首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies demonstrated that the generation of intracellular reactive oxygen species (ROS) was enhanced prior to the onset of mitochondrial membrane permeability transition (MPT), a critical step for the induction of DNA fragmentation and apoptosis. Although Ca2+ induces typical MPT that involves depolarization and swelling of mitochondria and finally releases cytochrome c into cytosol, the mechanism by which ROS induce MPT remains unclear. In the presence of inorganic phosphate, Ca2+ increased the oxygen consumption and ROS production by isolated mitochondria as determined by a chemiluminescence (CHL) method using L-012. Ca2+ increased the generation of H2O2 by some mechanism that was inhibited by cyclosporin A but not by superoxide dismutase (SOD) and trifluoperazine. Ca2+ decreased the content of free thiols in adenine nucleotide translocase (ANT) in mitochondrial membranes with concomitant increase in ROS generation. The presence of cyclosporin A, trifluoperazine, or SOD inhibited the Ca2+-induced increase of L-012 CHL and decrease in the free thiols of ANT. These results indicate that Ca2+ increases the generation of ROS which oxidize the free thiol groups in mitochondrial ANT, thereby inducing MPT to release cytochrome c.  相似文献   

2.
Minocycline (an anti-inflammatory drug approved by the FDA) has been reported to be effective in mouse models of amyotrophic lateral sclerosis and Huntington disease. It has been suggested that the beneficial effects of minocycline are related to its ability to influence mitochondrial functioning. We tested the hypothesis that minocycline directly inhibits the Ca2+-induced permeability transition in rat liver mitochondria. Our data show that minocycline does not directly inhibit the mitochondrial permeability transition. However, minocycline has multiple effects on mitochondrial functioning. First, this drug chelates Ca2+ ions. Secondly, minocycline, in a Ca2+-dependent manner, binds to mitochondrial membranes. Thirdly, minocycline decreases the proton-motive force by forming ion channels in the inner mitochondrial membrane. Channel formation was confirmed with two bilayer lipid membrane models. We show that minocycline, in the presence of Ca2+, induces selective permeability for small ions. We suggest that the beneficial action of minocycline is related to the Ca2+-dependent partial uncoupling of mitochondria, which indirectly prevents induction of the mitochondrial permeability transition.  相似文献   

3.
In order to explore the role of mitochondria in proliferation promotion and/or apoptosis induction of lanthanum, the mutual influences between La3+ and Ca2+ on mitochondrial permeability transition pore (PTP) opening were investigated with isolated mitochondria from rat liver. The experimental results revealed that La3+ influence the state of mitochondria in a concentration-dependent biphasic manner. La3+ in nanomolar concentrations, acting as a Ca2+ analog, entered mitochondrial matrix via the RuR sensitive Ca2+ channel and elevated ROS level, leading to opening of PTP indicated by mitochondrial swelling, reduction of ΔΨm and cytochrome c release. Inhibition of PTP with 10 μM CsA attenuated the effects of La3+. However, micromolar concentrations La3+ acted mainly as a Ca2+ antagonist, inhibiting PTP opening induced by Ca2+. We postulated that this action of La3+ on mitochondria through interaction with Ca2+ might be involved in the proliferation-promoting and apoptosis induction by La3+.  相似文献   

4.
The current view on apoptosis is given, with a special emphasis placed on apoptosis in yeasts. Induction of a non-specific permeability transition pore (mPTP) in mammalian and yeast mitochondria is described, particularly in mitochon-dria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, which are aerobes possessing the fully competent respiratory chain with all three points of energy conservation and well-structured mitochondria. They were examined for their ability to induce an elevated permeability transition of the inner mitochondrial membrane, being subjected to virtually all conditions known to induce the mPTP in animal mitochondria. Yeast mitochondria do not form Ca2+-dependent pores, neither the classical Ca2+/Pi-dependent, cyclosporin A-sensitive pore even under deenergization of mitochondria or depletion of the intramitochondrial nucleotide pools, nor a pore induced in mammalian mitochondria upon concerted action of moderate Ca2+ concentrations (in the presence of the Ca2+ ionophore ETH129) and saturated fatty acids. No pore formation was found in yeast mitochondria in the presence of elevated phosphate concentrations at acidic pH values. It is concluded that the permeability transition in yeast mitochondria is not coupled with Ca2+ uptake and is differently regulated compared to the mPTP of animal mitochondria.  相似文献   

5.
Mitochondria in Ca2+ Signaling and Apoptosis   总被引:8,自引:0,他引:8  
Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injuryand programmed cell death; mitochondria play a pivotal role in the regulation of such cytosolicCa2+ ([Ca2+]c) signals. Mitochondria are endowed with multiple Ca2+ transport mechanismsby which they take up and release Ca2+ across their inner membrane. These transport processesfunction to regulate local and global [Ca2+]c, thereby regulating a number of Ca2+-sensitivecellular mechanisms. The permeability transition pore (PTP) forms the major Ca2+ effluxpathway from mitochondria. In addition, Ca2+ efflux from the mitochondrial matrix occursby the reversal of the uniporter and through the inner membrane Na+/Ca2+ exchanger. Duringcellular Ca2+ overload, mitochondria take up [Ca2+]c, which, in turn, induces opening of PTP,disruption of mitochondrial membrane potential (m) and cell death. In apoptosis signaling,collapse of ;m and cytochrome c release from mitochondria occur followed by activationof caspases, DNA fragmentation, and cell death. Translocation of Bax, an apoptotic signalingprotein from the cytosol to the mitochondrial membrane, is another step during thisapoptosis-signaling pathway. The role of permeability transition in the context of cell death in relationto Bcl-2 family of proteins is discussed.  相似文献   

6.
VDAC is the major permeability pathway in the mitochondrial outer membrane and can control the flow of metabolites and ions. Therefore Ca2+ flux across the outer membrane occurs mainly through VDAC. Since both Ca2+ fluxes and VDAC are involved in apoptosis, we examined whether Ca2+ is required for channel formation by VDAC isolated from rat liver. The voltage gating of VDAC does not require Ca2+ and it functions normally with or without Ca2+. Additionally, VDAC generally shows a higher permeability to Ca2+ in the closed states (states with lower permeability to metabolites) than that in the open state. Thus VDAC closure, which induces apoptosis, also favors Ca2+ flux into mitochondria, which can also lead to permeability transition and cell death. These results are consistent with the view that VDAC closure is a pro-apoptotic signal.  相似文献   

7.
Oxidative damage of mammalian mitochondria induced by Ca2+ and prooxidants is mediated by the attack of mitochondria-generated reactive oxygen species on membrane protein thiols promoting oxidation and cross-linkage that leads to the opening of the mitochondrial permeability transition pore (Castilho et al., 1995). In this study, we present evidence that deenergized potato tuber (Solanum tuberosum) mitochondria, which do not possess a Ca2+ uniport, undergo inner membrane permeabilization when treated with Ca2+ (>0.2 mM), as indicated by mitochondrial swelling. Similar to rat liver mitochondria, this permeabilization is enhanced by diamide, a thiol oxidant that creates a condition of oxidative stress by oxidizing pyridine nucleotides. This is inhibited by the antioxidants catalase and dithiothreitol. Potato mitochondrial membrane permeabilization is not inhibited by ADP, cyclosporin A, and ruthenium red, and is partially inhibited by Mg2+ and acidic pH, well known inhibitors of the mammalian mitochondrial permeability transition. The lack of inhibition of potato mitochondrial permeabilization by cyclosporin A is in contrast to the inhibition of the peptidylprolyl cis–trans isomerase activity, that is related to the cyclosporin A-binding protein cyclophilin. Interestingly, the monofunctional thiol reagent mersalyl induces an extensive cyclosporin A-insensitive potato mitochondrial swelling, even in the presence of lower Ca2+ concentrations (>0.01 mM). In conclusion, we have identified a cyclosporin A-insensitive permeability transition pore in isolated potato mitochondria that is induced by reactive oxygen species.  相似文献   

8.
For induction of the mitochondrial permeability transition (PT) by Ca2+, the addition of a respiratory substrate such as succinate is required. However, earlier studies indicated the possible induction of the mitochondrial PT by Ca2+ in the absence of a respiratory substrate (Hunter, D.R., and Haworth, R.A. (1979) Arch. Biochem. Biophys. 195, 453–459). In the present study, we obtained clear evidence showing that the mitochondrial PT could be induced by Ca2+ even in the absence of respiratory substrate. We next examined the protein release from mitochondria that accompanied the induction of PT in the absence of a respiratory substrate. Interestingly, distinct from the ordinary mitochondrial PT induced by Ca2+ in the presence of a respiratory substrate, which is associated with the release of mitochondrial cytochome c and adenylate kinase, the mitochondrial PT occurring in the absence of a respiratory substrate was associated with release of mitochondrial adenylate kinase but not with that of mitochondrial cytochrome c. This experimental system should be quite useful for understanding the mechanisms of protein release from mitochondria.  相似文献   

9.
Mitochondria have long been known to sequester cytosolic Ca2+ and even to shape intracellular patterns of endoplasmic reticulum-based Ca2+ signaling. Evidence suggests that the mitochondrial network is an excitable medium which can demonstrate independent Ca2+ induced Ca2+ release via the mitochondrial permeability transition. The role of this excitability remains unclear, but mitochondrial Ca2+ handling appears to be a crucial element in diverse diseases as diabetes, neurodegeneration and cardiac dysfunction that also have bioenergetic components. In this paper, we extend the modular Magnus-Keizer computational model for respiration-driven Ca2+ handling to include a permeability transition based on a channel-like pore mechanism. We demonstrate both excitability and Ca2+ wave propagation accompanied by depolarizations qualitatively similar to those reported in cell and isolated mitochondria preparations. These waves depend on the energy state of the mitochondria, as well as other elements of mitochondrial physiology. Our results support the concept that mitochondria can transmit state dependent signals about their function across the mitochondrial network. Our model provides the tools for predictions about the internal physiology that leads to this qualitatively different Ca2+ excitability seen in mitochondria.  相似文献   

10.
Bnip3 is a pro-apoptotic BH3-only protein which is associated with mitochondrial dysfunction and cell death. Bnip3 is also a potent inducer of autophagy in many cells. In this study, we have investigated the mechanism by which Bnip3 induces autophagy in adult cardiac myocytes. Overexpression of Bnip3 induced extensive autophagy in adult cardiac myocytes. Fluorescent microscopy studies and ultrastructural analysis revealed selective degradation of mitochondria by autophagy in myocytes overexpressing Bnip3. Oxidative stress and increased levels of intracellular Ca2+ have been reported by others to induce autophagy, but Bnip3-induced autophagy was not abolished by antioxidant treatment or the Ca2+ chelator BAPTA-AM. We also investigated the role of the mitochondrial permeability transition pore (mPTP) in Bnip3-induced autophagy. Although the mPTP has previously been implicated in the induction of autophagy and selective removal of damaged mitochondria by autophagosomes, mitochondria sequestered by autophagosomes in Bnip3-treated cardiac myocytes had not undergone permeability transition and treatment with the mPTP inhibitor cyclosporine A did not inhibit mitochondrial autophagy in cardiac myocytes. Moreover, cyclophilin D (cypD) is an essential component of the mPTP and Bnip3 induced autophagy to the same extent in embryonic fibroblasts isolated from wild-type and cypD-deficient mice. These results support a model where Bnip3 induces selective removal of the mitochondria in cardiac myocytes and that Bnip3 triggers induction of autophagy independent of Ca2+, ROS generation and mPTP opening.Key words: Bnip3, autophagy, cardiac myocytes, mitochondria, permeability transition pore, cyclophilin D  相似文献   

11.
Isolated brain mitochondria are a heterogeneous mixture from different cell types and these subsets may have differing sensitivities to Ca2+-induced membrane permeability transition (MPT) and to inhibition of the MPT by cyclosporin A (CsA). This study tested the hypothesis that mitochondria within primary cultures of astrocytes and neurons exhibit different energy-dependent Ca2+ uptake capacities and different degrees to which CsA increases their uptake capacity. Astrocytes and neurons were suspended in a cytosol-like medium containing respiratory substrates, ATP, and Mg2+ in the presence of digitonin to selectively permeabilize the plasma membrane. Uptake of added Ca2+ by mitochondria within the cells was measured by Calcium Green 5N fluorescent monitoring of the medium [Ca2+]. Permeabilized astrocytes had a fourfold higher Ca2+ uptake capacity, relative to neurons and a twofold higher content based on relative contents of mitochondria assessed by measurements of mitochondrial DNA and cytochrome oxidase subunit 1 protein. In astrocytes the Ca2+ uptake capacity was increased twofold by preincubation with 2–5 μM CsA, while in neurons CsA had no effect. Similar results were obtained using measurements of the effects of added Ca2+ on mitochondrial membrane potential. FK506, a drug similar to CsA but without MPT inhibitory activity, had no effect on either cell type. These results are consistent with the presence of a calcium-induced MPT in astrocytes, even in the presence of ATP, and indicate that the MPT in cerebellar granule neurons is resistant to CsA inhibition. Some of the protective effects of CsA in vivo may therefore be mediated by preservation of mitochondrial functional integrity within astrocytes.  相似文献   

12.
Ca2+ may trigger apoptosis in β-cells. Hence, the control of intracellular Ca2+ may represent a potential approach to prevent β-cell apoptosis in diabetes. Our objective was to investigate the effect and mechanism of action of plasma membrane Ca2+-ATPase (PMCA) overexpression on Ca2+-regulated apoptosis in clonal β-cells. Clonal β-cells (BRIN-BD11) were examined for the effect of PMCA overexpression on cytosolic and mitochondrial [Ca2+] using a combination of aequorins with different Ca2+ affinities and on the ER and mitochondrial pathways of apoptosis. β-cell stimulation generated microdomains of high [Ca2+] in the cytosol and subcellular heterogeneities in [Ca2+] among mitochondria. Overexpression of PMCA decreased [Ca2+] in the cytosol, the ER, and the mitochondria and activated the IRE1α-XBP1s but inhibited the PRKR-like ER kinase-eIF2α and the ATF6-BiP pathways of the ER-unfolded protein response. Increased Bax/Bcl-2 expression ratio was observed in PMCA overexpressing β-cells. This was followed by Bax translocation to the mitochondria with subsequent cytochrome c release, opening of the permeability transition pore, and apoptosis. In conclusion, clonal β-cell stimulation generates microdomains of high [Ca2+] in the cytosol and subcellular heterogeneities in [Ca2+] among mitochondria. PMCA overexpression depletes intracellular [Ca2+] stores and, despite a decrease in mitochondrial [Ca2+], induces apoptosis through the mitochondrial pathway. These data open the way to new strategies to control cellular Ca2+ homeostasis that could decrease β-cell apoptosis in diabetes.  相似文献   

13.
Mitochondria from a variety of sources possess an inner membrane channel, the permeability transition pore. The pore is a voltage-dependent channel, activated by matrix Ca2+ and inhibited by matrix H+, which can be blocked by cyclosporin A, presumably after binding to mitochondrial cyclophilin. The physiological function of the permeability transition pore remains unknown. Here we evaluate its potential role as a fast Ca2+ release channel involved in mitochondrial and cellular Ca2+ homeostasis. We (i) discuss the theoretical and experimental reasons why mitochondria need a fast, inducible Ca2+ release channel; (ii) analyze the striking analogies between the mitochondrial permeability transition pore and the sarcoplasmic reticulum ryanodine receptor-Ca2+ release channel; (iii) argue that the permeability transition pore can act as a selective release channel for Ca2+ despite its apparent lack of selectivity for the transported speciesin vitro; and (iv) discuss the importance of mitochondria in cellular Ca2+ homeostasis, and how disruption of this function could impinge upon cell viability, particularly under conditions of oxidative stress.  相似文献   

14.
In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, possessing a respiratory chain with the usual three points of energy conservation. High-amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating induction of the mitochondrial permeability transition due to opening of a pore (mPTP). Mitochondria from Y. lipolytica, lacking a natural mitochondrial Ca2+ uptake pathway, and from D. magnusii, harboring a high-capacitive, regulated mitochondrial Ca2+ transport system (Bazhenova et al. J Biol Chem 273:4372–4377, 1998a; Bazhenova et al. Biochim Biophys Acta 1371:96–100, 1998b; Deryabina and Zvyagilskaya Biochemistry (Moscow) 65:1352–1356, 2000; Deryabina et al. J Biol Chem 276:47801–47806, 2001) were very resistant to Ca2+ overload. However, exposure of yeast mitochondria to 50–100 μM Ca2+ in the presence of the Ca2+ ionophore ETH129 induced collapse of the membrane potential, possibly due to activation of the fatty acid-dependent Ca2+/nH+-antiporter, with no classical mPTP induction. The absence of response in yeast mitochondria was not simply due to structural limitations, since large-amplitude swelling occurred in the presence of alamethicin, a hydrophobic, helical peptide, forming voltage-sensitive ion channels in lipid membranes. Ca2+- ETH129-induced activation of the Ca2+/H+-antiport system was inhibited and prevented by bovine serum albumin, and partially by inorganic phosphate and ATP. We subjected yeast mitochondria to other conditions known to induce the permeability transition in animal mitochondria, i.e., Ca2+ overload (in the presence of ETH129) combined with palmitic acid (Mironova et al. J Bioenerg Biomembr 33:319–331, 2001; Sultan and Sokolove Arch Biochem Biophys 386:37–51, 2001), SH-reagents, carboxyatractyloside (an inhibitor of the ADP/ATP translocator), depletion of intramitochondrial adenine nucleotide pools, deenergization of mitochondria, and shifting to acidic pH values in the presence of high phosphate concentrations. None of the above-mentioned substances or conditions induced a mPTP-like pore. It is thus evident that the permeability transition in yeast mitochondria is not coupled with Ca2+ uptake and is differently regulated compared to the mPTP of animal mitochondria.  相似文献   

15.
Ca2+ plays a central role in energy supply and demand matching in cardiomyocytes by transmitting changes in excitation-contraction coupling to mitochondrial oxidative phosphorylation. Matrix Ca2+ is controlled primarily by the mitochondrial Ca2+ uniporter and the mitochondrial Na+/Ca2+ exchanger, influencing NADH production through Ca2+-sensitive dehydrogenases in the Krebs cycle. In addition to the well-accepted role of the Ca2+-triggered mitochondrial permeability transition pore in cell death, it has been proposed that the permeability transition pore might also contribute to physiological mitochondrial Ca2+ release. Here we selectively measure Ca2+ influx rate through the mitochondrial Ca2+ uniporter and Ca2+ efflux rates through Na+-dependent and Na+-independent pathways in isolated guinea pig heart mitochondria in the presence or absence of inhibitors of mitochondrial Na+/Ca2+ exchanger (CGP 37157) or the permeability transition pore (cyclosporine A). cyclosporine A suppressed the negative bioenergetic consequences (ΔΨm loss, Ca2+ release, NADH oxidation, swelling) of high extramitochondrial Ca2+ additions, allowing mitochondria to tolerate total mitochondrial Ca2+ loads of > 400 nmol/mg protein. For Ca2+ pulses up to 15 μM, Na+-independent Ca2+ efflux through the permeability transition pore accounted for ~ 5% of the total Ca2+ efflux rate compared to that mediated by the mitochondrial Na+/Ca2+ exchanger (in 5 mM Na+). Unexpectedly, we also observed that cyclosporine A inhibited mitochondrial Na+/Ca2+ exchanger-mediated Ca2+ efflux at higher concentrations (IC50 = 2 μM) than those required to inhibit the permeability transition pore, with a maximal inhibition of ~ 40% at 10 μM cyclosporine A, while having no effect on the mitochondrial Ca2+ uniporter. The results suggest a possible alternative mechanism by which cyclosporine A could affect mitochondrial Ca2+ load in cardiomyocytes, potentially explaining the paradoxical toxic effects of cyclosporine A at high concentrations. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   

16.
Dysregulation of Ca2+ has long been implicated to be important in cell injury. A Ca2+-linked process important in necrosis and apoptosis (or necrapoptosis) is the mitochondrial permeability transition (MPT). In the MPT, large conductance permeability transition (PT) pores open that make the mitochondrial inner membrane abruptly permeable to solutes up to 1500 Da. The importance of Ca2+ in MPT induction varies with circumstance. Ca2+ overload is sufficient to induce the MPT. By contrast after ischemia-reperfusion to cardiac myocytes, Ca2+ overload is the consequence of bioenergetic failure after the MPT rather than its cause. In other models, such as cytotoxicity from Reye-related agents and storage-reperfusion injury to liver grafts, Ca2+ appears to be permissive to MPT onset. Lastly in oxidative stress, increased mitochondrial Ca2+ and ROS generation act synergistically to produce the MPT and cell death. Thus, the exact role of Ca2+ for inducing the MPT and cell death depends on the particular biologic setting.  相似文献   

17.
《Autophagy》2013,9(7):855-862
Bnip3 is a pro-apoptotic BH3-only protein which is associated with mitochondrial dysfunction and cell death. Bnip3 is also a potent inducer of autophagy in many cells. In this study, we have investigated the mechanism by which Bnip3 induces autophagy in adult cardiac myocytes. Overexpression of Bnip3 induced extensive autophagy in adult cardiac myocytes. Fluorescent microscopy studies and ultrastructural analysis revealed selective degradation of mitochondria by autophagy in myocytes overexpressing Bnip3. Oxidative stress and increased levels of intracellular Ca2+ have been reported by others to induce autophagy, but Bnip3-induced autophagy was not abolished by antioxidant treatment or the Ca2+ chelator BAPTA-AM. We also investigated the role of the mitochondrial permeability transition pore (mPTP) in Bnip3-induced autophagy. Although the mPTP has previously been implicated in the induction of autophagy and selective removal of damaged mitochondria by autophagosomes, mitochondria sequestered by autophagosomes in Bnip3-treated cardiac myocytes had not undergone permeability transition, and treatment with the mPTP inhibitor cyclosporine A did not inhibit mitochondrial autophagy in cardiac myocytes. Moreover, cyclophilin D (cypD) is an essential component of the mPTP and Bnip3 induced autophagy to the same extent in embryonic fibroblasts isolated from wild-type and cypD-deficient mice. These results support a model where Bnip3 induces selective removal of the mitochondria in cardiac myocytes, and that Bnip3 triggers induction of autophagy independent of Ca2+, ROS generation, and mPTP opening.  相似文献   

18.
The effect of the most hydrophobic bile acid–lithocholic–as an inducer of two different Ca2+-dependent inner membrane permeability systems was studied on isolated rat liver mitochondria. It is shown that the addition of lithocholic acid at a concentration of 20 μM to the Ca2+-loaded mitochondria leads to swelling of the organelles, rapid release of Ca2+ from the matrix and almost complete collapse of Δψ. Mitochondrial pore blocker cyclosporin A (CsA) eliminates mitochondrial swelling but has no effect on the process of Ca2+ release and Δψ collapse. In the absence of Ca2+ lithocholic acid causes only a transient decrease of Δψ with subsequent complete recovery. Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, which blocks Ca2+ influx into the matrix, prevents mitochondrial swelling induced by lithocholic acid. At the same time, ruthenium red, which is added before lithocholic acid to the Ca2+-preloaded mitochondria, does not affect the swelling of the organelles but reduces the CsA-insensitive drop in Δψ. It is concluded that lithocholic acid is able to induce two Ca2+-dependent energy dissipation systems in the inner membrane of liver mitochondria: CsA-sensitive mitochondrial pore and CsA-insensitive permeability, which exhibits sensitivity to ruthenium red. It is found that the effect of this bile acid as an inductor of CsA-sensitive mitochondrial pore is not associated with the modulation of Pi effects. It is assumed that CsA-insensitive action of lithocholic acid is associated with the induction of Ca2+ efflux from the matrix in exchange for protons. In this case, the energy-dependent Ca2+ transport in the opposite direction with the participation of mitochondrial calcium uniporter sensitive to ruthenium red leads to the formation of calcium cycle and thereby to energy dissipation.  相似文献   

19.
Mitochondria contribute to cytosolic Ca2+ homeostasis through several uptake and release pathways. Here we report that 1,2-sn-diacylglycerols (DAGs) induce Ca2+ release from Ca2+-loaded mammalian mitochondria. Release is not mediated by the uniporter or the Na+/Ca2+ exchanger, nor is it attributed to putative catabolites. DAGs-induced Ca2+ efflux is biphasic. Initial release is rapid and transient, insensitive to permeability transition inhibitors, and not accompanied by mitochondrial swelling. Following initial rapid release of Ca2+ and relatively slow reuptake, a secondary progressive release of Ca2+ occurs, associated with swelling, and mitigated by permeability transition inhibitors. The initial peak of DAGs-induced Ca2+ efflux is abolished by La3+ (1 mM) and potentiated by protein kinase C inhibitors. Phorbol esters, 1,3-diacylglycerols and 1-monoacylglycerols do not induce mitochondrial Ca2+ efflux. Ca2+-loaded mitoplasts devoid of outer mitochondrial membrane also exhibit DAGs-induced Ca2+ release, indicating that this mechanism resides at the inner mitochondrial membrane. Patch clamping brain mitoplasts reveal DAGs-induced slightly cation-selective channel activity that is insensitive to bongkrekic acid and abolished by La3+. The presence of a second messenger-sensitive Ca2+ release mechanism in mitochondria could have an important impact on intracellular Ca2+ homeostasis.  相似文献   

20.
The effects of hydrophobic and hydrophilic bile acids as inducers of Ca2+-dependent permeability of the inner membrane were studied on isolated liver mitochondria. It is shown that in the absence of the inorganic phosphate (Pi)–a modulator of the mitochondrial pore–hydrophobic bile acids (lithocholic, deoxycholic, chenodeoxycholic) at concentrations of 20–50 μM, as well as a hydrophilic cholic acid at a concentration of 800 μM, induce swelling of liver mitochondria loaded with Ca2+. This effect is completely eliminated by a specific inhibitor of mitochondrial pore cyclosporin A (CsA). The effect of the bile acids as inducers of Ca2+-dependent CsA-sensitive mitochondrial pore is not associated with the modulation of the Pi effects. In contrast to other tested bile acids, a hydrophilic ursodeoxycholic acid (UDCA) at a concentration of 400 μM is able to induce Ca2+-dependent CsA-sensitive pore opening in liver mitochondria only in the presence of Pi or in the absence of potassium chloride in the incubation medium. In the presence of potassium chloride but in the absence of Pi, UDCA effects associated with the induction of the inner membrane permeability (swelling of mitochondria, drop in Δψ, and Ca2+ release from the matrix) are also observed in the presence of CsA. This Ca2+-dependent permeability of the inner membrane, in contrast to the “classical” CsA-sensitive pore, is characterized by a lower intensity of the mitochondrial swelling, a total drop in Δψ, and Ca2+ release from the matrix and is blocked by Pi. We suggest that the induction of the CsA-insensitive permeability in the inner mitochondrial membrane by UDCA is associated with activation of electrophoretic influx of K+ into the matrix and Ca2+ release from the matrix in exchange to H+. The effect of Pi as a blocker of such permeability is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号