首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We studied the pathogenicity and overwintering survival of the foliar nematode, Aphelenchoides fragariae, infecting Hosta spp. Nematodes applied to either lower or upper sides of noninjured and injured hosta leaves were able to infect and produce typical symptoms on nine cultivars. Leaves of only four cultivars (Borschi, Fragrant Blue, Patomic Pride, and Olive Bailey Langdon) showed no symptoms of nematode infection. The nematodes overwintered as juveniles and adults in soil, dry leaves, and dormant buds, but not in roots. Nematode winter survival was higher in dormant buds and soil from the polyhouse than in an open home garden. Of the nematodes found in the dormant buds, 35% to 79% were located between the first two outside layers of the buds. The nematodes tolerated 8 hr exposure to 40°C and −80°C in leaf tissues. Relative humidity influenced nematode migration from soil to leaves. The presence of nematodes only on the outer surface of foliage (leaves and petioles) confirmed the migration of A. fragariae on the surface of the plants. Of the total number of nematodes found on the foliage, 25% to 46% and 66% to 77% were alive at 90% and 100% relative humidity, respectively, suggesting that high moisture is required for the survival and upward movement of nematodes. We conclude that A. fragariae can overwinter in soil, infected dry leaves, and dormant buds and migrate in films of water on the outer surface of the plant during spring to leaves to initiate infection.  相似文献   

2.
Aphelenchoides fragariae was isolated from the phylloclades of the ornamental plant Ruscus hypophyllum (Liliaceae). Rotylenchus buxophilus, Scutellonema brachyurum, and Meloidogyne were identified as the most common plant-parasitic nematodes in the soil near the roots. The pathology and life history of A. fragariae were closely related to the climate. To our knowledge, this is the first report of R. hypophyllum as a host of plant-parasitic nematodes.  相似文献   

3.
4.
A PCR-based diagnostic assay was developed for early detection and identification of Aphelenchoides fragariae directly in host plant tissues using the species-specific primers AFragFl and AFragRl that amplify a 169-bp fragment in the internal transcribed spacer (ITS1) region of ribosomal DNA. These species-specific primers did not amplify DNA from Aphelenchoides besseyi or Aphelenchoides ritzemabosi. The PCR assay was sensitive, detecting a single nematode in a background of plant tissue extract. The assay accurately detected A. fragariae in more than 100 naturally infected, ornamental plant samples collected in North Carolina nurseries, garden centers and landscapes, including 50 plant species not previously reported as hosts of Aphelenchoides spp. The detection sensitivity of the PCR-based assay was higher for infected yet asymptomatic plants when compared to the traditional, water extraction method for Aphelenchoides spp. detection. The utility of using NaOH extraction for rapid preparation of total DNA from plant samples infected with A. fragariae was demonstrated.  相似文献   

5.
Population dynamics of A. ritzemabosi and D. dipsaci were studied in two alfalfa fields in Wyoming. Symptomatic stem-bud tissue and root-zone soil from alfalfa plants exhibiting symptoms of D. dipsaci infection were collected at intervals of 3 to 4 weeks. Both nematodes were extracted from stem tissue with the Baermann funnel method and from soil with the sieving and Baermann funnel method. Soil moisture and soil temperature at 5 cm accounted for 64.8% and 61.0%, respectively, of the variability in numbers of both nematodes in soil at the Big Horn field. Also at the Big Horn field, A. ritzemabosi was found in soil on only three of the 14 collection dates, whereas D. dipsaci was found in soil on 12 dates. Aphelenchoides ritzemabosi was found in stem tissue samples on 9 of the 14 sampling dates whereas D. dipsaci was found on all dates. Populations of both nematodes in stem tissue peaked in October, and soil populations of both peaked in January, when soil moisture was greatest. Numbers of D. dipsaci in stem tissue were related to mean air temperature 3 weeks prior to tissue collection, while none of the climatic factors measured were associated with numbers of A. ritzemabosi. At the Dayton field, soil moisture plus soil temperature at 5 cm accounted for 98.2% and 91.4% of the variability in the soil populations of A. ritzemabosi and D. dipsaci, respectively. Aphelenchoides ritzemabosi was extracted from soil at two of the five collection dates, compared to extraction of D. dipsaci at three dates. Aphelenchoides ritzemabosi was collected from stem tissue at six of the seven sampling dates while D. dipsaci was found at all sampling dates. The only environmental factor that was associated with an increase in the numbers of both nematodes in alfalfa stem tissue was total precipitation 1 week prior to sampling, and this occurred only at the Dayton field. Numbers of A. ritzemabosi in stem tissue appeared to be not affected by any of the environmental factors studied, while numbers of D. dipsaci in stem tissue were associated with cumulative monthly precipitation, snow cover at time of sampling, and the mean weekly temperature 3 weeks prior to sampling. Harvesting alfalfa reduced the numbers of A. ritzemabosi at the Big Horn field and both nematodes at the Dayton field.  相似文献   

6.
The widespread destruction of commercially grown bulbs of Narcissus tazetta papyraceus (Paper White) has been reported in Israel. This phenomenon is usually characterized by a premature yellowing of the foliage, accompanied by root rot and dark, sunken basal plates. This study confirmed thatAphelenchoides subtenuis is the main cause of the basal plate disease of Narcissus. In contrast to other Aphelenchoides species, which feed on stems or leaves, A. subtenuis penetrates Narcissus roots. In our experiments, in winter (6 to 8 weeks after penetration), nematodes laid their eggs in the root parenchymal cells without inducing obvious symptoms on foliage or roots. Toward spring, juveniles became numerous throughout the parenchymal cells of the root cortex. Consequently, the root system collapsed rapidly, at the usual peak of bulb and foliage production. Bulbs of infected plants were small and weighed less than those of uninfected plants, and foliage became necrotic prematurely. At that time, in field conditions, secondary elements like Fusarium penetrate the bulb and cause it to rot, given this syndrome the common name of basal plate disease. To our knowledge, this is the first report of an Aphelenchoides species as a root pathogen.  相似文献   

7.
With the cancellation of fenamiphos in the near future, alternative nematode management tactics for plant-parasitic nematodes (PPN) on golf courses need to be identified. The use of entomopathogenic nematodes (EPN) has been suggested as one possible alternative. This paper presents the results of 10 experiments evaluating the efficacy of EPN at managing PPN on turfgrasses and improving turf performance. These experiments were conducted at various locations throughout Florida over the course of a decade. In different experiments, different EPN species were tested against different species of PPN. Separate experiments evaluated multiple rates and applications of EPN, compared different EPN species, and compared single EPN species against multiple species of PPN. In a few trials, EPN were associated with reductions in certain plant-parasite species, but in other trials were associated with increases. In most trials, EPN had no effect on plant parasites. Because EPN were so inconsistent in their results, we conclude that EPN are not acceptable alternatives to fenamiphos by most turf managers in Florida at this time.  相似文献   

8.
Studies were conducted to determine the potential of two avermectin compounds, abamectin and emamectin benzoate, for controlling plant-parasitic nematodes when applied by three methods: foliar spray, root dip, and pseudostem injection. Experiments were conducted against Meloidogyne incognita on tomato, M. javanica on banana, and Radopholus similis on banana. Foliar applications of both avermectins to banana and tomato were not effective for controlling any of the nematodes evaluated. Root dips of banana and tomato were moderately effective for controlling M. incognita on tomato and R. similis on banana. Injections (1 ml) of avermectins into banana pseudostems were effective for controlling M. javanica and R similis, and were comparable to control achieved with a conventional chemical nematicide, fenamiphos. Injections of 125 to 2,000 μg/plant effectively controlled one or both nematodes on banana; abamectin was more effective than emamectin benzoate for controlling nematodes.  相似文献   

9.
10.
The impact of the nematode-parasitic fungus Hirsutella rhossiliensis on the effectiveness of Steinernema carpocapsae, S. glaseri, and Heterorhabditis bacteriophora against Galleria mellonella larvae was assessed in the laboratory. The presence of Hirsutella conidia on the third-stage (J3) cuticle of S. carpocapsae and H. bacteriophora interfered with infection of insect larvae. Conidia on the J3 cuticle of S. glaseri and on the ensheathing second-stage cuticle of H. bacteriophora did not reduce the nematodes'' ability to infect larvae. The LD₅₀ values for S. carpocapsae, S. glaseri, and H. bacteriophora in sand containing H. rhossiliensis were not different from those in sterilized sand when Galleria larvae were added at the same time as the nematodes. However, when Galleria larvae were added 3 days after the nematodes, the LD₅₀ of S. glaseri was higher in Hirsutella-infested sand than in sterilized sand, whereas the LD₅₀ of H. bacteriophora was the same in infested and sterilized sand. Although the LD₅₀ of S. carpocapsae was much higher in Hirsutella-infested sand than in sterilized sand, the data were too variable to detect a significant difference. These data suggest that H. bacteriophora may be more effective than Steinernema species at reducing insect pests in habitats with abundant nematode-parasitic fungi.  相似文献   

11.
Treatment of daffodil (Narcissus pseudonarcissus) bulbs in a 0.37% formaldehyde water solution at 44 C for 240 minutes is a standard practice in California for management of the stem and bulb nematode, Ditylenchus dipsaci. Recent concern over the safety of formaldehyde and growers'' requests for a shorter treatment time prompted a reevaluation of the procedure. The time (Y, in minutes) required to raise the temperature at the bulb center from 25 to 44 C was related to bulb circumference (X, in cm) and is described by the linear regression Y = -15 + 3.4X. The time required for 100% mortality of D. dipsaci in vitro without formaldehyde was 150, 60, and 15 minutes at 44, 46, and 48 C, respectively. Hot water treatment (HWT) with 0.37% formaldehyde at 44 C for 150 minutes controlled D. dipsaci and did not have a detrimental effect on plant growth and flower production. Shorter formaldehyde-HWT of 90, 45, and 30 minutes at 46, 48, and 50 C, respectively, controlled D. dipsaci but suppressed plant growth and flower production. Fungal genera commonly isolated from the bulbs in association with D. dipsaci were Penicillium sp., Fusarium oxysporum f. sp. narcissi, and Mucor plumbeus, representing 60, 25, and 5%, respectively, of the total fungi isolated. These fungi caused severe necrosis in daffodil bulbs. HWT at 44 C for 240 minutes reduced the number of colonies recovered from bulbs. The effects of formaldehyde, glutaraldehyde, and sodium hypochlorite in reducing the population of fungi within bulbs were variable. Satisfactory control of D. dipsaci within bulbs can be achieved with HWT of bulbs at 44 C for 150 minutes with 0.37% formaldehyde or at 44 C for 240 minutes without chemicals.  相似文献   

12.
Aphelenchoides rutgersi was axenically cultured in modified Soytone, yeast extract, lyophilized chick embryo extract medium (3% ST:2% YE:20% CEE-L, w/v:w/v:v/v). Earlier formulations used 10% CEE, v/v, before the manufacturer changed the preparation. After reestablishing A. rutgersi in medium that permitted continuous subcultivadon and reproduction, a second medium was tested that contained 0.5% sucrose and 0.5% Lipid Concentrate. The commercially available Lipid Concentrate made it possible to incorporate nonaqueous soluble chemicals into the medium. In addition, 0.1% Fast Green #3 was added to both media to visually demonstrate active ingestion of nutriment.  相似文献   

13.
Chitinolytic microflora may contribute to biological control of plant-parasitic nematodes by causing decreased egg viability through degradation of egg shells. Here, the influence of Lysobacter enzymogenes strain C3 on Caenorhabditis elegans, Heterodera schachtii, Meloidogyne javanica, Pratylenchus penetrans, and Aphelenchoides fragariae is described. Exposure of C. elegans to L. enzymogenes strain C3 on agar resulted in almost complete elimination of egg production and death of 94% of hatched juveniles after 2 d. Hatch of H. schachtii eggs was about 50% on a lawn of L. enzymogenes strain C3 on agar as compared to 80% on a lawn of E. coli. Juveniles that hatched on a lawn of L. enzymogenes strain C3 on agar died due to disintegration of the cuticle and body contents. Meloidogyne javanica juveniles died after 4 d exposure to a 7-d-old chitin broth culture of L. enzymogenes strain C3. Immersion of A. fragariae, M. javanica, and P. penetrans juveniles and adults in a nutrient broth culture of L. enzymogenes strain C3 led to rapid death and disintegration of the nematodes. Upon exposure to L. enzymogenes strain C3 cultures in nutrient broth, H. schachtii juveniles were rapidly immobilized and then lysed after three days. The death and disintegration of the tested nematodes suggests that toxins and enzymes produced by this strain are active against a range of nematode species.  相似文献   

14.
While nematodes are sometimes regarded as osmoconformers, at least one species is capable of short-term osmoregulation over a wide range of osmotic environments, and the principal site of osmoregulation is the body wall. This general osmoregulation is important to the life of the nematode not only in confronting variations in the environment, but also in maintaining its hydrostatic skeleton. There is also evidence suggesting that compartments exist in some nematodes and that water exchange between the compartments is limited and slow. The ability to regulate the internal movements of water is important in molting and in the infective process. Hormones may be the mediators of osmotic control.  相似文献   

15.
Control of Delia radicum (cabbage maggot) in field collards (Brassica oleracea) was compared after one or two applications of entomopathogenic nematodes, Steinernema carpocapsae (All strain) and Heterorhabditis bacterophora (HP88 strain), a single application of granular chlorpyrifos, and a water-only treatment. Nematodes were applied with a sprayer during the egg stage of first-generation D. radicum, and chlorpyrifos was hand placed around collard stems during the same period. A second nematode application was made 10 days later. Chlorpyrifos treatment resulted in fewer puparia per plant, less root damage and higher yield than all other treatments, including the control. Collard yield from nematode-treated beds did not differ from controls. These data indicate that, under these field conditions, the species or strains of entomopathogenic nematodes tested did not reduce the number of active cabbage maggots, nor did they prevent collard root damage.  相似文献   

16.
The foliar nematode Aphelenchoides besseyi causes white tip disease in rice (Oryza sativa L.) and floral malady in tuberose (Polianthes tuberosa L.). This nematode is widely distributed in the rice fields of many states of India, including West Bengal (WB), Andhra Pradesh (AP), Madhya Pradesh (MP) and Gujarat (GT). In order to generate information on intraspecific variations of A. besseyi as well as to confirm the identity of the nematode species infecting these important crops, morphological observation was undertaken of A. besseyi isolated from tuberose and rice from WB and rice from AP, MP and GT. The molecular study was only done for rice and tuberose populations from AP and WB. The variations were observed among the populations in the tail, esophageal and anterior regions, including the occurrence of four as well as six lateral lines in the lateral fields. The morphometrics of observed populations showed variations and those could be regarded as a consequence of host-induced or geographical variations. PCR amplification of the rDNA ITS 1 and 2 region of rice (AP) and tuberose (WB) populations of A. besseyi generated one fragment of approximately 830 bp, and the size of the ITS region was 788 bp and 791 bp for tuberose and rice population, respectively. Alignment of the two sequences showed almost 100% similarity. Blast analysis revealed a very high level of similarity of both the Indian strains to a Russian population. The Indian and Russian strains could be differentiated using restriction enzyme Bccl. Host tests revealed that rice (cv. IET 4094), oat (cv. OS-6) and teosinte (cv. TL-1) showed a typical distortion due to the infection of A. besseyi. Five germplasm lines of oat showed no infection of the nematode under field conditions. Local cultivars of onion, maize, chrysanthemum, gladiolus, and Sorghum halepense were also not infected by A. besseyi.  相似文献   

17.
Microplot and small field-plot experiments were conducted to determine the effects of Pratylenchus penetrans on strawberry yield over several seasons and to evaluate the effects of nematode control on strawberry vigor and yield. Pratylenchus penetrans alone or in combination with the black root rot pathogen, Rhizoctonia fragariae, reduced strawberry yield in microplots over time. There were no differences in effects on yield among R. fragariae anastomosis groups A, G, or I. The interaction of the two pathogens appeared to be additive rather than synergistic. In field plots infested with P. penetrans alone, plant vigor and yield were increased by the application of carbofuran and fenamiphos nematicides. Nematode control was transitory, as P. penetrans populations were initially suppressed but were not different in samples taken 10 months after treatment. These data highlight the error in associating causality between plant damage and nematode populations based on a correlation of root disease with nematode diagnostic assays from severely diseased plants. These findings may help to explain how nematode numbers can sometimes be higher in healthy plants than in severely diseased plants that lack sufficient roots to maintain nematode populations. Because nematode populations from up to a year before harvest are better correlated with berry yield, preplant nematode diagnostic assays taken a year in advance of harvest may be superior in predicting damage to perennial strawberry yield.  相似文献   

18.
Vertical distribution of five plant-parasitic nematodes was examined in two north Florida soybean fields in 1987 and 1988. Soil samples were collected from 0-15 cm, 15-30 cm, and 30-45 cm deep at each site. Soil at the three depths consisted of approximately 96% sand. More than 50% of Belonolaimus longicaudatus population densities occurred in the upper 15-cm soil layer at planting, but the species became more evenly distributed through the other depths as the season progressed. Criconemella sphaerocephala was evenly distributed among the three depths in one field but was low (< 20% of the total density) in the upper 15 cm at a second site. Maximum population densities of Pratylenchus brachyurus were observed at 15-30 cm on most sampling dates. Vertical distributions of Meloidogyne incognita and Paratrichodorus minor were erratic and showed seasonal variation. A diagnostic sample from the upper 0-15 cm of these soybean fields revealed only a minority of the populations of most of the phytoparasitic species present.  相似文献   

19.
A split-root technique was used to examine the interaction between Pratylenchus penetrans and the cortical root-rotting pathogen Rhizoctonia fragariae in strawberry black root rot. Plants inoculated with both pathogens on the same half of a split-root crown had greater levels of root rot than plants inoculated separately or with either pathogen alone. Isolation of R. fragariae from field-grown roots differed with root type and time of sampling. Fungal infection of structural roots was low until fruiting, whereas perennial root colonization was high. Isolation of R. fragariae from feeder roots was variable, but was greater from feeder roots on perennial than from structural roots. Isolation of the fungus was greater from structural roots with nematode lesions than from non-symptomatic roots. Rhizoctonia fragariae was a common resident on the sloughed cortex of healthy perennial roots. From this source, the fungus may infect additional roots. The direct effects of lesion nematode feeding and movement are cortical cell damage and death. Indirect effects include discoloration of the endodermis and early polyderm formation. Perhaps weakened or dying cells caused directly or indirectly by P. penetrans are more susceptible to R. fragariae, leading to increased disease.  相似文献   

20.
Soils and roots of field crops in low-rainfall regions of the Pacific Northwest were surveyed for populations of plantparasitic and non-plant-parasitic nematodes. Lesion nematodes (Pratylenchus species) were recovered from 123 of 130 non-irrigated and 18 of 18 irrigated fields. Pratylenchus neglectus was more prevalent than P. thornei, but mixed populations were common. Population densities in soil were affected by crop frequency and rotation but not by tillage or soil type (P < 0.05). Many fields (25%) cropped more frequently than 2 of 4 years had potentially damaging populations of lesion nematodes. Pratylenchus neglectus density in winter wheat roots was inversely correlated with grain yield (r2 = 0.64, P = 0.002), providing the first field-derived evidence that Pratylenchus is economically important in Pacific Northwest dryland field crops. Stunt nematodes (Tylenchorhynchus clarus and Geocenamus brevidens) were detected in 35% of fields and were occasionally present in high numbers. Few fields were infested with pin (Paratylenchus species) and root-knot (Meloidogyne naasi and M. chitwoodi) nematodes. Nematodes detected previously but not during this survey included cereal cyst (Heterodera avenae), dagger (Xiphinema species), and root-gall (Subanguina radicicola) nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号