首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of derepression of valyl-, isoleucyl-, and leucyl-transfer ribonucleic acid (tRNA) synthetase formation was examined during valine-, isoleucine-, and leucine-limited growth. When valine was limiting growth, valyl-tRNA synthetase formation was maximally derepressed within 5 min, whereas the rates of synthesis of isoleucyl-, and leucyl-tRNA synthetases were unchanged. Isoleucine-restricted growth caused a maximal derepression of isoleucyl-tRNA synthetase formation in 5 min and derepression of valyl-tRNA synthetase formation in 15 min with no effect on leucyl-tRNA synthetase formation. When leucine was limiting growth, leucyl-tRNA synthetase formation was immediately derepressed, whereas valyl- and isoleucyl-tRNA synthetase formation was unaffected by manipulation of the leucine supply to the cells. These results support our previous findings that valyl-tRNA synthetase formation is subject to multivalent repression control by both isoleucine and valine. In contrast, repression control of iso-leucyl- and leucyl-tRNA synthetase formation is specifically mediated by the supply of the cognate amino acid.  相似文献   

2.
The regulation of synthesis of valyl-, leucyl-, and isoleucyl-transfer ribonucleic acid (tRNA) synthetases was examined in strains of Escherichia coli and Salmonella typhimurium. When valine and isoleucine were limiting growth, the rate of formation of valyl-tRNA synthetase was derepressed about sixfold; addition of these amino acids caused repression of synthesis of this enzyme. The rate of synthesis of the isoleucyl- and leucyl-tRNA synthetases was derepressed only during growth restriction by the cognate amino acid. Restoration of the respective amino acid to these derepressed cultures caused repression of synthesis of the aminoacyl-tRNA synthetase, despite the resumption of the wild-type growth rate.  相似文献   

3.
Valyl-, isoleucyl-, and leucyl-tRNA synthetase activities were examined in an Escherichia coli K-12 strain that possessed a deletion of three genes of the ilv gene cluster, ilvD, A, and C, and in a strain with the same deletion that also carried the lambdadilvCB bacteriophage. It was observed that the branched-chain tRNA synthetase activities of both strains were considerably less than those of the normal strain during growth in unrestricted medium. Furthermore, during an isoleucine limitation, there was a further reduction in isoleucyl-tRNA synthetase activity and an absence of the isoleucine-mediated derepression of valyl-tRNA synthetase formation in both of these mutants, as compared with the normal strain. In addition, it was observed that these branched-chain synthetase activities were reduced in steady-state cultures of several ilvA point mutants. However, upon the introduction of the ilv operon to these ilvA mutants by use of lambda bacteriophage, there was a specific increase in the branched-chain synthetase activities to levels comparable to those of the normal strain. These results support our previous findings that the stability and repression control of synthesis of these synthetases require some product(s) missing in the ilvDAC deletion strain and strongly suggest this component is some form of the ilvA gene product, threonine deaminase.  相似文献   

4.
Regulation of isoleucine, valine, and leucine biosynthesis and isoleucyl-, valyl-, and leucyl-transfer ribonucleic acid (tRNA) synthetase formation was examined in two mutant strains of Escherichia coli. One mutant was selected for growth resistance to the isoleucine analogue, ketomycin, and the other was selected for growth resistance to both trifluoroleucine and valine. Control of the synthesis of the branched-chain amino acids by repression was altered in both of these mutants. They also exhibited altered control of formation of isoleucyl-tRNA synthetase (EC 6.1.15, isoleucine:sRNA ligase, AMP), valyl-tRNA synthetase (EC 6.1.1.9, valine:sRNA ligase, AMP), and leucyl-tRNA synthetase (EC 6.1.1.4, leucine:sRNA ligase, AMP). These results suggest the existence of a common element for the control of these two classes of enzymes in Escherichia coli.  相似文献   

5.
In a strain carrying an ilvA538 mutation, the ilvGEDA operon expression is decreased (hyperattenuated) and the activity and/or expression of isoleucyl- and valyl- tRNA synthetases is decreased. We have isolated two revertants of ilvA538 owing to mutations in the ilvH gene, whose product is acetohydroxy acid synthase III. The regulatory properties of these revertants are consistent with a dual role for threonine deaminase as an effector of the ilvGEDA operon and the isoleucyl- and valyl- tRNA synthetase structural genes.  相似文献   

6.
The differential rates of synthesis of the three branched-chain aminoacyl-transfer ribonucleic acid synthetases were measured in Salmonella typhimurium LT-2 and a mutant, ilvA504. The mutant produced an l-threonine deaminase with a decreased affinity for its cofactor, pyridoxal-5'-monophosphate. The addition of pyridoxal-5'-monophosphate to cultures of strain ilvA504 growing in excess isoleucine, valine, and leucine resulted in an increased rate of growth and repression of the synthesis of the isoleucine and valine biosynthetic enzymes. No differences in the rate of synthesis of the branched-chain aminoacyl-transfer ribonucleic acid synthetases were observed in cultures of ilvA504 growing with or without added pyridoxal-5'-monophosphate. The differential rates of synthesis of all three enzymes were similar to the rates measured in strain LT-2. These experiments suggest that different forms of the ilvA gene product are involved in the regulation of the branched-chain amino acid biosynthetic enzymes and the branched-chain aminoacyl-transfer ribonucleic acid synthetases.  相似文献   

7.
The methionyl-transfer ribonucleic acid (tRNA) synthetase of Escherichia coli K-12 eductants carrying P2-mediated deletions in the region of the structural gene of this enzyme was investigated. No structural alteration of this enzyme was observed in three eductants examined. These were isolated from strain AB311, which had a threefold higher level of methionyl-tRNA synthetase than most haploid strains examined. In two of the three eductants studied, the level of this enzyme was twofold higher than in their parental strain regardless of growth conditions used. In contrast, isoleucyl-, leucyl-, and valyl-tRNA synthetases had similar levels in all strains examined. Like valyl-tRNA synthetase, but to a lesser extent, methionyl-tRNA synthetase was subject to metabolic regulation. Coupling between the level of methionyl-tRNA synthetase and growth rate was observed even in strains that had an enhanced level of methionyl-tRNA synthetase. These results suggest that the formation of methionyl-tRNA synthetase remains subject to metabolic regulation even when the repression-like mechanism that controls the synthesis of this enzyme is altered. In addition, we report that in the merodiploid strain EM20031, which was haploid for the valyl-tRNA synthetase structural gene and diploid for the structural genes of methionyl-tRNA synthetase and D-serine deaminase, the levels of these latter two enzymes varied to a minor yet significant extent with the phosphate concentration of the culture medium; under the same conditions, the level of valyl-tRNA synthetase remained unchanged. Moreover, no variation of the levels of these three enzymes in response to phosphate was observed in the haploid strain HfrH. These results indicate that in the merodiploid strain EM20031, which carries the episome F32, the number of episomes per chromosome varies to some extent according to the phosphate concentration of the culture medium.  相似文献   

8.
Coenzyme A (CoA-SH), a cofactor in carboxyl group activation reactions, carries out a function in nonribosomal peptide synthesis that is analogous to the function of tRNA in ribosomal protein synthesis. The amino acid selectivity in the synthesis of aminoacyl-thioesters by nonribosomal peptide synthetases is relaxed, whereas the amino acid selectivity in the synthesis of aminoacyl-tRNA by aminoacyl-tRNA synthetases is restricted. Here I show that isoleucyl-tRNA synthetase aminoacylates CoA-SH with valine, leucine, threonine, alanine, and serine in addition to isoleucine. Valyl-tRNA synthetase catalyzes aminoacylations of CoA-SH with valine, threonine, alanine, serine, and isoleucine. Lysyl-tRNA synthetase aminoacylates CoA-SH with lysine, leucine, threonine, alanine, valine, and isoleucine. Thus, isoleucyl-, valyl-, and lysyl-tRNA synthetases behave as aminoacyl-S-CoA synthetases with relaxed amino acid selectivity. In contrast, RNA minihelices comprised of the acceptor-TpsiC helix of tRNA(Ile) or tRNA(Val) were aminoacylated by cognate synthetases selectively with isoleucine or valine, respectively. These and other data support a hypothesis that the present day aminoacyl-tRNA synthetases originated from ancestral forms that were involved in noncoded thioester-dependent peptide synthesis, functionally similar to the present day nonribosomal peptide synthetases.  相似文献   

9.
The role of isoleucyl-, valyl-, and leucyl-tRNA synthetases in attenuation of the ilvEDA operon was examined. The results indicate that the activities of isoleucyl- and valyl-tRNA synthetases are necessary to maintain attenuation of the ilvEDA operon. Leucyl-tRNA synthetase activity is nonessential for attenuation. These studies imply that uncharged tRNAIle and tRNAVal each may cause deattenuation.  相似文献   

10.
Proline- and threonine-restricted growth caused a three- to fourfold derepression of the differential rate of synthesis of the prolyl- and threonyl-transfer ribonucleic acid (tRNA) synthetases, respectively. Similarly, there was approximately a 24-fold derepression in the rate of synthesis of methionyl-tRNA synthetase during methionine restriction. Addition of the respective amino acids to such derepressed cultures resulted in a repression of synthesis of their cognate synthetases. These results support previous findings and further strengthen the idea that the formation of aminoacyl-tRNA synthetases is regulated by some mechanism which is mediated by the cognate amino acids.  相似文献   

11.
12.
The aminoacyl-tRNA synthetases covalently link transfer RNAs to their cognate amino acids. Some of the tRNA synthetases have evolved editing mechanisms to ensure fidelity in this first step of protein synthesis. The amino acid editing site for leucyl- (LeuRS) and isoleucyl- (IleRS) tRNA synthetases reside within homologous CP1 domains. In each case, a threonine-rich peptide and a second conserved GTG region that are separated by about 100 amino acids comprise parts of the hydrolytic editing site. While a number of sites are conserved between these two enzymes and likely confer a commonality to the mechanisms, some positions are idiosyncratic to LeuRS or IleRS. Herein, we provide evidence that a conserved arginine and threonine at respective sites in LeuRS and IleRS diverged to confer amino acid substrate recognition. This site complements other sites in the amino acid binding pocket of the editing active site of Escherichia coli LeuRS, including Thr252 and Val338, which collectively fine-tune amino acid specificity to confer fidelity.  相似文献   

13.
Two temperature-sensitive mutants of Escherichia coli have been found in which the conditional growth is a result of a thermosensitive leucyl-transfer ribonucleic acid (tRNA) synthetase and seryl-tRNA synthetase, respectively. The corresponding genetic loci, leuS and serS, cotransduce with lip and serC, respectively. As a result of the mutationally altered leucyl-tRNA synthetase, some leucine-, valine-, and isoleucine-forming enzymes were derepressed. Thus, leucyl-tRNA synthetase is involved in the repression of the enzymes needed for the synthesis of branched-chain amino acids.  相似文献   

14.
Fukunaga R  Yokoyama S 《Biochemistry》2007,46(17):4985-4996
In the archaeal leucyl-tRNA synthetase (LeuRS), the C-terminal domain recognizes the long variable arm of tRNA(Leu) for aminoacylation, and the so-called editing domain deacylates incorrectly formed Ile-tRNA(Leu). We previously reported, for Pyrococcus horikoshii LeuRS, that a deletion mutant lacking the C-terminal domain (LeuRS_delta(811-967)) retains normal editing activity, but has severely reduced aminoacylation activity. In this study, we found that LeuRS_delta(811-967), but not the wild-type LeuRS, exhibited surprisingly robust deacylation activity against Ile-tRNA(Ile), correctly formed by isoleucyl-tRNA synthetase ("misediting"). Structural superposition of tRNA(Ile) onto the LeuRS x tRNA(Leu) complex indicated that Ile911, Lys912, and Glu913 of the LeuRS C-terminal domain clash with U20 of tRNA(Ile), which is bulged out as compared to the corresponding nucleotide of tRNA(Leu). The deletion of amino acid residues 911-913 of LeuRS enhanced the Ile-tRNA(Ile) deacylation activity, without affecting the Ile-tRNA(Leu) deacylation activity. These results demonstrate that the clashing between U20 of tRNA(Ile) and residues 911-913 of the LeuRS C-terminal domain is the structural mechanism that prevents misediting. In contrast, the deletion of the C-terminal domains of the isoleucyl- and valyl-tRNA synthetases impaired both the aminoacylation (Ile-tRNA(Ile) and Val-tRNA(Val) formation, respectively) and editing (Val-tRNA(Ile) and Thr-tRNA(Val) deacylation, respectively) activities, and did not cause misediting (Val-tRNA(Val) and Thr-tRNA(Thr) deacylation, respectively) activity. Thus, the requirement of the C-terminal domain for misediting prevention is unique to LeuRS, which does not recognize the anticodon of the cognate tRNA, unlike the common aminoacyl-tRNA synthetases.  相似文献   

15.
Nordin BE  Schimmel P 《Biochemistry》2003,42(44):12989-12997
The genetic code depends on amino acid fine structure discrimination by aminoacyl-tRNA synthetases. For isoleucyl- (IleRS) and valyl-tRNA synthetases (ValRS), reactions that hydrolyze misactivated noncognate amino acids help to achieve high accuracy in aminoacylation. Two editing pathways contribute to aminoacylation fidelity: pretransfer and post-transfer. In pretransfer editing, the misactivated amino acid is hydrolyzed as an aminoacyl adenylate, while in post-transfer editing a misacylated tRNA is deacylated. Both reactions are dependent on a tRNA cofactor and require translocation to a site located approximately 30 A from the site of amino acid activation. Using a series of 3'-end modified tRNAs that are deficient in either aminoacylation, deacylation, or both, total editing (the sum of pre- and post-transfer editing) was shown to require both aminoacylation and deacylation activities. These and additional results with IleRS are consistent with a post-transfer deacylation event initiating formation of an editing-active enzyme/tRNA complex. In this state, the primed complex processively edits misactivated valyl-adenylate via the pretransfer route. Thus, misacylated tRNA is an obligatory intermediate for editing by either pathway.  相似文献   

16.
Lysyl-transfer ribonucleic acid (tRNA) synthetase activity was compared in three independently isolated Escherichia coli K-12 mutants of the enzyme S-adenosyl-L-methionine synthetase (metK mutants) and their isogenic parents. In all three cases the activity of the lysyl-tRNA synthetase was elevated two- to fourfold in the mutant strains. Glycyl-L-leucine (3 mM) usually enhanced lysyl-tRNA synthetase activity two- to threefold in wild-type cells but did not further stimulate the synthetase activity in metK mutants. By two other criteria, the lysyl-tRNA synthetase from wild-type cells grown with the peptide and from the metK mutant RG62, grown in minimal medium, were similar. These criteria are enhanced resistance to thermal inactivation and altered susceptibility to endogenous proteases when compared with the synthetase from wild-type cells grown in minimal medium. In a separate set of experiments, the activities of the lysyl-, arginyl-, seryl-, and valyl-tRNA synthetases were measured in an isogenic pair of relt and rel strains of E. coli grown in a relatively poor growth medium (acetate) and in enriched medium. In the rel+ strain the level of all four synthetases was higher (two- to fourfold) in the enriched medium as expected. In the rel strain the difference in the activities of the synthetases between the two media were diminished. In all four cases the activities of the synthetases were higher in acetate medium in the rel strain. Evidence is presented that these two modes of metabolic regulation act independently.  相似文献   

17.
Two trifluoroleucine-resistant mutants of Salmonella typhimurium, strains CV69 and CV117, had an altered leucyl-transfer ribonucleic acid (tRNA) synthetase. The mutant enzymes had higher apparent K(m) values for leucine (ca. 10-fold) and lower specific activities (ca. twofold) than the parent enzyme when tested in crude extracts. Preparations of synthetase purified ca. 60-fold from the parent and strain CV117 differed sixfold in their leucine K(m) values. In addition, the mutant enzyme was inactivated faster than the parent enzyme at 50 C. The growth rates of strains CV69 and CV117 at 37 C were not significantly different from that of the parent, whereas at 42 C strain CV69 grew more slowly than the parent. Leucine-, valine-, and isoleucine-forming enzymes were partially derepressed when the mutants were grown in minimal medium; the addition of leucine repressed these enzymes to wild-type levels. During growth in minimal medium, the proportion of leucine tRNA that was charged in the mutants was about 75% of that in the parent. The properties of strain CV117 were shown to result from a single mutation located near gal at minute 18 on the genetic map. These studies suggest that leucyl-tRNA synthetase is involved in repression of the enzymes required for the synthesis of branched-chain amino acids.  相似文献   

18.
A locus (leuK) affecting regulation of the leucine operon was selected by isolating a spontaneous Ara+ derivative of an Escherichia coli B/r strain carrying an ara-leu fusion in which the arabinose operon is under leucine control. Genetic analyses by P1 transduction demonstrated that the lesion is located to the right of the galactose operon. Regulation of the biosynthetic enzymes for leucine, isoleucine-valine, histidine, and tryptophan was altered in a strain carrying leuK16. High-level gene expression in the heterozygous merodiploid strain F' leuK+/leuK16) demonstrated the dominance of the mutant allele to the wild-type allele. No apparent effect was observed in the mutant on N-acetylornithinase, a biosynthetic enzyme in the arginine pathway, nor on any of the 18 aminoacyl-tRNA synthetases examined. However, compared with that of the parent strain, the extent of the charging of leucyl-, isoleucyl-, valyl-, histidyl-, and arginyl-tRNA was decreased in the mutant.  相似文献   

19.
Leucyl-, isoleucyl- and valyl-tRNA synthetases are closely related large monomeric class I synthetases. Each contains a homologous insertion domain of approximately 200 residues, which is thought to permit them to hydrolyse ('edit') cognate tRNA that has been mischarged with a chemically similar but non-cognate amino acid. We describe the first crystal structure of a leucyl-tRNA synthetase, from the hyperthermophile Thermus thermophilus, at 2.0 A resolution. The overall architecture is similar to that of isoleucyl-tRNA synthetase, except that the putative editing domain is inserted at a different position in the primary structure. This feature is unique to prokaryote-like leucyl-tRNA synthetases, as is the presence of a novel additional flexibly inserted domain. Comparison of native enzyme and complexes with leucine and a leucyl- adenylate analogue shows that binding of the adenosine moiety of leucyl-adenylate causes significant conformational changes in the active site required for amino acid activation and tight binding of the adenylate. These changes are propagated to more distant regions of the enzyme, leading to a significantly more ordered structure ready for the subsequent aminoacylation and/or editing steps.  相似文献   

20.
None of the heterologous deoxyribonucleic acid from various bacilli was capable of transforming lysyl- and tryptophanyl-transfer ribonucleic acid (tRNA) synthetase mutants of Bacillus subtilis to wild type. It was concluded that there is little conservation of the aminoacyl-tRNA synthetases even though the tRNA cistrons are conserved genetic functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号