首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photometric fluorescence microscopy has been used to measure intracellular pH (pHi) and free calcium concentrations [( Ca]i) in individual mouse thymocytes and 2H3 rat basophil leukaemic cells containing indicators for pH (quene 1) or calcium (quin 2). The pHi and [Ca]i measurements in individual 2H3 cells and mouse thymocytes and their responses to various stimuli were consistent with the corresponding data obtained from suspensions of these cells measured in a spectrofluorimeter. Photometric fluorescence microscopy of these indicators in individual cells provides a sensitive and fast method of following pHi and [Ca]i responses in individual cells.  相似文献   

2.
Most studies on new cancer drugs are based on population-derived data, where the absence of response of a small population may pass unnoticed. Thus, individual longitudinal tracking of cells is important for the future development of efficient cancer treatments. We have used digital holographic microscopy to track individual JIMT-1 human breast cancer cells and L929 mouse fibroblast cultivated in normoxia or hypoxia. In addition, JIMT-1 cells were treated with salinomycin, a cancer stem cell targeting compound. Three-day time-lapse movies were captured and individual cells were analysed with respect to cell division (cell cycle length) and cell movement. Comparing population-doubling time derived from population-based growth curves and individual cell cycle time data from time-lapse movies show that the former hide a sub-population of dividing cells. Salinomycin treatment increased the motility of cells, however, this motility did not result in an increased distant migration i.e. the cells increased their local movement. MCF-7 breast cancer cells showed similar motility behaviour as salinomycin-treated JIMT-1 cells. We suggest that combining features, such as motility and migration, can be used to distinguish cancer cells with mesenchymal (JIMT-1) and epithelial (MCF-7) features. The data clearly emphasize the importance of longitudinal cell tracking to understand the biology of individual cells under different conditions.  相似文献   

3.
Most immunofluorescence methods rely on techniques dealing with a very large number of cells. However, when the number of cells in a sample is low (e.g., when cumulus cells must be analyzed from individual cumulus–oocyte complexes), specific techniques are required to conserve, fix, and analyze cells individually. We established and validated a simple and effective method for collecting and immobilizing low numbers of cumulus cells that enables easy and quick quantitative immunofluorescence analysis of proteins from individual cells. To illustrate this technique, we stained proprotein of a disintegrin and metalloproteinase with thrombospondin-like repeats-1 (proADAMTS-1) and analyzed its levels in individual porcine cumulus cells.  相似文献   

4.
Most forms of apoptosis involve activation of caspases and it is likely that differences between cells in their ability to activate caspases contributes to the responsiveness of any given cell within a population to apoptotic stimuli. To study the molecular mechanisms that underlie such differences, it is necessary to measure caspase activity in individual cells. Here, we describe a method that allows the continuous monitoring of caspase activity in individual, living mammalian cells. This approach allows studies of the kinetics of caspase activation to be performed in individual cells within a population. We demonstrate that in a group of cells where some cells die and some cells survive in response to the same stimulus, the cells that die can be differentiated from those that survive based on the amount of caspase activity in each cell several hours before death occurs.  相似文献   

5.
Anthocyanin accumulation in strawberry (Fragaria ananassa) cells cultured on a solid medium was monitored using an image-processing system that did not require direct sampling or destruction of the cells. Because of the intercellular heterogeneity of secondary metabolite production in plant cell cultures, the maximum metabolite concentration in individual cells is often more than 10 times higher than that of the average concentration. An image-processing based method enabled the growth and the pigmentation behavior of individual cells to be traced. Changes in the time courses of the anthocyanin content of individual cells differed from each other, although the average anthocyanin contents increased gradually with time in a batch culture. However, these various changing patterns in the anthocyanin content of each cell were independent of the cell cycle. In addition, image analysis revealed that the two cells just after cell division were almost identical to each other both in size and anthocyanin content. The proposed method which uses an image-processing system provides a useful tool for analyzing the secondary metabolism in individual cultured plant cells.  相似文献   

6.
Cell motility measurements with an automated microscope system   总被引:2,自引:0,他引:2  
The motility of 3T3 cells has been studied using a newly developed automated microscope system which is capable of recognizing live unstained cells growing in tissue culture. A large number of individual cells can be rapidly identified and characterized and their precise positions recorded. All cells can be revisited automatically every few minutes, and the new cell positions can be determined. Quantitative data from up to 1 000 cells can then be obtained, and cell movement parameters like cell speed, distance travelled, direction of movement, etc., can be measured for individual cells and for the whole cell population. In addition, for any number of chosen cells, high-resolution digitized images can be taken for further morphological studies, including acquisition of images of individual cells.  相似文献   

7.
The ability of Escherichia coli and Bacillus subtilis to regulate their cytoplasmic pH is well studied in cell suspensions but is poorly understood in individual adherent cells and biofilms. We observed the cytoplasmic pH of individual cells using ratiometric pHluorin. A standard curve equating the fluorescence ratio with pH was obtained by perfusion at a range of external pH 5.0 to 9.0, with uncouplers that collapse the transmembrane pH difference. Adherent cells were acid stressed by switching the perfusion medium from pH 7.5 to pH 5.5. The E. coli cytoplasmic pH fell to a value that varied among individual cells (range of pH 6.2 to 6.8), but a majority of cells recovered (to pH 7.0 to 7.5) within 2 min. In an E. coli biofilm, cells shifted from pH 7.5 to pH 5.5 failed to recover cytoplasmic pH. Following a smaller shift (from pH 7.5 to pH 6.0), most biofilm cells recovered fully, although the pH decreased further than that of isolated adherent cells, and recovery took longer (7 min or longer). Some biofilm cells began to recover pH and then failed, a response not seen in isolated cells. B. subtilis cells were acid shifted from pH 7.5 to pH 6.0. In B. subtilis, unlike the case with E. coli, cytoplasmic pH showed no "overshoot" but fell to a level that was maintained. This level of cytoplasmic pH post-acid shift varied among individual B. subtilis cells (range of pH, 7.0 to 7.7). Overall, the cytoplasmic pHs of individual bacteria show important variation in the acid stress response, including novel responses in biofilms.  相似文献   

8.
Hematopoietic stem cells replenish all the cells of the blood throughout the lifetime of an animal. Although thousands of stem cells reside in the bone marrow, only a few contribute to blood production at any given time. Nothing is known about the differences between individual stem cells that dictate their particular state of activation readiness. To examine such differences between individual stem cells, we determined the global gene expression profile of 12 single stem cells using microarrays. We showed that at least half of the genetic expression variability between 12 single cells profiled was due to biological variation in 44% of the genes analyzed. We also identified specific genes with high biological variance that are candidates for influencing the state of readiness of individual hematopoietic stem cells, and confirmed the variability of a subset of these genes using single-cell real-time PCR. Because apparent variation of some genes is likely due to technical factors, we estimated the degree of biological versus technical variation for each gene using identical RNA samples containing an RNA amount equivalent to that of single cells. This enabled us to identify a large cohort of genes with low technical variability whose expression can be reliably measured on the arrays at the single-cell level. These data have established that gene expression of individual stem cells varies widely, despite extremely high phenotypic homogeneity. Some of this variation is in key regulators of stem cell activity, which could account for the differential responses of particular stem cells to exogenous stimuli. The capacity to accurately interrogate individual cells for global gene expression will facilitate a systems approach to biological processes at a single-cell level.  相似文献   

9.
Epithelial-to-mesenchymal transition (EMT) is a dynamic process that produces migratory cells from epithelial precursors. However, EMT is not binary; rather it results in migratory cells which adopt diverse strategies including collective and individual cell migration to arrive at target destinations. Of the many embryonic cells that undergo EMT, the vertebrate neural crest is a particularly good example which has provided valuable insight into these processes. Neural crest cells from different species often adopt different migratory strategies with collective migration predominating in anamniotes, whereas individual cell migration is more prevalent in amniotes. Here, we will provide a perspective on recent work toward understanding the process of neural crest EMT focusing on how these cells undergo collective and individual cell migration.  相似文献   

10.
Methods for the stepwise isolation of endothelial cells and smooth muscle cells from individual canine coronary arteries are described. Both cell types can be isolated in pure culture with high yields. Dogs are a common species used in the study of atherosclerosis and coronary artery disease. Capacity to isolate endothelial cells and smooth muscle cells from individual canine coronary arteries should prove useful in the study of coronary artery disease.  相似文献   

11.
During blastula and gastrula stages of Xenopus development, cells become progressively and asynchronously committed to a particular germ layer. We have analysed the expression of genes normally expressed in ectoderm, mesoderm or endoderm in individual cells from early and late gastrula embryos, by both in situ hybridization and single-cell RT-PCR. We show that at early gastrula stages, individual cells in the same region may express markers of two or more germ layers, and 'rogue' cells that express a marker outside its canonical domain are also observed at these stages. However, by the late gastrula stage, individual cells express markers that are more characteristic of their position in the embryo, and 'rogue' cells are seen less frequently. These observations exemplify at the gene expression level the observation that cells of the early gastrula are less committed to one germ layer than are cells of the late gastrula embryo. Ectodermal cells induced to form mesendoderm by the addition of Activin respond by activating expression of different mesodermal and endodermal markers in the same cell, recapitulating the response of marginal zone cells in the embryo.  相似文献   

12.
Surface plasmon resonance imaging (SPRi) is most frequently used for the label-free measurement of biomolecular interactions. Here we explore the potential of SPRi to measure antibody production of individual hybridoma cells. As a model system, cells from a hybridoma, producing monoclonal antibodies recognizing epithelial cell adhesion molecule (EpCAM), were used. Recombinant human EpCAM protein was immobilized on an SPR sensor and hybridoma cells were introduced into an IBIS MX96 SPR imager and the SPRi response was followed for 10 h. SPRi responses were detected on the spots of the sensor only where ligands of the produced antibody were present. By measuring the SPRi signals on individual cells the antibody production of the individual cells was measured and production rates were calculated. For 53 single EpCAM hybridoma cells the production ranged from 0.16 to 11.95 pg (mean 2.96 pg per cell, SD 2.51) over a period of 10 h. Antibody excretion per cell per hour ranged from 0.02 to 1.19 pg (mean 0.30, SD 0.25). Here we demonstrate for the first time that antibody production of individual cells can be measured and quantified by SPRi, opening a new avenue for measuring excretion products of individual cells.  相似文献   

13.
14.
15.
Laser capture microdissection of cells from plant tissues   总被引:28,自引:0,他引:28       下载免费PDF全文
Laser capture microdissection (LCM) is a technique by which individual cells can be harvested from tissue sections while they are viewed under the microscope, by tacking selected cells to an adhesive film with a laser beam. Harvested cells can provide DNA, RNA, and protein for the profiling of genomic characteristics, gene expression, and protein spectra from individual cell types. We have optimized LCM for a variety of plant tissues and species, permitting the harvesting of cells from paraffin sections that maintain histological detail. We show that RNA can be extracted from LCM-harvested plant cells in amount and quality that are sufficient for the comparison of RNAs among individual cell types. The linear amplification of LCM-captured RNA should permit the expression profiling of plant cell types.  相似文献   

16.
Summary An antiserum was raised in rabbits to extracts of a pool of acute myelogenous leukemia cells. The immunization protocol used (antibody feedback) gave rise to antisera with marked specificity for AML extracts. After absorption, the antiserum demonstrated essentially no reactivity with cell extracts from 12 individual normal peripheral blood samples, while it reacted positively with 16 individual extracts from AML cells. Reactivity was assayed by the enzyme-linked immunosorbent assay (ELISA). The antiserum was not reactive with extracts from normal PHA-induced blast cells, with extracts of bone marrow cells from six individuals, or with three individual extracts of chronic lymphocytic leukemia (CLL) blast cells. These data indicate that this antiserum is detecting an antigen that is common to AML cells but may not be common to other blast cells.  相似文献   

17.
Alpha-fetoprotein (AFP) produced by individual hepatocytes and hepatocyte microcolonies was detected with microelectrophoresis-precipitation in polyacrylamide gel. Hepatic cells of 6--13-week-old human embryos were cultivated in vitro for 2 to 5 days. 23 of 28 individual cells, and 89 of 91 microcolonies, built up of 2--35 cells, were demonstrated to produce AFP within the range of 70--800 pg per cell.  相似文献   

18.
High-throughput single cell analysis is required for understanding and predicting the complex stochastic responses of individual cells in changing environments. We have designed a microfluidic device consisting of parallel, independent channels with cell-docking structures for the formation of an array of individual cells. The microfluidic cell array was used to quantify single cell responses and the distribution of response patterns of calcium channels among a population of individual cells. In this device, 15 cell-docking units in each channel were fabricated with each unit containing 5 sandbag structures, such that an array of individual cells was formed in 8 independent channels. Single cell responses to different treatments in different channels were monitored in parallel to study the effects of the specific activator and inhibitor of the Ca2+ release-activated Ca2+ (CRAC) channels. Multichannel detection was performed to obtain the response patterns of the population of cells within this single cell array. The results demonstrate that it is possible to acquire single cell features in multichannels simultaneously with passive structural control, which provides an opportunity for high-throughput single cell response analysis in a microfluidic chip.  相似文献   

19.
Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.  相似文献   

20.
Expression of the common acute lymphoblastic leukemia antigen (CALLA) on the surface of individual cells of the human lymphoblastoid lines CW678, Namalwa, and Nalm-6, and the distribution of the antigen epitopes within the cell populations have been determined quantitatively with the murine monoclonal anti-CALLA antibody J5. The distribution of CALLA epitopes in the cell populations was analyzed by indirect immunofluorescence measured by using flow cytometry. The average number of CALLA epitopes per cell were measured by two assays: in a direct assay by binding 125I-labeled antibody J5 to cells, and indirectly by binding 125I-labeled protein A from Staphylococcus aureus to J5-coated cells. On average, CW678, Namalwa, and Nalm-6 cells bore about 1 X 10(4), 6 X 10(4), and 8 X 10(4) CALLA epitopes per cell respectively. Histograms of the absolute number of CALLA epitopes expressed by individual cells in the populations of CW678, Namalwa, and Nalm-6 cultures were generated by a combined analysis of all the binding data. This is the first example of histograms showing quantitative distribution of antigen epitopes. Previously, the expression of antigens by individual cells as obtained by flow cytometry was only presented in terms of relative fluorescence intensity of individual cells in cell populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号