首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Vasorin (VASN) is a type I transmembrane protein that plays important roles in tumor development and vasculogenesis. In this paper, we showed that VASN could be a key mediator of communication between tumor cells and endothelial cells. We confirmed for the first time that HepG2-derived VASN can be transferred to human umbilical vein endothelial cells (HUVECs) via receptor mediated endocytosis of exosomes, at least in part through HSPGs. The HepG2-derived VASN containing exosomes promote migration of recipient HUVECs cells. Our results identify a novel pathway by which a functional protein expressed in tumor cells affects the biological fate of endothelial cells via exosomes.  相似文献   

2.
3.
目的:克隆、表达人vasorin(VASN)蛋白。方法:利用PCR方法从HepG2细胞的cDNA中扩增获得目的基因,并插入带有6xHis标签的原核高效可溶性表达载体pET28a中,构建重组表达质粒pET28a-VASN,将重组表达质粒转化大肠杆菌BL21(DE3),经IPTG诱导后目的基因获得表达,对融合目的蛋白进行Ni^2+金属螯合柱纯化。结果:内切酶鉴定及基因序列测定证实重组表达质粒构建成功;对目的蛋白进行了原核表达,SDS-PAGE显示相对分子质量为61x10^3的特异表达条带;Western印迹证实目的蛋白为VASN,且主要以包涵体形式存在;对经尿素变性的表达产物进行了亲和层析纯化,有利于以后的变性、复性过程。结论:获得了人VASN融合蛋白,为其进一步的生物学功能研究奠定了基础。  相似文献   

4.
5.
The murine vasorin (Vasn) gene, initially known as Slit-like 2, encodes a transmembrane protein that shares structural similarities with the eponymous Slit proteins. However, whether it also shares functional similarities with these large secreted proteins remains to be elucidated. Here, we report expression of Vasn during embryonic and fetal development of the mouse using whole-mount in situ hybridization (WISH) and histochemical detection of β-galactosidase expressed from a targeted Vasn(lacZ) knock-in allele. Comparison of whole-mount staining patterns of both approaches showed identical expression domains, confirming that Vasn promoter-driven β-galactosidase expression faithfully reflects endogenous Vasn expression. Vasn is highly expressed in vascular smooth muscle cells (hence the name), a finding consistent with a previous report on its human homolog VASN, whose extracellular domain was shown to function as a TGF-β trap (Ikeda et al., 2004). Most striking, however, is Vasn's prominent expression in the developing skeletal system, starting as early as the first mesenchymal condensations appear. Moreover, distinct expression domains outside the bones, e.g., in the developing kidneys and lungs, suggest further roles for this gene in the mouse. Recently, it was shown that mitochondria-localized Vasn protects cells from TNFα- and hypoxia-induced apoptosis, and partial deletion of the Vasn coding sequence leads to increased sensitivity of hepatocytes to TNFα-induced apoptosis (Choksi et al., 2011). By providing a first comprehensive analysis of the Vasn expression pattern during mouse embryonic development, our study will help to further elucidate its biological functions.  相似文献   

6.
1. Chronic administration of glucose or nicotinamide in drinking water inhibits the activity of rat liver tryptophan pyrrolase, and subsequent withdrawal causes an enhancement. The enzyme activity is also inhibited by administration in drinking water of sucrose, but not fructose, which is capable of preventing the glucose effect. 2. The inhibition by glucose or nictinamide is not due to a defective apoenzyme synthesis nor a decreased cofactor availability. 3. The inhibition by nicotinamide is reversed by regeneration of liver NAD+ and NADP+ in vivo by administration of fructose, pyruvate or phenazine methosulphate. Inhibition by glucose is also reversed by the above agents and by NH4Cl. Reversal of inhibition by glucose or nicotinamide is also achieved in vitro by addition of NAD+ or NADP+. 4. Glucose or nicotinamide increases liver [NADPH]. [NADP+] is also increased by nicotinamide. [NADPH] is also increased by sucrose, but not by fructose, which prevents the glucose effect. Phenazine methosulphate prevents the increase in [NADPH] caused by both glucose and nicotinamide. 5. It is suggested that the inhibition of tryptophan pyrrolase activity by glucose or nicotinamide is mediated by both NADPH and NADH.  相似文献   

7.
Volume-sensitive K influx in human red cell ghosts   总被引:6,自引:3,他引:3       下载免费PDF全文
K influx into resealed human red cell ghosts increases when the ghosts are swollen. The influx demonstrates properties similar to volume-sensitive K fluxes present in other cells. The influx is, for the most part, insensitive to the nature of the major intracellular cation and therefore is not a K-K exchange. The influx is much greater when the major anion is Cl than when the major anion is NO3; Cl stimulates the flux and, at constant Cl, NO3 inhibits it. Increase in the influx rate is rapid when shrunken ghosts are swollen or when NO3 is replaced by Cl. The volume-sensitive K influx requires intracellular MgATP at low concentrations, and ATP cannot be replaced by nonhydrolyzable ATP analogues. The volume-sensitive influx is inhibited by Mg2+ and by high concentrations of vanadate, but is stimulated by low concentrations of vanadate. It is not modified by cAMP, the removal of Ca2+ by EGTA, substances that activate protein kinase C, or by inhibition of phosphatidylinositol kinase. The influx is inhibited by neomycin and by trifluoperazine.  相似文献   

8.
《Free radical research》2013,47(6):365-371
The reaction catalyzed by cysteamine oxygenase on cysteamine in the presence of phenazine methosulphate as cofactor like compound is inhibited by nitroblue tetrazolium, a scavenger of superoxide ions. The reaction is not inhibited by superoxide dismutase and allyl alcohol and it is not activated by superoxide ions produced in solution. Nitroblue tetrazolium is reduced by cysteamine or mercaptoethanol and phenazine methosulphate. This reaction is completely inhibited by superoxide dismutase. In the presence of cysteamine oxygenase the reduction with mercaptoethanol is greatly enhanced and it is only partially inhibited by superoxide dismutase. According to these data a reaction mechanism is proposed in which superoxide ions and thiyl radicals are produced at the active site during catalysis.  相似文献   

9.
Low concentrations of the organic mercurials, p-chloromercuribenzoate or p-chloromercuriphenylsulphonate activate the particulate low Km phosphodiesterase from adipose tissue and liver. Higher concentrations are inhibitory. Enzyme which has been activated by treatment of adipocytes with insulin, is not activated by the organic mercurials although inhibition by higher concentrations is seen. Enzyme from non-insulin treated adipocytes is activated and solubilised by mild trypsin treatment. Enzyme activated by either insulin treatment, or by p-chloromercuribenzoate is not further activated by trypsin, but it is solubilised.  相似文献   

10.
Transplasmalemma electron transport by HeLa and pineal cells to reduce external ferricyanide is associated with proton release from the cells. Diferric transferrin also acts as an electron acceptor for the transmembrane oxidoreductase. We now show that reduction of external diferric transferrin by RPNA-209-1 SV40 transformed pineal cells is accompanied by proton release from the cells. The stoichiometry of proton release to electron transfer is much greater than would be expected from aniostropic electron flow across the membrane through protonated carriers. The proton release is not stimulated by apotransferrin and the diferric transferrin-stimulated activity is inhibited by apotransferrin. Apotransferrin also inhibits reduction of diferric transferrin by these cells. The proton release is dependent on external sodium ions and is inhibited by amiloride, which indicates that the proton release is mediated by the Na+/H+ antiport and that this antiport is activated by electron transport through the transmembrane dehydrogenase. Growth stimulation by diferric transferrin or other external oxidants can be based in part on activation of the Na+/H+ antiport.  相似文献   

11.
1. The progressive development of resistance to reactivation by an oxime (;aging') shown by a series of alkyl methylphosphonyl-acetylcholinesterases is slow when the alkyl group is a primary alcohol, whether or not the carbon chain is branched, but is much more rapid if the alkyl group is a secondary or cyclic alcohol. 2. Aging is accelerated by increase of temperature or decrease of pH. 3. Aging is inhibited by the quaternary amine N-methylpyridinium iodide. 4. The results are discussed in relation to the role played by aging in the therapy of poisoning by organophosphorus compounds.  相似文献   

12.
Photophosphorylation by spinach chloroplasts is inhibited after they have been incubated in the dark with either phenylglyoxal or butanedione. Inhibition by phenylglyoxal is strongest when N-ethylmorpholine is the buffer used during the incubation; that by butanedione requires the presence of borate as buffer. The inhibitions are not reversed by simply washing out the inhibitor, suggesting that a covalent modification of one or more arginine residues is responsible. This is supported by the reversibility of the butanedione inhibition if both the inhibitor and borate buffer are removed. ATPase of the chloroplasts, and of extracted protein, is inhibited, whether activated by trypsin or by heating. This indicates that arginine residues of the coupling factor are the probable major site(s) for attack by these modifiers, leading to the observed inhibitions.  相似文献   

13.
It is established that high initial K-TEA and Ca2(+)-K+ selectivity of channel form by latrotoxin in lipid bilayers (LT-channel) may be reduced by lowering the pH value and by increasing electrolytes concentration of solution. It is suggested that LT-channel is water-filled pore cation selectivity which is defined by the electrostatic potential on the mouth of the channel, which is induced by the ionogenic group of toxin.  相似文献   

14.
15.
Two isoenzymes of aspartokinase can be found in extracts of the differentiating bacterium Myxococcus xanthus. Aspartokinase I is repressed by L-lysine and feedback is inhibited by meso-diaminopimelate and by low concentrations of L-lysine. However, the inhibition by L-lysine is no longer observed at high concentration of this amino acid. Aspartokinase II is repressed and feedback inhibited specifically by L-threonine. Both enzymes are stimulated significantly by L-methionine and L-isoleucine; the effect is greater with aspartokinase I. The role of these enzymes in relation to growth conditions of the organism is discussed and a correlation with life cycle activity is indicated.  相似文献   

16.
Rat liver ornithine decarboxylase induction by dexamethasone or laparatomy, which is dramatically impaired by catecholamine depletion, is not affected by alpha-and beta -adrenergic blockers administered simultaneously 1 h prior to steroid injection or operation. However, if blockade is maintained for 24 h, an effect comparable to that of catecholamine depletion is obtained. Reciprocally, the response of the decarboxylase to catecholamines is severely compromised in adrenalectomized rats. Under the same conditions, induction of tyrosine aminotransferase by dexamethasone is not significantly affected by catecholamine availability, which altogether demonstrates that rat liver ornithine decarboxylase activity is specifically governed by the interaction between glucocorticoids and catecholamines.  相似文献   

17.
The physiological and genetic controls operating on phosphate-regulated promoters were studied in greater detail. This was done by defining the control for three phosphate-regulated genes: phoA, psiE, and psiO. Each is highly inducible by phosphate starvation. Individually, these phosphate-starvation-inducible, psi, genes at the same time show common and differing features in their molecular control. The phoA gene, encoding alkaline phosphatase, is specifically induced by phosphate starvation. It is negatively controlled by phoR as well as by the phosphate-specific transport (PST) system in Escherichia coli. phoA induction is positively controlled by the phoB, M, and R products; it is unaffected by the cAMP and CAP system. The psiE and psiO genes were studied by using strains with lacZ fused to their respective promoters. psiE-lacZ is induced by phosphate-, carbon- or nitrogen-limited growth. Genetically, psiE-lacZ induction is partially phoB and phoR-dependent. However, its expression is phoM-independent. This implies that phoB/phoR coupled control differs from phoB/phoM coupled control. Repression of psiE-lacZ is substantially altered in only some PST mutants, such as phoT. In addition, psiE-lacZ is negatively controlled by the cAMP and CAP system. psiO-lacZ is induced by phosphate-, carbon- or nitrogen-limited growth or by anaerobiosis. Its expression is unaffected by any pho mutation that has been previously described. A cell density-dependent induction of psiO-lacZ is observed in lon mutants. Also, psiO-lacZ is negatively controlled by the cAMP-CAP system. In summary, these results demonstrate that co-ordinately regulated promoters can have some common regulatory elements while, at the same time, not sharing other controlling factors.  相似文献   

18.
The anterior alimentary tract of Diclidophora merlangi is composed of a complex series of morphologically distinct epithelia interconnected by septate desmosomes and penetrated by the openings of numerous unicellular glands. The mouth and buccal cavity are lined by an infolding of modified body tegument, distinguished by uniciliate sense receptors, buccal gland openings, and in the buccal region by a dense, spiny appearance. The prepharynx is covered by an irregularly folded epithelium and, for part of its length, by the luminal cytoplasm of the prepharyngeal gland cells. The epithelium is syncytial and pleiomorphic, and regional variation in structure is common. A separate epithelium invests the lips of the pharynx and its free surface is greatly amplified by numerous, dense lamellae of varying dimensions. The lip epithelium is continuous with cytoplasmic processes of cells located external to the pharynx. A further, distinct epithelium borders the pharynx lumen and is composed of discrete cytoplasmic units connected by short septate desmosomes. The oesophagus is lined by a modified caecal epithelium, lacking haematin cells, and, in places, is perforated by the openings of oesophageal gland cells; it is continuous with the syncytial connecting tissue of the gut caeca.  相似文献   

19.
V A Rizzoli  C R Rossi 《Enzyme》1988,39(1):28-43
In intact rat liver mitochondria acetaldehyde is oxidized by three functionally distinct dehydrogenase systems. Two of these reduce intramitochondrial nicotinamide adenine dinucleotide (NAD): one is operative with micromolar acetaldehyde concentrations and is stimulated by Mg2+, the other is operative with millimolar acetaldehyde concentrations and is stimulated by adenosine 5'-triphosphate (ATP). The third system reduces added NAD and is stimulated by rotenone. Connected to these systems, three aldehyde dehydrogenase isozymes (ALDH) have been purified: a low-Km ALDH activated by Mg2+, a high-Km ALDH activated by ATP and Mg2+, a high-Km ALDH activated by rotenone. The properties of some isozymes are affected by detergents. Thus, deoxycholate augments the stimulation of low-Km isozyme by Mg2+ and confers sensitivity to Mg2+ and ATP on one of the high-Km isozymes. A fourth isozyme has been purified. Its affinity for acetaldehyde is so low that it is very unlikely that acetaldehyde is the physiological substrate.  相似文献   

20.
Specificity of cycloheximide in higher plant systems   总被引:40,自引:33,他引:7       下载免费PDF全文
Although cycloheximide is extremely inhibitory to protein synthesis in vivo in higher plants, the reported insensitivity of some plant ribosomes suggests that it may not invariably act at the ribosomal level. This suggestion is reinforced by results obtained with red beet storage tissue disks, the respiration of which is stimulated by cycloheximide at 1 microgram per milliliter. Inorganic ion uptake by these disks is inhibited by cycloheximide at 1 microgram per milliliter while the uptake of organic compounds, by comparison, is unaffected. Ion uptake by all nongreen tissues tested is inhibited by cycloheximide, but leaf tissue is unaffected, indicating that the ion absorption mechanism in the leaf may differ fundamentally from that in the root. It is concluded that cycloheximide can affect cellular metabolism other than by inhibiting protein synthesis and that the inhibition of ion uptake may be due to disruption of the energy supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号