首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Glaucoma afflicts millions of people worldwide and is a major cause of blindness. The risk to develop glaucoma is enhanced by increases in IOP, which result from deranged flow of aqueous humor. Aqueous humor is a fluid located in the front of the eye that gives the eye its buoyancy and supplies nutrients to other eye tissues. Aqueous humor is secreted by a tissue called ciliary processes and exits the eye via two tissues; the trabecular meshwork (TM) and Schlemm's canal. Because the spaces through which the fluid flows get smaller as the TM joins the area of the Schlemm's canal, there is resistance to aqueous humor outflow and this resistance creates IOP. There is a correlation between changes in TM and Schlemm's canal cell volume and rates of aqueous humor outflow; agents that decrease TM and Schlemm's canal cell volume, increase the rate of aqueous humor outflow, thus decreasing IOP. IOP is regulated by guanylate cyclase activators as shown in humans, rabbits and monkeys. There are two distinct groups of guanylate cyclases, membrane guanylate cyclase and soluble guanylate cyclase (sGC); activation of both have been shown to decrease IOP. Members of the membrane guanylate cyclase family of receptors bind to peptide ligands, while the sGC responds to gases (such as NO and CO(2)) and compounds (such as YC1, [3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole), a benzyl indazole derivative, and BAY-58-2667); activation of either results in formation of cyclic GMP (cGMP) and activation of protein kinase G (PKG) and subsequent phosphorylation of target proteins, including the high conductance calcium activated potassium channel (BKca channel). While activators of both membrane guanylate cyclase and sGC have the ability to lower IOP, the IOP lowering effects of sGC are noteworthy because sGC activators can be topically applied to the eye to achieve an effect. We have demonstrated that activators of sGC increase the rate at which aqueous humor exits the eye in a time course that correlates with the time course for sGC-induced decreases in TM and Schlemm's canal cell volume. Additionally, sGC-induced decrease in cell volume is accompanied by both K(+) and Cl(-) efflux induced by activation of K(+) and Cl(-) channels, including the BKca channel and/or K(+)Cl(-) symport. This suggests that parallel K(+)Cl(-) efflux, and resultant H(2)O efflux result in decreases in cell volume. These observations suggest a functional role for sGC activators, and suggest that the sGC/cGMP/PKG systems are potential therapeutic targets in the treatment of glaucoma.  相似文献   

2.
Aquaporin-5 dependent fluid secretion in airway submucosal glands   总被引:28,自引:0,他引:28  
Fluid and macromolecule secretion by submucosal glands in mammalian airways is believed to play an important role in airway defense and surface liquid homeostasis and in the pathogenesis of cystic fibrosis. Immunocytochemistry revealed strong expression of aquaporin water channel AQP5 at the luminal membrane of serous epithelial cells in submucosal glands throughout the mouse nasopharynx and upper airways and AQP4 at the contralateral basolateral membrane in some glands. Novel methods were applied to measure secretion rates and composition of gland fluid in wild type mice and knockout mice lacking AQP4 or AQP5. In mice breathing through a tracheotomy, total gland fluid output was measured from the dilution of a volume marker present in the fluid-filled nasopharynx and upper trachea. Pilocarpine-stimulated fluid secretion was 4.3 +/- 0.4 microl/min in wild type mice, 4.9 +/- 0.9 microl/min in AQP4 null mice, and 1.9 +/- 0.3 microl/min in AQP5 null mice (p < 0.001). Similar results were obtained when secreted fluid was collected in the oil-filled nasopharyngeal cavity. Real-time video imaging of fluid droplets secreted from individual submucosal glands near the larynx in living mice showed a 57 +/- 4% reduced fluid secretion rate in AQP5 null mice. Analysis of secreted fluid showed a 2.3 +/- 0.2-fold increase in total protein in AQP5 null mice and a smaller increase in [Cl(-)], suggesting intact protein and salt secretion across a relatively water impermeable epithelial barrier. Submucosal gland morphology and density did not differ significantly in wild type versus AQP5 null mice. These results indicate that AQP5 facilitates fluid secretion in submucosal glands and that the luminal membrane of gland epithelial cells is the rate-limiting barrier to water movement. Modulation of gland AQP5 expression or function might provide a novel approach to treat hyperviscous gland secretions in cystic fibrosis and excessive fluid secretions in infectious or allergic bronchitis/rhinitis.  相似文献   

3.
Nitric oxide (NO) donors decrease intraocular pressure (IOP) by increasing aqueous outflow facility in the trabecular meshwork (TM) and/or Schlemm's canal. However, the cellular mechanisms are unknown. Cellular mechanisms known to regulate outflow facility include changes in cell volume and cellular contractility. In this study, we investigated the effects of NO donors on outflow facility and NO-induced effects on TM cell volume. We tested the involvement of soluble guanylate cyclase (sGC), cGMP, PKG, and the large-conductance Ca2+-activated K+ (BKCa) channel using inhibitors and activators. Cell volume was measured using calcein AM fluorescent dye, detected by confocal microscopy, and quantified using NIH ImageJ software. An anterior segment organ perfusion system measured outflow facility. NO increased outflow facility in porcine eye anterior segments (0.4884-1.3956 microl.min(-1).mmHg(-1)) over baseline (0.2373-0.5220 microl.min(-1).mmHg(-1)) within 10 min of drug application. These NO-induced increases in outflow facility were inhibited by the the BKCa channel inhibitor IBTX. Exposure of TM cells to NO resulted in a 10% decrease in cell volume, and these decreases were abolished by the sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and IBTX, suggesting the involvement of sGC and K+ eflux, respectively. NO-induced decreases in cell volume were mimicked by 8-Br-cGMP and abolished by the PKG inhibitor (RP)-8-Br-PET-cGMP-S, suggesting the involvement cGMP and PKG. Additionally, the time course for NO-induced decreases in TM cell volume correlated with NO-induced increases in outflow facility, suggesting that the NO-induced alterations in cell volume may influence outflow facility.  相似文献   

4.
Glaucoma is a leading cause of blindness affecting as many as 2.2 million Americans. All current glaucoma treatment strategies aim to reduce intraocular pressure (IOP). IOP results from the resistance to drainage of aqueous humor (AH) produced by the ciliary body in a process requiring bicarbonate. Once secreted into the anterior chamber, AH drains from the eye via two pathways: uveoscleral and pressure-dependent or conventional outflow (C(t)). Modulation of "inflow" and "outflow" pathways is thought to occur via distinct, local mechanisms. Mice deficient in the bicarbonate channel bestrophin-2 (Best2), however, exhibit a lower IOP despite an increase in AH production. Best2 is expressed uniquely in nonpigmented ciliary epithelial (NPE) cells providing evidence for a bicarbonate-dependent communicative pathway linking inflow and outflow. Here, we show that bicarbonate-sensitive soluble adenylyl cyclase (sAC) is highly expressed in the ciliary body in NPE cells, but appears to be absent from drainage tissues. Pharmacologic inhibition of sAC in mice causes a significant increase in IOP due to a decrease in C(t) with no effect on inflow. In mice deficient in sAC IOP is elevated, and C(t) is decreased relative to wild-type mice. Pharmacologic inhibition of sAC did not alter IOP or C(t) in sAC-deficient mice. Based on these data we propose that the ciliary body can regulate C(t) and that sAC serves as a critical sensor of bicarbonate in the ciliary body regulating the secretion of substances into the AH that govern outflow facility independent of pressure.  相似文献   

5.
Transgenic null mice were used to test the hypothesis that water channel aquaporin-4 (AQP4) is involved in colon water transport and fecal dehydration. AQP4 was immunolocalized to the basolateral membrane of colonic surface epithelium of wild-type (+/+) mice and was absent in AQP4 null (-/-) mice. The transepithelial osmotic water permeability coefficient (P(f)) of in vivo perfused colon of +/+ mice, measured using the volume marker (14)C-labeled polyethylene glycol, was 0.016 +/- 0.002 cm/s. P(f) of proximal colon was greater than that of distal colon (0.020 +/- 0.004 vs. 0. 009 +/- 0.003 cm/s, P < 0.01). P(f) was significantly lower in -/- mice when measured in full-length colon (0.009 +/- 0.002 cm/s, P < 0. 05) and proximal colon (0.013 +/- 0.002 cm/s, P < 0.05) but not in distal colon. There was no difference in water content of cecal stool from +/+ vs. -/- mice (0.80 +/- 0.01 vs. 0.81 +/- 0.01), but there was a slightly higher water content in defecated stool from -/- mice (0.68 +/- 0.01 vs. 0.65 +/- 0.01, P < 0.05). Despite the differences in water permeability with AQP4 deletion, theophylline-induced secretion was not impaired (50 +/- 9 vs. 51 +/- 8 microl. min(-1). g(-1)). These results provide evidence that transcellular water transport through AQP4 water channels in colonic epithelium facilitates transepithelial osmotic water permeability but has little or no effect on colonic fluid secretion or fecal dehydration.  相似文献   

6.
The astroglial water channel aquaporin-4 (AQP4) facilitates water movement into and out of brain parenchyma. To investigate the role of AQP4 in meningitis-induced brain edema, Streptococcus pneumoniae was injected into cerebrospinal fluid (CSF) in wild type and AQP4 null mice. AQP4-deficient mice had remarkably lower intracranial pressure (9 +/- 1 versus 25 +/- 5 cm H2O) and brain water accumulation (2 +/- 1 versus 9 +/- 1 microl) at 30 h, and improved survival (80 versus 0% survival) at 60 h, through comparable CSF bacterial and white cell counts. Meningitis produced marked astrocyte foot process swelling in wild type but not AQP4 null mice, and slowed diffusion of an inert macromolecule in brain extracellular space. AQP4 protein was strongly up-regulated in meningitis, resulting in a approximately 5-fold higher water permeability (P(f)) across the blood-brain barrier compared with non-infected wild type mice. Mathematical modeling using measured P(f) and CSF dynamics accurately simulated the elevated lower intracranial pressure and brain water produced by meningitis and predicted a beneficial effect of prevention of AQP4 upregulation. Our findings provide a novel molecular mechanism for the pathogenesis of brain edema in acute bacterial meningitis, and suggest that inhibition of AQP4 function or up-regulation may dramatically improve clinical outcome.  相似文献   

7.
The mammalian peripheral lung contains at least three aquaporin (AQP) water channels: AQP1 in microvascular endothelia, AQP4 in airway epithelia, and AQP5 in alveolar epithelia. In this study, we determined the role of AQP4 in airspace-to-capillary water transport by comparing water permeability in wild-type mice and transgenic null mice lacking AQP1, AQP4, or AQP1/AQP4 together. An apparatus was constructed to measure lung weight continuously during pulmonary artery perfusion of isolated mouse lungs. Osmotically induced water flux (J(v)) between the airspace and capillary compartments was measured from the kinetics of lung weight change in saline-filled lungs in response to changes in perfusate osmolality. J(v) in wild-type mice varied linearly with osmotic gradient size (4.4 x 10(-5) cm(3) s(-1) mOsm(-1)) and was symmetric, independent of perfusate osmolyte size, weakly temperature dependent, and decreased 11-fold by AQP1 deletion. Transcapillary osmotic water permeability was greatly reduced by AQP1 deletion, as measured by the same method except that the airspace saline was replaced by an inert perfluorocarbon. Hydrostatically induced lung edema was characterized by lung weight changes in response to changes in pulmonary arterial inflow or pulmonary venous outflow pressure. At 5 cm H(2)O outflow pressure, the filtration coefficient was 4.7 cm(3) s(-1) mOsm(-1) and reduced 1.4-fold by AQP1 deletion. To study the role of AQP4 in lung water transport, AQP1/AQP4 double knockout mice were generated by crossbreeding of AQP1 and AQP4 null mice. J(v) were (cm(3) s(-1) mOsm(-1) x 10(-5), SEM, n = 7-12 mice): 3.8 +/- 0. 4 (wild type), 0.35 +/- 0.02 (AQP1 null), 3.7 +/- 0.4 (AQP4 null), and 0.25 +/- 0.01 (AQP1/AQP4 null). The significant reduction in P(f) in AQP1 vs. AQP1/AQP4 null mice was confirmed by an independent pleural surface fluorescence method showing a 1.6 +/- 0.2-fold (SEM, five mice) reduced P(f) in the AQP1/AQP4 double knockout mice vs. AQP1 null mice. These results establish a simple gravimetric method to quantify osmosis and filtration in intact mouse lung and provide direct evidence for a contribution of the distal airways to airspace-to-capillary water transport.  相似文献   

8.
9.
10.
The only effective intervention to slow onset and progression of glaucomatous blindness is to lower intraocular pressure (IOP). Among other modulators, adenosine receptors (ARs) exert complex regulation of IOP. Agonists of A(3)ARs in the ciliary epithelium activate Cl(-) channels, favoring increased formation of aqueous humor and elevated IOP. In contrast, stimulating A(1)ARs in the trabecular outflow pathway enhances release of matrix metalloproteinases (MMPs) from trabecular meshwork (TM) cells, reducing resistance to outflow of aqueous humor to lower IOP. These opposing actions are thought to be initiated by cellular release of ATP and its ectoenzymatic conversion to adenosine. This view is now supported by our identification of six ectoATPases in trabecular meshwork (TM) cells and by our observation that external ATP enhances TM-cell secretion of MMPs through ectoenzymatic formation of adenosine. ATP release is enhanced by cell swelling and stretch. Also, enhanced ATP release and downstream MMP secretion is one mediator of the action of actin depolymerization to reduce outflow resistance. Inflow and outflow cells share pannexin-1 and connexin hemichannel pathways for ATP release. However, vesicular release and P2X(7) release pathways were functionally limited to inflow and outflow cells, respectively, suggesting that blocking exocytosis might selectively inhibit inflow, lowering IOP.  相似文献   

11.
Phenotype analysis of aquaporin-8 null mice   总被引:11,自引:0,他引:11  
  相似文献   

12.
BACKGROUND INFORMATION: Phenotype analysis has demonstrated that AQP3 (aquaporin 3) null mice are polyuric and manifest a urinary concentration defect. In the present study, we report that deletion of AQP3 is also associated with an increased urinary sodium excretion. To investigate further the mechanism of the decreased urinary concentration and significant natriuresis, we examined the segmental and subcellular localization of collecting duct AQPs [AQP2, p-AQP2 (phosphorylated AQP2), AQP3 and AQP4], ENaC (epithelial sodium channel) subunits and Na,K-ATPase by immunoperoxidase and immunofluorescence microscopy in AQP3 null (-/-), heterozygous (+/-) mice, wild-type and unrelated strain of normal mice. RESULTS: The present study confirms that AQP3 null mice exhibit severe polyuria and polydipsia and demonstrated that they exhibit increased urinary sodium excretion. In AQP3 null mice, there is a marked down-regulation of AQP2 and p-AQP2 both in CNT (connecting tubule) and CCD (cortical collecting duct). Moreover, AQP4 is virtually absent from CNT and CCD in AQP3 null mice. Basolateral AQP2 was virtually absent from AQP3 null mice and normal mice in contrast with rat. Thus the above results demonstrate that no basolateral AQPs are expressed in CNT and CCD of AQP3 null mice. However, in the medullary-collecting ducts, there is no difference in the expression levels and subcellular localization of AQP2, p-AQP2 and AQP4 between AQP3 +/- and AQP3 null mice. Moreover, a striking decrease in the immunolabelling of the alpha1 subunit of Na,K-ATPase was observed in CCD in AQP3 null mice, whereas a medullary-collecting duct exhibited normal labelling. Immunolabelling of all the ENaC subunits in the collecting duct was comparable between the two groups. CONCLUSIONS: The results improve the possibility that the severe urinary concentrating defect in AQP3 null mice may in part be caused by the decreased expression of AQP2, p-AQP2 and AQP4 in CNT and CCD, whereas the increased urinary sodium excretion may in part be accounted for by Na,K-ATPase in CCD in AQP3 null mice.  相似文献   

13.
Aquaporin-4 (AQP4) is a water transport protein expressed in glial cell plasma membranes, including glial cell foot processes lining the blood-brain barrier. AQP4 deletion in mice reduces cytotoxic brain edema produced by different pathologies. To determine whether AQP4 is rate-limiting for brain water accumulation and whether altered AQP4 expression, as occurs in various pathologies, could have functional importance, we generated mice that overexpressed AQP4 in brain glial cells by a transgenic approach using the glial fibrillary acid protein promoter. Overexpression of AQP4 protein in brain by approximately 2.3-fold did not affect mouse survival, appearance, or behavior, nor did it affect brain anatomy or intracranial pressure (ICP). However, following acute water intoxication produced by intraperitoneal water injection, AQP4-overexpressing mice had an accelerated progression of cytotoxic brain swelling, with ICP elevation of 20 +/- 2 mmHg at 10 min, often producing brain herniation and death. In contrast, ICP elevation was 14 +/- 2 mmHg at 10 min in control mice and 9.8 +/- 2 mmHg in AQP4 knock-out mice. The deduced increase in brain water content correlated linearly with brain AQP4 protein expression. We conclude that AQP4 expression is rate-limiting for brain water accumulation, and thus, that altered AQP4 expression can be functionally significant.  相似文献   

14.
Early study of transepithelial salt transfer focused on Cl(-) and not Na(+), partly because Cl(-) was readily measureable. The advent of flame photometry and tracer techniques brought Na(+) to the fore, especially since short-circuited frog skin (Rana temporaria) produces baseline net movement of Na(+) and not of Cl(-). Zadunaisky was among the first to describe what is currently termed secondary active Cl(-) transport, helping stimulate interest in Cl(-) handling by other tissues, notably the thick ascending limb of the loop of Henle important in renal counter-current multiplication. More recently, molecules responsible for electroneutral and electrogenic Cl(-) transfer have been cloned, and specific diseases resulting from their faulty expression have been identified. The clinical importance of transepithelial Cl(-) transfer is illustrated by studies of aqueous humor formation by the eye's bilayered ciliary epithelium. NaCl is taken up from the stroma by the pigmented ciliary epithelial (PE) layer, diffuses through gap junctions into the nonpigmented ciliary epithelial (NPE) layer, and is released into the aqueous humor largely through Na(+) pumps and Cl(-) channels. ATP released by NPE cells can be ecto-enzymatically metabolized to adenosine. Adenosine can mediate paracrine/autocrine stimulation of Cl(-) channels and aqueous humor secretion by occupying A(3) adenosine receptors (ARs). A(3)AR agonists indeed elevate, and A(3)AR antagonists lower, intraocular pressure (IOP) in wild-type mice. A(3)AR knockout mice have low IOP and their responses to A(3)AR agonists and antagonists are blunted; this suggests that reducing Cl(-)-channel activity with A(3)AR antagonists may provide a novel approach for treating glaucoma.  相似文献   

15.
We hypothesized that nitric oxide (NO) contributes to intrasplenic fluid extravasation by inducing greater relaxation in splenic resistance arteries than veins such that intrasplenic microvascular pressure (P(C)) rises. Fluid efflux was estimated by measuring the difference between splenic blood inflow and outflow. Intrasplenic infusion of the NO donor S-nitroso-N-acetylpenicillamine (SNAP) (0.3 microg. 10 microl(-1). min(-1)) caused a significant increase in intrasplenic fluid efflux (baseline: 0.8 +/- 0.4 ml/min, n = 10 vs. peak rise during SNAP infusion: 1.3 +/- 0.4 ml/min, n = 10; P < 0.05). Intrasplenic P(C) was measured in the isolated, blood-perfused rat spleen. Intrasplenic infusion of SNAP (0.1 microg. 10 microl(-1). min(-1)) caused a significant increase in P(C) (saline: 10.9 +/- 0.2 mmHg, n = 3 vs. SNAP: 12.2 +/- 0.2 mmHg, n = 3; P < 0.05). Vasoreactivity of preconstricted splenic resistance vessels to sodium nitroprusside (SNP) (1 x 10(-12)-1 x 10(-4) M) and SNAP (1 x 10(-10)-3 x 10(-4) M) was investigated with the use of a wire myograph system. Significantly greater relaxation of arterioles than of venules occurred with both SNP (%maximal vasorelaxation: artery 96 +/- 2.3, n = 9 vs. vein 26 +/- 1.9, n = 10) and SNAP (%maximal vasorelaxation: artery 50 +/- 3.5, n = 11 vs. vein 32 +/- 1.7, n = 8). These results are consistent with our proposal that differential vasoreactivity of splenic resistance arteries and veins to NO elevates intrasplenic P(C) and increases fluid extravasation into the systemic lymphatic system.  相似文献   

16.
The aquaporin-4 (AQP4) water channel has been proposed to play a role in gastric acid secretion. Immunocytochemistry using anti-AQP4 antibodies showed strong AQP4 protein expression at the basolateral membrane of gastric parietal cells in wild-type (+/+) mice. AQP4 involvement in gastric acid secretion was studied using transgenic null (-/-) mice deficient in AQP4 protein. -/- Mice had grossly normal growth and appearance and showed no differences in gastric morphology by light microscopy. Gastric acid secretion was measured in anesthetized mice in which the stomach was luminally perfused (0. 3 ml/min) with 0.9% NaCl containing [(14)C]polyethylene glycol ([(14)C]PEG) as a volume marker. Collected effluent was assayed for titratable acid content and [(14)C]PEG radioactivity. After 45-min baseline perfusion, acid secretion was stimulated by pentagastrin (200 microg. kg(-1). h(-1) iv) for 1 h or histamine (0.23 mg/kg iv) + intraluminal carbachol (20 mg/l). Baseline gastric acid secretion (means +/- SE, n = 25) was 0.06 +/- 0.03 and 0.03 +/- 0.02 microeq/15 min in +/+ and -/- mice, respectively. Pentagastrin-stimulated acid secretion was 0.59 +/- 0.14 and 0.70 +/- 0.15 microeq/15 min in +/+ and -/- mice, respectively. Histamine plus carbachol-stimulated acid secretion was 7.0 +/- 1.9 and 8.0 +/- 1.8 microeq/15 min in +/+ and -/- mice, respectively. In addition, AQP4 deletion did not affect gastric fluid secretion, gastric pH, or fasting serum gastrin concentrations. These results provide direct evidence against a role of AQP4 in gastric acid secretion.  相似文献   

17.
We developed a pleural surface fluorescence method to measure Na(+) and Cl(-) transport in perfused mouse lungs. The air space was filled with aqueous fluid containing membrane-impermeant fluorescent indicators of Cl(-) (lucigenin) or Na(+) (Sodium Green). After instillation of a Cl(-)-free solution into the air space, an increase in perfusate Cl(-) concentration from 0 to 30 mM produced a decrease in surface lucigenin fluorescence (6.5%/min) corresponding to Cl(-) influx of 1.0 mM/min. Cl(-) influx was increased to 2.1 +/- 0.3 mM/min by forskolin, and the increase was inhibited by glibenclamide. cAMP-stimulated Cl(-) influx was decreased by 57% in CFTR null mice. After instillation of a Na(+)-free solution into the air space, an increase in perfusate Na(+) concentration from 0 to 30 mM gave increased Sodium Green fluorescence (Na(+) influx of 1.2 mM/min), which increased approximately fivefold after cAMP agonists. Cl(-) and Na(+) transport were not affected in lungs from mice lacking aquaporins AQP1 or AQP5. Our results establish a pleural surface fluorescence method to measure unidirectional Cl(-) and Na(+) flux in intact lung and provide evidence for cAMP-stimulated transcellular Cl(-) and Na(+) transport.  相似文献   

18.
Brain abscess is associated with local vasogenic edema, which leads to increased intracranial pressure and significant morbidity. Aquaporin-4 (AQP4) is a water channel expressed in astroglia at the blood-brain and brain-CSF barriers. To investigate the role of AQP4 in brain abscess-associated edema, live Staphylococcus aureus (10(5) colony-forming units) was injected into the striatum to create a focal abscess. Wild-type and AQP4-deficient mice had comparable immune responses as measured by brain abscess volume (approximately 3.7 mm3 at 3 days), bacterial count and cytokine levels in brain homogenates. Blood-brain barrier permeability was increased comparably in both groups as assessed by extravasation of Evans blue dye. However, at 3 days the AQP4 null mice had significantly higher intracranial pressure (mean +/- SEM 27 +/- 2 vs. 17 +/- 2 mmHg; p < 0.001) and brain water content (81.0 +/- 0.3 vs. 79.3 +/- 0.5 % water by weight in the abscess-containing hemisphere; p < 0.01) than wild-type mice. Reactive astrogliosis was found throughout the abscess-containing hemisphere; however, only a subset of astrocytes in the peri-abscess region of wild-type mice had increased AQP4 immunoreactivity. Our findings demonstrate a protective effect of AQP4 on brain swelling in bacterial abscess, suggesting that AQP4 induction may reduce vasogenic edema associated with cerebral infection.  相似文献   

19.
Aquaporin-4, present in ependymal cells, in glia limiting and abundantly in pericapillary astrocyte foot processes, and aquaporin-1, expressed in choroid plexus epithelial cells, play an important role in cerebrospinal fluid production and may be involved in the pathophysiology of age-dependent hydrocephalus. The finding that brain aquaporins expression is regulated by low oxygen tension led us to investigate how hypoxia and elevated levels of cerebral aquaporins may result in an increase in cerebrospinal fluid production that could be associated with a hydrocephalic condition. Here we have explored, in young and aged mice exposed to hypoxia, whether aquaporin-4 and aquaporin-1 participate in the development of age-related hydrocephalus. Choroid plexus, striatum, cortex and ependymal tissue were analyzed separately both for mRNA and protein levels of aquaporins. Furthermore, parameters such as total ventricular volume, intraventricular pressure, cerebrospinal fluid outflow rate, ventricular compliance and cognitive function were studied in wild type, aquaporin-1 and aquaporin-4 knock-out animals subjected to hypoxia or normoxia. Our data demonstrate that hypoxia is involved in the development of age-related hydrocephalus by a process that depends on aquaporin-4 channels as a main route for cerebrospinal fluid movement. Significant increases in aquaporin-4 expression that occur over the course of animal aging, together with a reduced cerebrospinal fluid outflow rate and ventricular compliance, contribute to produce more severe hydrocephalus related to hypoxic events in aged mice, with a notable impairment in cognitive function. These results indicate that physiological events and/or pathological conditions presenting with cerebral hypoxia/ischemia contribute to the development of chronic adult hydrocephalus.  相似文献   

20.
目的:研究水通道蛋白1(Aquaporin 1,AQP1)在小鼠胎盘组织的分布及表达,初步探讨AQP1在羊水循环及母胎液体平衡中的作用。方法:各取四只雌雄成年健康野生型CD1小鼠(wild type,AQP1+/+)及AQP1基因敲除小鼠(AQP1-KO,AQP1-/)-,将纯合子AQP1基因敲除雌雄小鼠等数量合笼交配,第二日检出阴道栓者记为妊娠第1天(1 gestational day,1GD);野生型小鼠同样合笼记录。分别取两组13GD孕鼠的胎盘组织各一个,应用逆转录-聚合酶链反应(RT-PCR)技术及免疫组织化学技术检测AQP1胎盘组织中的表达,并确定AQP1在小鼠胎盘组织的定位。结果:1.RT-PCR结果表明AQP1在CD-1野生型孕鼠胎盘组织表达,AQP1基因敲除鼠无表达;2.免疫组织化学方法发现AQP1表达于小鼠胎盘血管内皮细胞和滋养细胞,AQP1基因敲除鼠无表达。结论:在mRNA水平和蛋白水平均发现AQP1在CD-1纯系野生型孕鼠胎盘组织的表达,提示AQP1可能在羊水循环及母胎液体平衡中发挥作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号