首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An increased availability of genotypes at marker loci has prompted the development of models that include the effect of individual genes. Selection based on these models is known as marker-assisted selection (MAS). MAS is known to be efficient especially for traits that have low heritability and non-additive gene action. BLUP methodology under non-additive gene action is not feasible for large inbred or crossbred pedigrees. It is easy to incorporate non-additive gene action in a finite locus model. Under such a model, the unobservable genotypic values can be predicted using the conditional mean of the genotypic values given the data. To compute this conditional mean, conditional genotype probabilities must be computed. In this study these probabilities were computed using iterative peeling, and three Markov chain Monte Carlo (MCMC) methods – scalar Gibbs, blocking Gibbs, and a sampler that combines the Elston Stewart algorithm with iterative peeling (ESIP). The performance of these four methods was assessed using simulated data. For pedigrees with loops, iterative peeling fails to provide accurate genotype probability estimates for some pedigree members. Also, computing time is exponentially related to the number of loci in the model. For MCMC methods, a linear relationship can be maintained by sampling genotypes one locus at a time. Out of the three MCMC methods considered, ESIP, performed the best while scalar Gibbs performed the worst.  相似文献   

2.
Covariance between relatives in a multibreed population was derived for an additive model with multiple unlinked loci. An efficient algorithm to compute the inverse of the additive genetic covariance matrix is given. For an additive model, the variance for a crossbred individual is a function of the additive variances for the pure breeds, the covariance between parents, and segregation variances. Provided that the variance of a crossbred individual is computed as presented here, the covariance between crossbred relatives can be computed using formulae for purebred populations. For additive traits the inverse of the genotypic covariance matrix given here can be used both to obtain genetic evaluations by best linear unbiased prediction and to estimate genetic parameters by maximum likelihood in multibreed populations. For nonadditive traits, the procedure currently used to analyze multibreed data can be improved using the theory presented here to compute additive covariances together with a suitable approximation for nonadditive covariances.Supported in part by the Illinois Agricultural Experiment Station, Hatch Projects 35-0345 (RLF) and 35-0367 (MG)  相似文献   

3.
R. Burger 《Genetics》1989,121(1):175-184
The role of linkage in influencing heritable variation maintained through a balance between mutation and stabilizing selection is investigated for two different models. In both cases one trait is considered and the interactions within and between loci are assumed to be additive. Contrary to most earlier investigations of this problem no a priori assumptions on the distribution of genotypic values are imposed. For a deterministic two-locus two-allele model with recombination and mutation, related to the symmetric viability model, a complete nonlinear analysis is performed. It is shown that, depending on the recombination rate, multiple stable equilibria may coexist. The equilibrium genetic and genic variances are calculated. For a polygenic trait in a finite population with a possible continuum of allelic effects a simulation study is performed. In both models the equilibrium genetic and genic variances are roughly equal to the house-of-cards prediction or its finite population counterpart as long as the recombination rate is not extremely low. However, negative linkage disequilibrium builds up. If the loci are very closely linked the equilibrium additive genetic variance is slightly lower than the house-of-cards prediction, but the genic variance is much higher. Depending on whether the parameters are in favor of the house-of-cards or the Gaussian approximation, different behavior of the genetic system occurs with respect to linkage.  相似文献   

4.
Markov chain Monte Carlo (MCMC) has recently gained use as a method of estimating required probability and likelihood functions in pedigree analysis, when exact computation is impractical. However, when a multiallelic locus is involved, irreducibility of the constructed Markov chain, an essential requirement of the MCMC method, may fail. Solutions proposed by several researchers, which do not identify all the noncommunicating sets of genotypic configurations, are inefficient with highly polymorphic loci. This is a particularly serious problem in linkage analysis, because highly polymorphic markers are much more informative and thus are preferred. In the present paper, we describe an algorithm that finds all the noncommunicating classes of genotypic configurations on any pedigree. This leads to a more efficient method of defining an irreducible Markov chain. Examples, including a pedigree from a genetic study of familial Alzheimer disease, are used to illustrate how the algorithm works and how penetrances are modified for specific individuals to ensure irreducibility.  相似文献   

5.
6.
Frequency- and density-dependent selection on a quantitative character   总被引:4,自引:0,他引:4  
Slatkin M 《Genetics》1979,93(3):755-771
The equilibrium distribution of a quantitative character subject to frequency- and density-dependent selection is found under different assumptions about the genetical basis of the character that lead to a normal distribution in a population. Three types of models are considered: (1) one-locus models, in which a single locus has an additive effect on the character, (2) continuous genotype models, in which one locus or several loci contribute additively to a character, and there is an effectively infinite range of values of the genotypic contributions from each locus, and (3) correlation models, in which the mean and variance of the character can change only through selection at modifier loci. It is shown that the second and third models lead to the same equilibrium values of the total population size and the mean and variance of the character. One-locus models lead to different equilibrium values because of constraints on the relationship between the mean and variance imposed by the assumptions of those models.——The main conclusion is that, at the equilibrium reached under frequency- and density-dependent selection, the distribution of a normally distributed quantitative character does not depend on the underlying genetic model as long as the model imposes no constraints on the mean and variance.  相似文献   

7.
QTL analysis in arbitrary pedigrees with incomplete marker information   总被引:3,自引:0,他引:3  
Vogl C  Xu S 《Heredity》2002,89(5):339-345
Mapping quantitative trait loci (QTL) in arbitrary outbred pedigrees is complicated by the combinatorial possibilities of allele flow relationships and of the founder allelic configurations. Exact methods are only available for rather short and simple pedigrees. Stochastic simulation using Markov chain Monte Carlo (MCMC) integration offers more flexibility. MCMC methods are less natural in a frequentist than in a Bayesian context, which we therefore adopt. Among the MCMC algorithms for updating marker locus genotypes, we implement the descent-graph algorithm. It can be used to update marker locus allele flow relationships and can handle arbitrarily complex pedigrees and missing marker information. Compared with updating marker genotypic information, updating QTL parameters, such as position, effects, and the allele flow relationships is relatively easy with MCMC. We treat the effect of each diploid combination of founder alleles as a random variable and only estimate the variance of these effects, ie, we model diploid genotypic effects instead of the usual partition in additive and dominance effects. This is a variant of the random model approach. The number of QTL alleles is generally unknown. In the Bayesian context, the number of QTL present on a linkage group can be treated as variable. Computer simulations suggest that the algorithm can indeed handle complex pedigrees and detect two QTL on a linkage group, but that the number of individuals in a single extended family is limited to about 50 to 100 individuals.  相似文献   

8.
The effect on gene flow at a neutral locus of a selective cline at a linked locus is investigated. A diffusion approximation for a two-locus island model is derived in which only one locus is subject to selection. The moments of the stationary distribution are obtained and compared to the corresponding moments from a one-locus, neutral island model. This comparison yields an effective migration rate. The effective migration rate is always less than the actual migration rate, but this effect is seen to be small for weak selection and loose linkage in the case of adult migration. The importance of selection at linked loci to the question of genetic differentiation in a subdivided population is discussed.  相似文献   

9.
Accurate and rapid methods for the detection of quantitative trait loci (QTLs) and evaluation of consequent allelic effects are required to implement marker-assisted selection in outbred populations. In this study, we present a simple deterministic method for estimating identity-by-descent (IBD) coefficients in full- and half-sib families that can be used for the detection of QTLs via a variance-component approach. In a simulated dataset, IBD coefficients among sibs estimated by the simple deterministic and Markov chain Monte Carlo (MCMC) methods with three or four alleles at each marker locus exhibited a correlation of greater than 0.99. This high correlation was also found in QTL analyses of data from an outbred pig population. Variance component analysis used both the simple deterministic and MCMC methods to estimate IBD coefficients. Both procedures detected a QTL at the same position and gave similar test statistics and heritabilities. The MCMC method, however, required much longer computation than the simple method. The conversion of estimated QTL genotypic effects into allelic effects for use in marker-assisted selection is also demonstrated.  相似文献   

10.
We consider population genetics models where selection acts at a set of unlinked loci. It is known that if the fitness of an individual is multiplicative across loci, then these loci are independent. We consider general selection models, but assume parent-independent mutation at each locus. For such a model, the joint stationary distribution of allele frequencies is proportional to the stationary distribution under neutrality multiplied by a known function of the mean fitness of the population. We further show how knowledge of this stationary distribution enables direct simulation of the genealogy of a sample at a single-locus. For a specific selection model appropriate for complex disease genes, we use simulation to determine what features of the genealogy differ between our general selection model and a multiplicative model.  相似文献   

11.

Background

A procedure to measure connectedness among herds was applied to a beef cattle population bred by natural service. It consists of two steps: (a) computing coefficients of determination (CDs) of comparisons among herds; and (b) building sets of connected herds.

Methods

The CDs of comparisons among herds were calculated using a sampling-based method that estimates empirical variances of true and predicted breeding values from a simulated n-sample. Once the CD matrix was estimated, a clustering method that can handle a large number of comparisons was applied to build compact clusters of connected herds of the Bruna dels Pirineus beef cattle. Since in this breed, natural service is predominant and there are almost no links with reference sires, to estimate CDs, an animal model was used taking into consideration all pedigree information and, especially, the connections with dams. A sensitivity analysis was performed to contrast single-trait sire and animal model evaluations with different heritabilities, multiple-trait animal model evaluations with different degrees of genetic correlations and models with maternal effects.

Results

Using a sire model, the percentage of connected herds was very low even for highly heritable traits whereas with an animal model, most of the herds of the breed were well connected and high CD values were obtained among them, especially for highly heritable traits (the mean of average CD per herd was 0.535 for a simulated heritability of 0.40). For the lowly heritable traits, the average CD increased from 0.310 in the single-trait evaluation to 0.319 and 0.354 in the multi-trait evaluation with moderate and high genetic correlations, respectively. In models with maternal effects, the average CD per herd for the direct effects was similar to that from single-trait evaluations. For the maternal effects, the average CD per herd increased if the maternal effects had a high genetic correlation with the direct effects, but the percentage of connected herds for maternal effects was very low, less than 12%.

Conclusions

The degree of connectedness in a bovine population bred by natural service mating, such as Bruna del Pirineus beef cattle, measured as the CD of comparisons among herds, is high. It is possible to define a pool of animals for which estimated breeding values can be compared after an across-herds genetic evaluation, especially for highly heritable traits.  相似文献   

12.
Most quantitative traits in most populations exhibit heritable genetic variation. Lande proposed that high levels of heritable variation may be maintained by mutation in the face of stabilizing selection. Several analyses have appeared of two distinct models with n additive polygenic loci subject to mutation and stabilizing selection. Each is reviewed and a new analysis and model are presented. Lande and Fleming analyzed extensions of a model originally treated by Kimura which assumes a continuum of possible allelic effects at each locus. Latter and Bulmer analyzed a model with diallelic loci. The published analyses of these models lead to qualitatively different predictions concerning the dependence of the equilibrium genetic variance on the underlying biological parameters. A new asymptotic analysis of the Kimura model shows that the different predictions are not consequences of the number of alleles assumed but rather are attributable to assumptions concerning the relative magnitudes of per locus mutation rates, the phenotypic effects of mutation, and the intensity of selection. This conclusion is reinforced by analysis of a model with triallelic loci. None of the approximate analyses presented are mathematically rigorous. To quantify their accuracy and display the domains of validity for alternative approximations, numerically determined equilibria are presented. In addition, empirical estimates of mutation rates and selection intensity are reviewed, revealing weaknesses in both the data and its connection to the models. Although the mathematical results and underlying biological requirements of my analyses are quite different from those of Lande, the results do not refute his hypothesis that considerable additive genetic variance may be maintained by mutation-selection balance. However, I argue that the validity of this hypothesis can only be determined with additional data and mathematics.  相似文献   

13.
Definition and Estimation of Higher-Order Gene Fixation Indices   总被引:1,自引:0,他引:1       下载免费PDF全文
Kermit Ritland 《Genetics》1987,117(4):783-793
Fixation indices summarize the associations between genes that arise from the joint effects of inbreeding and selection. In this paper, fixation indices are derived for pairs, triplets and quadruplets of genes at a single multiallelic locus. The fixation indices are obtained by dividing cumulants by constants; the cumulants describe the statistical distribution of alleles and the constants are functions of gene frequency. The use of cumulants instead of moments is necessary only for four-gene indices, when the fourth cumulant is used. A second type of four-gene index is also required, and this index is based upon the covariation of second-order cumulants. At multiallelic loci, a large number of indices is possible. If alleles are selectively neutral, the number of indices is reduced and the relationship between gene identity and gene cumulants is shown.--Two-gene indices can always be estimated from genotypic frequency data at a single polymorphic locus. Three-gene indices are also estimable except when allele frequency equals one-half. Four-gene indices are not estimable unless selection is assumed to have an equal effect upon each allele (such as under selective neutrality) and the locus contains at least three alleles of unequal frequency. For diallelic or selected loci, an alternative four-gene fixation index is proposed. This index incorporates both types of four-gene associations but cannot be related to gene identity.  相似文献   

14.
Mano S 《Genetics》2005,171(4):2043-2050
An analytic expression of conditional expectation of transient gamete frequency, given that one of the two loci remains polymorphic, is obtained in terms of the diffusion process by calculating the moments of the distribution. Using this expression, a model where linkage disequilibrium is introduced by a single mutation is considered. The conditional expectation of the gamete frequency given that the locus with the mutant allele remains polymorphic is presented. The behavior is significantly different from the monotonic decrease observed in the deterministic model without random genetic drift.  相似文献   

15.
Selection due to variation in the fecundity among matings of genotypes with respect to many loci each with two alleles is studied. The fitness of a mating depends only on the genotypic distinction between homozygote and heterozygote at each locus in the two individuals, and differences among loci are allowed. This symmetric fertility model is therefore a generalization of the multiple-locus symmetric viability model. The phenomena seen in the two-locus symmetric fertility model generalize—e.g., the possibility of joint stability of equilibria with linkage equilibrium and with linkage disequilibrium, and the existence of different types of totally polymorphic equilibria with the gametic proportions in linkage equilibrium. The central equilibrium with genotypic frequencies in Hardy-Weinberg proportions and gametic frequencies in Robbins proportions exists for all symmetric fertility models. For some symmetric fertility regimes additional equilibria exist with gametic frequencies in linkage equilibrium and with genotypic frequencies in Hardy-Weinberg proportions at all except one locus. These equilibria may exist in the dioecious symmetric viability model, and then they will be locally stable. For free recombination the stable equilibria show linkage equilibrium, but several of these with different numbers of polymorphic loci may be stable simultaneously.  相似文献   

16.
Under additive inheritance, the Henderson mixed model equations (HMME) provide an efficient approach to obtaining genetic evaluations by marker assisted best linear unbiased prediction (MABLUP) given pedigree relationships, trait and marker data. For large pedigrees with many missing markers, however, it is not feasible to calculate the exact gametic variance covariance matrix required to construct HMME. The objective of this study was to investigate the consequences of using approximate gametic variance covariance matrices on response to selection by MABLUP. Two methods were used to generate approximate variance covariance matrices. The first method (Method A) completely discards the marker information for individuals with an unknown linkage phase between two flanking markers. The second method (Method B) makes use of the marker information at only the most polymorphic marker locus for individuals with an unknown linkage phase. Data sets were simulated with and without missing marker data for flanking markers with 2, 4, 6, 8 or 12 alleles. Several missing marker data patterns were considered. The genetic variability explained by marked quantitative trait loci (MQTL) was modeled with one or two MQTL of equal effect. Response to selection by MABLUP using Method A or Method B were compared with that obtained by MABLUP using the exact genetic variance covariance matrix, which was estimated using 15 000 samples from the conditional distribution of genotypic values given the observed marker data. For the simulated conditions, the superiority of MABLUP over BLUP based only on pedigree relationships and trait data varied between 0.1% and 13.5% for Method A, between 1.7% and 23.8% for Method B, and between 7.6% and 28.9% for the exact method. The relative performance of the methods under investigation was not affected by the number of MQTL in the model.  相似文献   

17.
The partition of the total genetic variance into its additive and non-additive components can differ from trait to trait, and between purebred and crossbred populations. A quantification of these genetic variance components will determine the extent to which it would be of interest to account for dominance in genomic evaluations or to establish mate allocation strategies along different populations and traits. This study aims at assessing the contribution of the additive and dominance genomic variances to the phenotype expression of several purebred Piétrain and crossbred (Piétrain × Large White) pig performances. A total of 636 purebred and 720 crossbred male piglets were phenotyped for 22 traits that can be classified into six groups of traits: growth rate and feed efficiency, carcass composition, meat quality, behaviour, boar taint and puberty. Additive and dominance variances estimated in univariate genotypic models, including additive and dominance genotypic effects, and a genomic inbreeding covariate allowed to retrieve the additive and dominance single nucleotide polymorphism variances for purebred and crossbred performances. These estimated variances were used, together with the allelic frequencies of the parental populations, to obtain additive and dominance variances in terms of genetic breeding values and dominance deviations. Estimates of the Piétrain and Large White allelic contributions to the crossbred variance were of about the same magnitude in all the traits. Estimates of additive genetic variances were similar regardless of the inclusion of dominance. Some traits showed relevant amount of dominance genetic variance with respect to phenotypic variance in both populations (i.e. growth rate 8%, feed conversion ratio 9% to 12%, backfat thickness 14% to 12%, purebreds-crossbreds). Other traits showed higher amount in crossbreds (i.e. ham cut 8% to 13%, loin 7% to 16%, pH semimembranosus 13% to 18%, pH longissimus dorsi 9% to 14%, androstenone 5% to 13% and estradiol 6% to 11%, purebreds-crossbreds). It was not encountered a clear common pattern of dominance expression between groups of analysed traits and between populations. These estimates give initial hints regarding which traits could benefit from accounting for dominance for example to improve genomic estimated breeding value accuracy in genetic evaluations or to boost the total genetic value of progeny by means of assortative mating.  相似文献   

18.
A diallelic two-locus model is investigated in which the loci determine the genotypic value of a quantitative trait additively. Fitness has two components: stabilizing selection on the trait and a frequency-dependent component, as induced, for instance, if the ability to utilize different food resources depends on this trait. Since intraspecific competition induces disruptive selection, this model leads to a conflict of selective forces. We study how the underlying genetics (recombination rate and allelic effects) interacts with the selective forces, and explore the resulting equilibrium structure. For the special case of equal effects, global stability results are proved. Unless the locus effects are sufficiently different, the genetic variance maintained at equilibrium displays a threshold-like dependence on the strength of competition. For loci with equal effects, the equilibrium fitnesses of genotypic values exhibit disruptive selection if and only if competition is strong enough to maintain a stable two-locus polymorphism. For unequal effects, disruptive selection can be observed for weaker competition and in the absence of a stable polymorphism.  相似文献   

19.
Jannink JL 《Genetics》2007,176(1):553-561
Association studies are designed to identify main effects of alleles across a potentially wide range of genetic backgrounds. To control for spurious associations, effects of the genetic background itself are often incorporated into the linear model, either in the form of subpopulation effects in the case of structure or in the form of genetic relationship matrices in the case of complex pedigrees. In this context epistatic interactions between loci can be captured as an interaction effect between the associated locus and the genetic background. In this study I developed genetic and statistical models to tie the locus by genetic background interaction idea back to more standard concepts of epistasis when genetic background is modeled using an additive relationship matrix. I also simulated epistatic interactions in four-generation randomly mating pedigrees and evaluated the ability of the statistical models to identify when a biallelic associated locus was epistatic to other loci. Under additive-by-additive epistasis, when interaction effects of the associated locus were quite large (explaining 20% of the phenotypic variance), epistasis was detected in 79% of pedigrees containing 320 individuals. The epistatic model also predicted the genotypic value of progeny better than a standard additive model in 78% of simulations. When interaction effects were smaller (although still fairly large, explaining 5% of the phenotypic variance), epistasis was detected in only 9% of pedigrees containing 320 individuals and the epistatic and additive models were equally effective at predicting the genotypic values of progeny. Epistasis was detected with the same power whether the overall epistatic effect was the result of a single pairwise interaction or the sum of nine pairwise interactions, each generating one ninth of the epistatic variance. The power to detect epistasis was highest (94%) at low QTL minor allele frequency, fell to a minimum (60%) at minor allele frequency of about 0.2, and then plateaued at about 80% as alleles reached intermediate frequencies. The power to detect epistasis declined when the linkage disequilibrium between the DNA marker and the functional polymorphism was not complete.  相似文献   

20.
Yang Y  Ott J 《Human heredity》2002,53(4):227-236
In genome-wide screens of genetic marker loci, non-mendelian inheritance of a marker is taken to indicate its vicinity to a disease locus. Heritable complex traits are thought to be under the influence of multiple possibly interacting susceptibility loci yet the most frequently used methods of linkage and association analysis focus on one susceptibility locus at a time. Here we introduce log-linear models for the joint analysis of multiple marker loci and interaction effects between them. Our approach focuses on affected sib pair data and identical by descent (IBD) allele sharing values observed on them. For each heterozygous parent, the IBD values at linked markers represent a sequence of dependent binary variables. We develop log-linear models for the joint distribution of these IBD values. An independence log-linear model is proposed to model the marginal means and the neighboring interaction model is advocated to account for associations between adjacent markers. Under the assumption of conditional independence, likelihood methods are applied to simulated data containing one or two susceptibility loci. It is shown that the neighboring interaction log-linear model is more efficient than the independence model, and incorporating interaction in the two-locus analysis provides increased power and accuracy for mapping of the trait loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号