首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 We model the potential vegetation and annual net primary production (NPP) of China on a 10′ grid under the present climate using the processed‐based equilibrium terrestrial biosphere model BIOME3. The simulated distribution of the vegetation was in general in good agreement with the potential natural vegetation based on a numerical comparison between the two maps using the ΔV statistic (ΔV = 0.23). Predicted and measured NPP were also similar, especially in terms of biome‐averages. 2 A coupled ocean–atmosphere general circulation model including sulphate aerosols was used to drive a double greenhouse gas scenario for 2070–2099. Simulated vegetation maps from two different CO2 scenarios (340 and 500 p.p.m.v.) were compared to the baseline biome map using ΔV. Climate change alone produced a large reduction in desert, alpine tundra and ice/polar desert, and a general pole‐ward shift of the boreal, temperate deciduous, warm–temperate evergreen and tropical forest belts, a decline in boreal deciduous forest and the appearance of tropical deciduous forest. The inclusion of CO2 physiological effects led to a marked decrease in moist savannas and desert, a general decrease for grasslands and steppe, and disappearance of xeric woodland/scrub. Temperate deciduous broadleaved forest, however, shifted north to occupy nearly half the area of previously temperate mixed forest. 3 The impact of climate change and increasing CO2 is not only on biogeography, but also on potential NPP. The NPP values for most of the biomes in the scenarios with CO2 set at 340 p.p.m.v. and 500 p.p.m.v. are greater than those under the current climate, except for the temperate deciduous forest, temperate evergreen broadleaved forest, tropical rain forest, tropical seasonal forest, and xeric woodland/scrub biomes. Total vegetation and total carbon is simulated to increase significantly in the future climate scenario, both with and without the CO2 direct physiological effect. 4 Our results show that the global process‐based equilibrium terrestrial biosphere model BIOME3 can be used successfully at a regional scale.  相似文献   

2.
The knowledge of potential impacts of climate change on terrestrial vegetation is crucial to understand long-term global carbon cycle development. Discrepancy in data has long existed between past carbon storage reconstructions since the Last Glacial Maximum by way of pollen, carbon isotopes, and general circulation model (GCM) analysis. This may be due to the fact that these methods do not synthetically take into account significant differences in climate distribution between modern and past conditions, as well as the effects of atmospheric CO2 concentrations on vegetation. In this study, a new method to estimate past biospheric carbon stocks is reported, utilizing a new integrated ecosystem model (PCM) built on a physiological process vegetation model (BIOME4) coupled with a process-based biospheric carbon model (DEMETER). The PCM was constrained to fit pollen data to obtain realistic estimates. It was estimated that the probability distribution of climatic parameters, as simulated by BIOME4 in an inverse process, was compatible with pollen data while DEMETER successfully simulated carbon storage values with corresponding outputs of BIOME4. The carbon model was validated with present-day observations of vegetation biomes and soil carbon, and the inversion scheme was tested against 1491 surface pollen spectra sample sites procured in Africa and Eurasia. Results show that this method can successfully simulate biomes and related climates at most selected pollen sites, providing a coefficient of determination ( R ) of 0.83–0.97 between the observed and reconstructed climates, while also showing a consensus with an R -value of 0.90–0.96 between the simulated biome average terrestrial carbon variables and the available observations. The results demonstrate the reliability and feasibility of the climate reconstruction method and its potential efficiency in reconstructing past terrestrial carbon storage.  相似文献   

3.
Aim The study examined the potential for change in biome representation within Canada's national park system under multiple climate change scenarios and subsequent potential vulnerabilities in Parks Canada policy and planning frameworks. Location The study was conducted for Canada's 39 national parks. Methods The vegetation change scenarios were based on modelling results from the BIOME3 and MAPSS equilibrium process‐based global vegetation models (GVM), run with multiple doubled‐CO2 climate change scenarios. The six vegetation distribution scenarios were calculated at 0.5° latitude–longitude resolution and the boundaries of 39 national parks superimposed in a geographic information system (GIS). Park management plans and other planning documents were also reviewed as part of the analysis. Results The proportional distribution of biomes in Canada's national park system was very similar (within 3% of area for each biome) using BIOME3 and MAPSS under the current climate. Regardless of the GVM and climate change scenario used, the modelling results suggest the potential for substantial change in the biome representation in Canada's national park system. In five of six vegetation scenarios, a novel biome type appeared in more than half of the national parks and greater than 50% of all vegetation grid boxes changed biome type. The proportional representation of tundra and taiga/tundra in the national park system declined in each of the vegetation scenarios, while more southerly biomes (temperate forests and savanna/woodland) increased (in some scenarios doubling to quadrupling). Results for boreal forest varied among the climate change scenarios. A range of potential vulnerabilities in existing policy and planning frameworks were identified, including the national park system plan, individual park objectives, and fire and exotic species management plans. Conclusions Climate change represents an unprecedented challenge to Parks Canada and its ability to achieve its conservation mandate as presently legislated. Research is needed not only on ecosystem responses to climate change, but also on the capacity of conservation systems and agencies to adapt to climate change.  相似文献   

4.
BIOME 6000 is an international project to map vegetation globally at mid‐Holocene (6000 14C yr bp ) and last glacial maximum (LGM, 18,000 14C yr bp ), with a view to evaluating coupled climate‐biosphere model results. Primary palaeoecological data are assigned to biomes using an explicit algorithm based on plant functional types. This paper introduces the second Special Feature on BIOME 6000. Site‐based global biome maps are shown with data from North America, Eurasia (except South and Southeast Asia) and Africa at both time periods. A map based on surface samples shows the method’s skill in reconstructing present‐day biomes. Cold and dry conditions at LGM favoured extensive tundra and steppe. These biomes intergraded in northern Eurasia. Northern hemisphere forest biomes were displaced southward. Boreal evergreen forests (taiga) and temperate deciduous forests were fragmented, while European and East Asian steppes were greatly extended. Tropical moist forests (i.e. tropical rain forest and tropical seasonal forest) in Africa were reduced. In south‐western North America, desert and steppe were replaced by open conifer woodland, opposite to the general arid trend but consistent with modelled southward displacement of the jet stream. The Arctic forest limit was shifted slighly north at 6000 14C yr bp in some sectors, but not in all. Northern temperate forest zones were generally shifted greater distances north. Warmer winters as well as summers in several regions are required to explain these shifts. Temperate deciduous forests in Europe were greatly extended, into the Mediterranean region as well as to the north. Steppe encroached on forest biomes in interior North America, but not in central Asia. Enhanced monsoons extended forest biomes in China inland and Sahelian vegetation into the Sahara while the African tropical rain forest was also reduced, consistent with a modelled northward shift of the ITCZ and a more seasonal climate in the equatorial zone. Palaeobiome maps show the outcome of separate, independent migrations of plant taxa in response to climate change. The average composition of biomes at LGM was often markedly different from today. Refugia for the temperate deciduous and tropical rain forest biomes may have existed offshore at LGM, but their characteristic taxa also persisted as components of other biomes. Examples include temperate deciduous trees that survived in cool mixed forest in eastern Europe, and tropical evergreen trees that survived in tropical seasonal forest in Africa. The sequence of biome shifts during a glacial‐interglacial cycle may help account for some disjunct distributions of plant taxa. For example, the now‐arid Saharan mountains may have linked Mediterranean and African tropical montane floras during enhanced monsoon regimes. Major changes in physical land‐surface conditions, shown by the palaeobiome data, have implications for the global climate. The data can be used directly to evaluate the output of coupled atmosphere‐biosphere models. The data could also be objectively generalized to yield realistic gridded land‐surface maps, for use in sensitivity experiments with atmospheric models. Recent analyses of vegetation‐climate feedbacks have focused on the hypothesized positive feedback effects of climate‐induced vegetation changes in the Sahara/Sahel region and the Arctic during the mid‐Holocene. However, a far wider spectrum of interactions potentially exists and could be investigated, using these data, both for 6000 14C yr bp and for the LGM.  相似文献   

5.
Global change research needs data sets describing past states of the Earth system. Vegetation distributions for specified 'time slices' (with known forcings, such as changes in insolation patterns due to the Earth's orbital variations, changes in the extent of ice-sheets, and changes in atmospheric trace-gas composition) should provide a benchmark for coupled climate-biosphere models. Pollen and macrofossil records from dated sediments give spatially extensive coverage of data on vegetation distribution changes. Applications of such data have been delayed by the lack of a global synthesis. The BIOME 6000 project of IGBP aims at a synthesis for 6000 years bp. Success depends on community-wide participation for data compilation and quality assurance, and on a robust methodology for assigning palaeorecords to biomes. In the method summarized here, taxa are assigned to one or more plant functional types (PFTs) and biomes reconstructed using PFT-based definitions. By involving regional experts in PFT assignments, one can combine data from different floras without compromising global consistency in biome assignments. This article introduces a series of articles that substantially extend the BIOME 6000 data set. The list of PFTs and the reconstruction procedure itself are evolving. Some compromises (for example, restricted taxon lists in some regions) limit the precision of biome assignments and will become obsolete as primary data are put into community data bases. This trend will facilitate biome mapping for other time slices. Co-evolution of climate-biosphere modelling and palaeodata synthesis and analysis will continue.  相似文献   

6.
Aim Climate change threatens to shift vegetation, disrupting ecosystems and damaging human well‐being. Field observations in boreal, temperate and tropical ecosystems have detected biome changes in the 20th century, yet a lack of spatial data on vulnerability hinders organizations that manage natural resources from identifying priority areas for adaptation measures. We explore potential methods to identify areas vulnerable to vegetation shifts and potential refugia. Location Global vegetation biomes. Methods We examined nine combinations of three sets of potential indicators of the vulnerability of ecosystems to biome change: (1) observed changes of 20th‐century climate, (2) projected 21st‐century vegetation changes using the MC1 dynamic global vegetation model under three Intergovernmental Panel on Climate Change (IPCC) emissions scenarios, and (3) overlap of results from (1) and (2). Estimating probability density functions for climate observations and confidence levels for vegetation projections, we classified areas into vulnerability classes based on IPCC treatment of uncertainty. Results One‐tenth to one‐half of global land may be highly (confidence 0.80–0.95) to very highly (confidence ≥ 0.95) vulnerable. Temperate mixed forest, boreal conifer and tundra and alpine biomes show the highest vulnerability, often due to potential changes in wildfire. Tropical evergreen broadleaf forest and desert biomes show the lowest vulnerability. Main conclusions Spatial analyses of observed climate and projected vegetation indicate widespread vulnerability of ecosystems to biome change. A mismatch between vulnerability patterns and the geographic priorities of natural resource organizations suggests the need to adapt management plans. Approximately a billion people live in the areas classified as vulnerable.  相似文献   

7.
Understanding spring phenology changes in response to the rapid climate change at biome‐level is crucial for projecting regional ecosystem carbon exchange and climate–biosphere interactions. In this study, we assessed the long‐term changes and responses to changing climate of the spring phenology in six temperate biomes of China by analyzing the global inventory monitoring and modeling studies (GIMMS) NOAA/AVHRR Normalized Difference Vegetation Index (NDVI) and concurrent mean temperature and precipitation data for 1982–2006. Results show that the spring phenology trends in the six temperate biomes are not continuous throughout the 25 year period. The spring phenology in most areas of the six biomes showed obvious advancing trends (ranging from ?0.09 to ?0.65 day/yr) during the 1980s and early 1990s, but has subsequently suffered consistently delaying trends (ranging from 0.22 to 1.22 day/yr). Changes in spring (February–April) temperature are the dominating factor governing the pattern of spring vegetation phenology in the temperate biomes of China. The recently delayed spring phenology in these temperate biomes has been mainly triggered by the stalling or reversal of the warming trend in spring temperatures. Results in this study also reveal that precipitation during November–January can explain 16.1% (< 0.05), 20.9% (< 0.05) and 14.2% (< 0.05) of the variations in temperate deciduous forest (TDF), temperate steppe (TS), temperate desert (TD) respectively, highlighting the important role of winter precipitation in regulating changes in the spring vegetation phenology of water–limited biomes.  相似文献   

8.
Jian Ni 《Folia Geobotanica》2001,36(2):113-129
A biome classification for China was established based on plant functional types (PFTs) using the BIOME3 model to include 16 biomes. In the eastern part of China, the PFTs of trees determine mostly the physiognomy of landscape. Biomes range from boreal deciduous coniferous forest/woodland, boreal mixed forest/woodland, temperate mixed forest, temperate broad-leaved deciduous forest, warm-temperate broad-leaved evergreen/mixed forest, warm-temperate/cool-temperate evergreen coniferous forest, xeric woodland/scrub, to tropical seasonal and rain forest, and tropical deciduous forest from north to south. In the northern and western part of China, grass is the dominant PFT. From northeast to west and southwest the biomes range from moist savannas, tall grassland, short grassland, dry savannas, arid shrubland/steppe, desert, to alpine tundra/ice/polar desert. Comparisons between the classification introduced here and the four classifications which were established over the past two decades, i.e. the vegetation classification, the vegetation division, the physical ecoregion, and the initial biome classification have showed that the different aims of biome classifications have resulted in different biome schemes each with its own unique characteristics and disadvantages for global change study. The new biome classification relies not only on climatic variables, but also on soil factor, vegetation functional variables, ecophysiological parameters and competition among the PFTs. It is a comprehensive classification that using multivariables better expresses the vegetation distribution and can be compared with world biome classifications. It can be easily used in the response study of Chinese biomes to global change, regionally and globally.  相似文献   

9.
Net primary production, carbon storage and climate change in Chinese biomes   总被引:1,自引:0,他引:1  
Net primary production (NPP) and leaf area index (LAI) of Chinese biomes were simulated by BIOME3 under the present climate, and their responses to climate change and doubled CO2 under a future climatic scenario using output from Hadley Center coupled ocean‐atmosphere general circulation model with CO2 modelled at 340 and 500 ppmv. The model estimated annual mean NPP of the biomes in China to be between 0 and 1270.7 gC m‐2 yr‐1 at present. The highest productivity was found in tropical seasonal and rain forests while temperate forests had an intermediate NPP, which is higher than a lower NPP of temperate savannas, grasslands and steppes. The lowest NPP occurred in desert, alpine tundra and ice/polar desert in cold or arid regions, especially on the Tibetan Plateau. The lowest monthly NPP of each biome occurred generally in February and the highest monthly NPP occurred during the summer (June to August). The annual mean NPP and LAI of most of biomes at changed climate with CO2 at 340 and 500 ppmv (direct effects on physiology) would be greater than present. The direct effects of carbon dioxide on plant physiology result in significant increase of LAI and NPP. The carbon storage of Chinese biomes at present and changed climates was calculated by the carbon density and vegetation area method. The present estimates of carbon storage are totally 175.83 × 1012 gC (57.57 × 1012 gC in vegetation and 118.28 × 1012 gC in soils). Changed climate without and with the CO2 direct physiological effects will result in an increase of carbon storage of 5.1 and 16.33 × 1012, gC compared to present, respectively. The interaction between elevated CO2 and climate change plays an important role in the overall responses of NPP and carbon to climate change.  相似文献   

10.
The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought‐tolerant biomes in the tropics. These features are broadly consistent with pollen‐based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought‐tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low‐latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial‐interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate.  相似文献   

11.
BIOME6000计划:重古生物群区的最新进展   总被引:7,自引:1,他引:7  
倪健 《应用生态学报》2000,11(3):465-471
描述地球系统过去状态的数据,比如特殊时间段(全新世中期6000aBP和末次盛冰期18000aBP)的孢粉入植物大化石记录,一 全球变化研究所需要的,以往对这些三生态数据的利用大都是零散的、定点的,植被的重建往往也是定性的描述,而国际地圈-生物圈计划(IGBP)的国际协作项目BIOME6000(全球古植被制图计划)的创立,为古生态数据的综合与定量研究开辟的新的途径。该项目特别强调利用古生态学记录模拟  相似文献   

12.
There is a major concern for the fate of Amazonia over the coming century in the face of anthropogenic climate change. A key area of uncertainty is the scale of rainforest dieback to be expected under a future, drier climate. In this study, we use the middle Holocene (ca. 6000 years before present) as an approximate analogue for a drier future, given that palaeoclimate data show much of Amazonia was significantly drier than present at this time. Here, we use an ensemble of climate and vegetation models to explore the sensitivity of Amazonian biomes to mid-Holocene climate change. For this, we employ three dynamic vegetation models (JULES, IBIS, and SDGVM) forced by the bias-corrected mid-Holocene climate simulations from seven models that participated in the Palaeoclimate Modelling Intercomparison Project 3 (PMIP3). These model outputs are compared with a multi-proxy palaeoecological dataset to gain a better understanding of where in Amazonia we have most confidence in the mid-Holocene vegetation simulations. A robust feature of all simulations and palaeodata is that the central Amazonian rainforest biome is unaffected by mid-Holocene drought. Greater divergence in mid-Holocene simulations exists in ecotonal eastern and southern Amazonia. Vegetation models driven with climate models that simulate a drier mid-Holocene (100–150 mm per year decrease) better capture the observed (palaeodata) tropical forest dieback in these areas. Based on the relationship between simulated rainfall decrease and vegetation change, we find indications that in southern Amazonia the rate of tropical forest dieback was ~125,000 km2 per 100 mm rainfall decrease in the mid-Holocene. This provides a baseline sensitivity of tropical forests to drought for this region (without human-driven changes to greenhouse gases, fire, and deforestation). We highlight the need for more palaeoecological and palaeoclimate data across lowland Amazonia to constrain model responses.  相似文献   

13.
This paper reviews vegetation and climate reconstructions for different time scales based on palynological studies in China. It discusses examples of significant developments in palynological research topics within China: (1) Modern pollen—a modern pollen database (East Asia Surface Pollen Database) has been established through the collaboration of Chinese palynologists. Based on these data, modern pollen distributions and their quantitative relationship with vegetation and climate have been thoroughly studied. (2) Pre-Quaternary vegetation and climate dynamics—scientists have mapped pollen and palaeobotanical data from the Palaeogene. The vegetation distributions confirm a north–south zonal pattern during the Palaeogene that changed to an east–west monsoonal pattern during the Miocene and Pliocene. These results provide key evidence for understanding monsoon evolution. (3) Late-Quaternary vegetation—biome reconstructions based on fossil pollen data show spatial and temporal changes in vegetation since the Last Glacial Maximum, permitting a better understanding of climate change across China. (4) Quantitative climate reconstructions—some reconstructions have successfully detected Holocene climate variability thereby providing insights into monsoon history. At present, there are no comprehensive spatial reconstructions. Major possible future developments should focus on: (1) long-term vegetation reconstructions from lakes to study Asian monsoon dynamics at orbital scales; (2) quantitative reconstructions of vegetation and climate change to help stronger integration with palaeoclimate models and dynamic vegetation models; (3) land-cover and land-use change across China over the last 6,000 years to understand human impacts and provide empirical data for climate modellers; and (4) integration of pollen data with vegetation and climate modelling to understand the CO2-vegetation relationship and climate dynamics.  相似文献   

14.
Biomes are important constructs for organizing understanding of how the worlds’ major terrestrial ecosystems differ from one another and for monitoring change in these ecosystems. Yet existing biome classification schemes have been criticized for being overly subjective and for explicitly or implicitly invoking climate. We propose a new biome map and classification scheme that uses information on (i) an index of vegetation productivity, (ii) whether the minimum of vegetation activity is in the driest or coldest part of the year, and (iii) vegetation height. Although biomes produced on the basis of this classification show a strong spatial coherence, they show little congruence with existing biome classification schemes. Our biome map provides an alternative classification scheme for comparing the biogeochemical rates of terrestrial ecosystems. We use this new biome classification scheme to analyse the patterns of biome change observed over recent decades. Overall, 13% to 14% of analysed pixels shifted in biome state over the 30‐year study period. A wide range of biome transitions were observed. For example, biomes with tall vegetation and minimum vegetation activity in the cold season shifted to higher productivity biome states. Biomes with short vegetation and low seasonality shifted to seasonally moisture‐limited biome states. Our findings and method provide a new source of data for rigorously monitoring global vegetation change, analysing drivers of vegetation change and for benchmarking models of terrestrial ecosystem function.  相似文献   

15.
Regional vegetation‐climate modelling studies have typically focused on boreal or temperate ecosystems in North America and Europe, almost completely overlooking tropical ecosystems. We present the first results of simulated regional vegetation‐climate dynamics in Middle America as simulated by the model, LPJ‐GUESS. The Kappa statistic indicated poor agreement, with a Kappa value of 0.301. When we modified the Kappa statistic by aggregating cell sizes and using generalized biomes, the Kappa value increased to 0.543, indicating a fair agreement. Total LAI simulated from LPJ‐GUESS was strongly correlated to remotely sensed LAI values (r = 0.75). Our simulations indicate that fire frequency was overestimated in tropical moist forests and underestimated in savannas. This underestimation of fire resulted in an over‐simulation of dry tropical forest at the expense of savanna. We highlight additional reasons for the initially poor representation of vegetation in Middle America, including factors such as non‐parameterized plant functional types (desert shrub, cacti, and other succulents), rugged topography, and an insufficient representation of soil.  相似文献   

16.
The frequency of evolutionary biome shifts during diversification has important implications for our ability to explain geographic patterns of plant diversity. Recent studies present several examples of biome shifts, but whether frequencies of biome shifts closely reflect geographic proximity or environmental similarity of biomes remains poorly known. We explore this question by using phylogenomic methods to estimate the phylogeny of Hakea, a diverse Australian genus occupying a wide range of biomes. Model‐based estimation of ancestral regions indicates that Hakea began diversifying in the Mediterranean biome of southern Australia in the Middle Eocene–Early Oligocene, and dispersed repeatedly into other biomes across the continent. We infer around 47 shifts between biomes. Frequencies of shifts between pairs of biomes are usually similar to those expected from their geographic connectedness or climatic similarity, but in some cases are substantially higher or lower than expected, perhaps reflecting how readily key physiological traits can be modified to adapt lineages to new environments. The history of frequent biome‐shifting is reflected in the structure of present‐day assemblages, which tend to be more phylogenetically diverse than null‐model expectations. The case of Hakea demonstrates that the radiation of large plant clades across wide geographic areas need not be constrained by dispersal limitation or conserved adaptations to particular environments.  相似文献   

17.
Global increase in drought occurrences threatens the stability of terrestrial ecosystem functioning. Evergreen broadleaf forests (EBFs) keep leaves throughout the year, and therefore could experience higher drought risks than other biomes. However, the recent temporal variability of global vegetation productivity or land carbon sink is mainly driven by non‐evergreen ecosystems, such as semiarid grasslands, croplands, and boreal forests. Thus, we hypothesize that EBFs have higher stability than other biomes under the increasingly extreme droughts. Here we use long‐term Standardized Precipitation and Evaporation Index (SPEI) data and satellite‐derived Enhanced Vegetation Index (EVI) products to quantify the temporal stability (ratio of mean annual EVI to its SD), resistance (ability to maintain its original levels during droughts), and resilience (rate of EVI recovering to pre‐drought levels) at biome and global scales. We identified significantly increasing trends of annual drought severity (SPEI range: ?0.08 to ?1.80), area (areal fraction range: 2%–19%), and duration (month range: 7.9–9.1) in the EBF biome over 2000–2014. However, EBFs showed the highest resistance of EVI to droughts, but no significant differences in resilience of EVI to droughts were found among biomes (forests, grasslands, savannas, and shrublands). Global resistance and resilience of EVI to droughts were largely affected by temperature and solar radiation. These findings suggest that EBFs have higher stability than other biomes despite the greater drought exposure. Thus, the conservation of EBFs is critical for stabilizing global vegetation productivity and land carbon sink under more‐intense climate extremes in the future.  相似文献   

18.
Biome reconstruction from pollen and plant macrofossil data provides an objective method to reconstruct past vegetation. Biomes for Africa and the Arabian peninsula have been mapped for 6000 years bp and provide a new standard for the evaluation of simulated palaeovegetation distributions. A test using modern pollen data shows the robustness of the biomization method, which is able to predict the major vegetation types with a high confidence level. The application of the procedure to the 6000 years data set (pollen and plant macrofossil analyses) shows systematic differences from the present that are consistent with the numerous previous regional and continental interpretations, while providing a more extensive and more objective basis for such interpretations. Madagascar, eastern, southern and central Africa show only minor changes in terms of biomes, compared to present. Major changes in biome distributions occur north of 15°N, with steppe in many low-elevation sites that are now desert, and temperate xerophytic woods/scrub and warm mixed forest in the Saharan mountains. These shifts in biome distributions imply significant changes in climate, especially precipitation, between 6000 years and present, reflecting a change in monsoon extent combined with a southward expansion of Mediterranean influence.  相似文献   

19.
Aim Africa is expected to face severe changes in climatic conditions. Our objectives are: (1) to model trends and the extent of future biome shifts that may occur by 2050, (2) to model a trend in tree cover change, while accounting for human impact, and (3) to evaluate uncertainty in future climate projections. Location West Africa. Methods We modelled the potential future spatial distribution of desert, grassland, savanna, deciduous and evergreen forest in West Africa using six bioclimatic models. Future tree cover change was analysed with generalized additive models (GAMs). We used climate data from 17 general circulation models (GCMs) and included human population density and fire intensity to model tree cover. Consensus projections were derived via weighted averages to: (1) reduce inter‐model variability, and (2) describe trends extracted from different GCM projections. Results The strongest predicted effect of climate change was on desert and grasslands, where the bioclimatic envelope of grassland is projected to expand into the desert by an area of 2 million km2. While savannas are predicted to contract in the south (by 54 ± 22 × 104 km2), deciduous and evergreen forest biomes are expected to expand (64 ± 13 × 104 km2 and 77 ± 26 × 104 km2). However, uncertainty due to different GCMs was particularly high for the grassland and the evergreen biome shift. Increasing tree cover (1–10%) was projected for large parts of Benin, Burkina Faso, Côte d’Ivoire, Ghana and Togo, but a decrease was projected for coastal areas (1–20%). Furthermore, human impact negatively affected tree cover and partly changed the direction of the projected change from increase to decrease. Main conclusions Considering climate change alone, the model results of potential vegetation (biomes) show a ‘greening’ trend by 2050. However, the modelled effects of human impact suggest future forest degradation. Thus, it is essential to consider both climate change and human impact in order to generate realistic future tree cover projections.  相似文献   

20.
S. LUYSSAERT  I. INGLIMA  M. JUNG  A. D. RICHARDSON  M. REICHSTEIN  D. PAPALE  S. L. PIAO  E. ‐D. SCHULZE  L. WINGATE  G. MATTEUCCI  L. ARAGAO  M. AUBINET  C. BEER  C. BERNHOFER  K. G. BLACK  D. BONAL  J. ‐M. BONNEFOND  J. CHAMBERS  P. CIAIS  B. COOK  K. J. DAVIS  A. J. DOLMAN  B. GIELEN  M. GOULDEN  J. GRACE  A. GRANIER  A. GRELLE  T. GRIFFIS  T. GRÜNWALD  G. GUIDOLOTTI  P. J. HANSON  R. HARDING  D. Y. HOLLINGER  L. R. HUTYRA  P. KOLARI  B. KRUIJT  W. KUTSCH  F. LAGERGREN  T. LAURILA  B. E. LAW  G. LE MAIRE  A. LINDROTH  D. LOUSTAU  Y. MALHI  J. MATEUS  M. MIGLIAVACCA  L. MISSON  L. MONTAGNANI  J. MONCRIEFF  E. MOORS  J. W. MUNGER  E. NIKINMAA  S. V. OLLINGER  G. PITA  C. REBMANN  O. ROUPSARD  N. SAIGUSA  M. J. SANZ  G. SEUFERT  C. SIERRA  M. ‐L. SMITH  J. TANG  R. VALENTINI  T. VESALA  I. A. JANSSENS 《Global Change Biology》2007,13(12):2509-2537
Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome‐specific carbon budgets; to re‐examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 °C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome‐specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non‐CO2 carbon fluxes are not presently being adequately accounted for.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号