度对活孢率和孢子萌发速度影响不一致.35℃恒温干燥5 h后活孢率与新鲜孢子无明显差异,但萌发中时缩短了9.3%.干燥处理提高了孢子对高温和紫外辐射的耐受性.适当的变温干燥比恒温干燥有利于增强孢子抗逆性.干燥温度影响分生孢子胞内海藻糖积累,但其含量与抗逆性无直接相关性.优化干燥温度可提高产后分生孢子毒力.在370~450孢子/mm2剂量下,经28℃ 24 h后升至35℃干燥2 h或35℃恒温干燥5 h的分生孢子对桃蚜的致死中时分别比新鲜孢子缩短了10.6 h和7.5 h.[结论]球孢白僵菌固体发酵产物的干燥温度是影响产后孢子粉杂菌污染、孢子活力、抗逆性和毒力的重要因素.  相似文献   

13.
本文研究碳源、氮源、温度、湿度、pH值和光照等对蝉拟青霉LB菌株生长、产孢和孢子萌发的影响.结果表明,适合该菌株菌落生长和产孢的最佳碳源是可溶性淀粉和蔗糖,最佳氮源为蛋白胨;菌丝生长和孢子萌发的最适温度范围是25℃~27℃,产生分生孢子的最适温度是25℃;分生孢子萌发所需湿度范围是RH 90%~100%,当RH低于90%时很难萌发;在pH值4~10的范围内该菌能生长和产孢,菌丝生长最适pH为6,产生分生孢子和孢子萌发最适pH范围为6-7;光照处理对该菌产孢有一定的影响;分生孢子的致死条件为55℃ 10min.生物学特性显示,蝉拟青霉LB菌株是一株对营养要求不高、对环境适应能力较强的昆虫病原真菌.  相似文献   

14.
Pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]) constitutes approximately 10% of Bacillus subtilis spore dry weight and has been shown to play a significant role in the survival of B. subtilis spores exposed to wet heat and to 254-nm UV radiation in the laboratory. However, to date, no work has addressed the importance of DPA in the survival of spores exposed to environmentally relevant solar UV radiation. Air-dried films of spores containing DPA or lacking DPA due to a null mutation in the DPA synthetase operon dpaAB were assayed for their resistance to UV-C (254 nm), UV-B (290 to 320 nm), full-spectrum sunlight (290 to 400 nm), and sunlight from which the UV-B portion was filtered (325 to 400 nm). In all cases, air-dried DPA-less spores were significantly more UV sensitive than their isogenic DPA-containing counterparts. However, the degree of difference in UV resistance between the two strains was wavelength dependent, being greatest in response to radiation in the UV-B portion of the spectrum. In addition, the inactivation responses of DPA-containing and DPA-less spores also depended strongly upon whether spores were exposed to UV as air-dried films or in aqueous suspension. Spores lacking the gerA, gerB, and gerK nutrient germination pathways, and which therefore rely on chemical triggering of germination by the calcium chelate of DPA (Ca-DPA), were also more UV sensitive than wild-type spores to all wavelengths tested, suggesting that the Ca-DPA-mediated spore germination pathway may consist of a UV-sensitive component or components.  相似文献   

15.
Chemical sunscreens were incorporated into oil formulations of conidia of two isolates of the entomopathogenic fungusMetarhizium spp. and the formulations exposed to simulated solar radiation. After 2 h exposure several sunscreens gave protection as demonstrated by conidial germination after 24 h incubation on gelatin plates at 26°C but only the formulations with Eusolex 8021 showed higher germination than the unprotected control after 48 h incubation. During 5h of exposure, Eusolex 8021 failed to offer significant protection as demonstrated by conidial germination after 48 h incubation. Conidial damage was proportional to the duration of radiation received. Allowing periods of darkness between exposures did not result in decreased loss of viability. Storing conidia, after exposure to simulated radiation, for 24 h prior to germination reduced their viability.  相似文献   

16.
Bacillus thuringiensis Berliner is a highly efficacious bioinsecticide used to control lepidopteran pests in the field. Unfortunately, it has limited residual activity on plants because sunlight inactivates spores and crystals and they can be washed off by rain. To minimize loss of activity, formulations must contain UV protectants, stickers, or both. We tested approximately 80 formulations and determined optimal combinations of ingredients and spray drying conditions for improving B. thuringiensis residual activity after simulated rain and simulated sunlight. B. thuringiensis stability, after simulated sunlight (xenon light/8 h) and rain (5 cm/50 min), was improved using formulations based on lignin, corn flours, or both, with up to 20% of the active ingredient, when compared with technical powder or Dipel 2x in laboratory assays. Two formulations, made with corn flours or lignin + pregelatinized corn flour (PCF), killed 51.6 and 75.3% of Ostrinia nubilalis (Hübner) neonates after rain, respectively, versus 27% for technical powder. When the insecticidal activity was tested after simulated sunlight, corn flour-based formulations killed 78.5% of test larvae, and the lignin + PCF formulation killed 70.4%, in contrast to technical powder which caused an average of 29% mortality. Formulations made with Dipel 2x rather than technical powder, caused 62.5% mortality (corn flour-based formulations), and 72.3% mortality (lignin + PCF), versus 53.4% for Dipel 2x after rain. When tested after simulated sunlight, formulations killed 95% of the larvae (average of both formulations) versus 82% for Dipel 2x. In a field test, formulations were applied to cabbage and insecticidal activity was determined against Trichoplusia ni (Hübner) neonates exposed to treated leaves. Insecticidal activity of the corn flour-based formulations was comparable to Dipel 2x for 4 d after treatment, but was significantly better than Dipel 2x 7 d after application. A lignin and PCF-based formulation showed significantly higher residual activity than Dipel 2x, 4 and 7 d after application.  相似文献   

17.
Triazole fungicides, which are sterol demethylation inhibitors, have become the primary systemic fungicides applied to cucurbits to control gummy stem blight caused by Didymella bryoniae. Isolates of D. bryoniae from South Carolina that were never exposed to tebuconazole or exposed for several years were tested for sensitivity to tebuconazole and difenoconazole. Colony diameters, percentage germination of ascospores and conidia, and germ tube lengths were measured when isolates were grown on agar amended with 0.10–10.0 mg/l tebuconazole and 0.01–1.0 mg/l difenoconazole. All 147 isolates tested were sensitive to tebuconazole and difenoconazole with mean EC50 values of 0.41 and 0.054 mg/l, respectively. Ascospore germination was greater than conidia germination on fungicide‐amended agar. Although the length of germ tubes arising from both spore types was reduced by both fungicides, the reduction was greater for ascospore germ tubes than for conidia germ tubes. Because many watermelon growers rotate crops among fields every two years, local populations of D. bryoniae have not been exposed repeatedly to tebuconazole. In addition, growers often apply a rotation of systemic and contact fungicides. Thus, despite exposure to tebuconazole for up to nine years, isolates of D. bryoniae from South Carolina remain sensitive to triazole fungicides.  相似文献   

18.
The detrimental effect of solar radiation on the survival of conidia of the entomopathogenic fungusPaecilomyces fumoroseus was studied by monitoring germinability and ability to form colonies (CFU) of conidia irradiated at two temperatures, 25 and 35 °C, harmless to shaded conidia. There was no apparent effect when spores were exposed to a high level of artificial radiation (0.66 W m–2 UVB). However, at a lower level of irradiance (0.33 W m–2), effects of radiation occurred more quickly at 35 °C than at 25 °C. Under natural solar radiation, the rate of decrease in germinability or viability was doubled at 35 °C as compared to 25 °C, indicating an interaction between temperature and radiation effects under natural conditions. This interaction was not detected in indoor experiments, indicating that the spectral distribution of UV radiation has to be taken in account as well as its irradiance when studying its effects.Abbreviations CFU Colony Forming Units - UTC Universal Time Coordinates - UVB Ultra Violet B radiation (280–320 nm)  相似文献   

19.
Germination of conidia of Entomophaga maimaiga, an important fungal pathogen of gypsy moth, Lymantria dispar, was investigated on water agar and larval cuticle at varying densities. Percent germination was positively associated with conidial density on water agar but not on larval cuticle. When conidia were showered onto water agar, the rate of germination was much slower than on the cuticle of L. dispar larvae. From the same conidial showers, the resulting conidial densities on water agar were much higher than those on larval cuticle in part because many conidia adhered to setae and did not reach the cuticle. A second factor influencing conidial densities on larval cuticle was the location conidia occurred on larvae. Few conidia were found on the flexible intersegmental membranes in comparison with the areas of more rigid cuticle, presumably because conidia were physically dislodged from intersegmental membranes when larvae moved. Conidia were also exposed to heightened CO(2) to evaluate whether this might influence germination. When conidia on water agar were exposed to heightened CO(2) levels, germinating conidia primarily formed germ tubes while most conidia exposed to ambient CO(2) rapidly formed secondary conidia.  相似文献   

20.
The ability of bacteriophage to persist in the phyllosphere for extended periods is limited by many factors, including sunlight irradiation, especially in the UV zone, temperature, desiccation, and exposure to copper bactericides. The effects of these factors on persistence of phage and formulated phage (phage mixed with skim milk) were evaluated. In field studies, copper caused significant phage reduction if applied on the day of phage application but not if applied 4 or 7 days in advance. Sunlight UV was evaluated for detrimental effects on phage survival on tomato foliage in the field. Phage was applied in the early morning, midmorning, early afternoon, and late evening, while UVA plus UVB irradiation and phage populations were monitored. The intensity of UV irradiation positively correlated with phage population decline. The protective formulation reduced the UV effect. In order to demonstrate direct effects of UV, phage suspensions were exposed to UV irradiation and assayed for effectiveness against bacterial spot of tomato. UV significantly reduced phage ability to control bacterial spot. Ambient temperature had a pronounced effect on nonformulated phage but not on formulated phages. The effects of desiccation and fluorescent light illumination on phage were investigated. Desiccation caused a significant but only slight reduction in phage populations after 60 days, whereas fluorescent light eliminated phages within 2 weeks. The protective formulation eliminated the reduction caused by both of these factors. Phage persistence was dramatically affected by UV, while the other factors had less pronounced effects. Formulated phage reduced deleterious effects of the studied environmental factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号