首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The analogues carbon dioxide (CO(2)), carbonyl sulfide (COS) and carbon disulfide (CS(2)) have been useful as substrate probes for enzyme activities. Here we explored the affinity of the enzyme carbonic anhydrase for its natural substrate CO(2), as well as COS and CS(2) (1) by in vitro kinetic metabolism studies using pure enzyme and (2) through mortality bioassay of insects exposed to toxic levels of each of the gases during carbonic anhydrase inhibition. Hydrolysis of COS to form hydrogen sulfide was catalysed rapidly showing parameters K(m) 1.86 mM and K(cat) 41 s(-1) at 25 degrees C; however, the specificity constant (K(cat)/K(m)) was 4000-fold lower than the reported value for carbonic anhydrase-catalysed hydration of CO(2). Carbonic anhydrase-mediated CS(2) metabolism was a further 65,000-fold lower than COS. Both results demonstrate the deactivating effect toward the enzyme of sulfur substitution for oxygen in the molecule. We also investigated the role of carbonic anhydrases in CO(2), COS and CS(2) toxicity using a specific inhibitor, acetazolamide, administered to Tribolium castaneum (Herbst) larvae via the diet. CO(2) toxicity was greatly enhanced by up to seven-fold in acetazolamide-treated larvae indicating that carbonic anhydrases are a key protective enzyme in elevated CO(2) concentrations. Conversely, mortality was reduced by up to 12-fold in acetazolamide-treated larvae exposed to COS due to reduced formation of toxic hydrogen sulfide. CS(2) toxicity was unaffected by acetazolamide. These results show that carbonic anhydrase has a key role in toxicity of the substrates CO(2) and COS but not CS(2), despite minor differences in chemical formulae.  相似文献   

2.
Carbonic anhydrase activity was determined in spinach (Spinacia oleracea) leaf organelles isolated on sucrose density gradients and was found to be predominantly in the intact chloroplast fraction. The small amount of activity associated with the mitochondrial fractions was probably due to intact chloroplast contamination. No activity could be associated with the broken chloroplast or microbody fractions. Based upon inhibitor studies, carbonic anhydrase was found to be around 2 mm in the chloroplast. Ethoxzolamide, an inhibitor of carbonic anhydrase, reduced CO(2) fixation in intact chloroplasts. The concentration required to inhibit CO(2) fixation 20 to 40% was in excess of that required to inhibit the purified enzyme. The inhibition was partially reversed by CO(2). Ethoxzolamide had no effect on photosynthetic NADP reduction or photophosphorylation measured by methyl viologen reduction. The physiological role of carbonic anhydrase was shown not to be associated with CO(2) diffusion or CO(2) concentration. It is proposed that other functions of carbonic anhydrase could be the protection against denaturation by transient localized changes in pH or the hydration of compounds other than CO(2).  相似文献   

3.
Incubation of carbonic anhydrase II with acrolein results in a rapid, time-dependent loss of all but approximately 3-6% of the original catalytic activity toward CO2 hydration and HCO3- dehydration, with the inactivation rate being first-order in both acrolein and the enzyme. The pH dependence of the inactivation rate constant can be adequately described with a function incorporating a pK alpha of 7.15 and a maximal value for kinact [corrected] of 26.2 M-1 min-1, indicating that at least one of the catalytically essential residues that ionizes at this pH is involved in the modification scheme. The amount of residual CO2 hydratase activity is proportional to the molar excess of acrolein over carbonic anhydrase II with 5 histidyl and 3 lysyl residues being subject to alkylation under conditions where [acrolein] to [carbonic anhydrase II] ratio is greater than 100. Because all lysyl residues were shown previously to be amidinated without detectable loss of activity, it was assumed that the modification of one (or more) of the histidines was primarily responsible for the observed inactivation. The number of modified histidyl residues could be related to residual activity by using the statistical analysis of Tsou (Tsou, C.-L. (1962) Sci. Sin. (Engl. Ed.) 11, 1535-1558) which indicates that one essential histidine reacts approximately four times faster than the other (histidyl) residues. In sharp contrast with the phenomenon observed in connection with CO2 hydration and HCO3- dehydration, acrolein improves the catalytic efficiency of the enzyme toward p-nitrophenyl acetate hydrolysis and acetaldehyde hydration, with the relative activity increasing by approximately 12 and 34%, respectively. The widely differing effects imparted by the same reagent represent the first step toward differential control of the specificity of carbonic anhydrase II.  相似文献   

4.
Widdas WF  Baker GF 《Cytobios》2000,103(404):177-192
A second function of carbonic anhydrase (CA) isoforms has already been proposed. This involves the dispersal of complexes in which six carbon dioxide molecules sequester a hydroxyl ion when the gas reacts with liquid water. The semi-catalytic reaction does not require the formation of bicarbonate as an essential corollary. This function is, therefore, a likely activity of carbonic anhydrase related proteins that have recently been discovered and which lack the active zinc site essential for the hydration of carbon dioxide. Re-examination of possible functions for the complex of six CO2 molecules with a hydroxyl anion have brought to light several circumstances where the presence of fully reversible complexes could have physiological advantages. A catalytic synthesis and dissolution of the complexes could thus be the important function for the carbonic anhydrase-related proteins (CA-RP) molecules as well as of some CA isoforms. The possible mechanisms for this extended second catalytic function and examples are briefly discussed.  相似文献   

5.
We report three experiments which show that the hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle occurs at a site on the enzyme different than the active site for CO2 hydration. This is in contrast with isozymes I and II of carbonic anhydrase for which the sites of 4-nitrophenyl acetate hydrolysis and CO2 hydration are the same. The pH profile of kcat/Km for hydrolysis of 4-nitrophenyl acetate was roughly described by the ionization of a group with pKa 6.5, whereas kcat/Km for CO2 hydration catalyzed by isozyme III was independent of pH in the range of pH 6.0-8.5. The apoenzyme of carbonic anhydrase III, which is inactive in the catalytic hydration of CO2, was found to be as active in the hydrolysis of 4-nitrophenyl acetate as native isozyme III. Concentrations of N-3 and OCN- and the sulfonamides methazolamide and chlorzolamide which inhibited CO2 hydration did not affect catalytic hydrolysis of 4-nitrophenyl acetate by carbonic anhydrase III.  相似文献   

6.
Rat lung carbonic anhydrase: activity, localization, and isozymes   总被引:1,自引:0,他引:1  
Carbonic anhydrase activity in rat lungs perfused free of blood was localized by homogenization of the tissue followed by differential centrifugation. Four fractions were obtained from the homogenate, a cell debris pellet with a mitochondrial pellet and a microsomal pellet with a clear cytosol supernatant. The last named fraction contained 67% of the total enzyme activity; the cell debris contained 18%, and the mitochondrial and microsomal contained 8 and 7%, respectively. Of the 33% of enzyme activity associated with the pellet fraction, 25% could be experimentally defined as membrane associated by its solubilization with 0.3 M tris-(hydroxymethyl) aminoethane sulfate buffer. The remainder was defined as membrane bound. Purification of the soluble carbonic anhydrase from the lung yielded two isozymes with electrophoretic and inhibitor sensitivities apparently identical with the blood isozymes. Hemoglobin analysis showed that the lung isozymes could not have included more than 0.03% enzyme from blood contamination. The carbonic anhydrase activity present in the whole rat lung would give an average acceleration of the CO2 hydration reaction under physiological conditions over the uncatalyzed rate of 122, sufficient to maintain equilibration between CO2 and plasma HCO3- during blood transit of the lung. If the membrane-associated activity is mostly on the plasma membrane of the endothelial cells and available to the capillary blood, it would be sufficient to give this acceleration. We suggest that the possible source of this membrane-associated activity might be adsorption from the blood of carbonic anhydrase liberated by erythrocyte lysis.  相似文献   

7.
Carbonic anhydrase C in white-skeletal-muscle tissue.   总被引:2,自引:1,他引:1       下载免费PDF全文
We investigated the activity of carbonic anhydrase in blood-free perfused white skeletal muscles of the rabbit. Carbonic anhydrase activities were measured in supernatants and in Triton extracts of the particulate fractions of white-skeletal-muscle homogenate by using a rapid-reaction stopped-flow apparatus equipped with a pH electrode. An average carbonic anhydrase concentration of about 0.5 microM was determined for white skeletal muscle. This concentration is about 1% of that inside the erythrocyte. Some 85% of the muscle enzyme was found in the homogenate supernatant, and only 15% appeared to be associated with membranes and organelles. White-skeletal-muscle carbonic anhydrase was characterized in terms of its Michaelis constant and catalytic-centre activity (turnover number) for CO2 and its inhibition constant towards ethoxzolamide. These properties were identical with those of the rabbit erythrocyte carbonic anhydrase C, suggesting that a type-C enzyme is present in white skeletal muscle. Affinity chromatography of muscle supernatant and of lysed erythrocytes showed that, whereas rabbit erythrocytes contain about equal amounts of carbonic anhydrase isoenzymes B and C, the B isoenzyme is practically absent from white skeletal muscle. Similarly, ethoxzolamide-inhibition curves suggested that white skeletal muscle contains no carbonic anhydrase A. It is concluded that white skeletal muscle contains essentially one carbonic anhydrase isoenzyme, the C form, most of which is probably of cytosolic origin.  相似文献   

8.
1. Carbonic anhydrase (carbonate hydro-lyase, EC 4.2.1.1) has been purified from erythrocytes of hagfish (Myxine glutinosa). A single form with low specific CO2 hydration activity was isolated. The purified carbonic anhydrase appeared homogeneous judging from polyacrylamide gel electrophoresis and gel filtration experiments. The protein has a molecular weight of about 29 000, corresponding to about 260 amino acid residues. This molecular weight is in accordance with other vertebrate carbonic anhydrases with the exception of the elasmobranch enzymes, which have Mr 36 000--39 000. 2. The molecular weight obtained for hagfish carbonic anhydrase indicates that a carbonic anhydrase with Mr approx. 29 000 is the ancestral type of the vertebrate enzyme rather than, as in sharks, a heavier carbonic anhydrase molecule. 3. The circular dichroism spectrum may indicate a somewhat different structural arrangement of aromatic amino acid residues in this enzyme than in the mammalian carbonic anhydrases. 4. The enzyme is strongly inhibited by acetazolamide and also to a lesser extent by monovalent anions. 5. Zn2+, which is essential for activity, appears, contrary to other characterized carbonic anhydrases, less strongly bound in the active site of the enzyme.  相似文献   

9.
Prokaryotic carbonic anhydrases   总被引:2,自引:0,他引:2  
Carbonic anhydrases catalyze the reversible hydration of CO(2) [CO(2)+H(2)Oright harpoon over left harpoon HCO(3)(-)+H(+)]. Since the discovery of this zinc (Zn) metalloenzyme in erythrocytes over 65 years ago, carbonic anhydrase has not only been found in virtually all mammalian tissues but is also abundant in plants and green unicellular algae. The enzyme is important to many eukaryotic physiological processes such as respiration, CO(2) transport and photosynthesis. Although ubiquitous in highly evolved organisms from the Eukarya domain, the enzyme has received scant attention in prokaryotes from the Bacteria and Archaea domains and has been purified from only five species since it was first identified in Neisseria sicca in 1963. Recent work has shown that carbonic anhydrase is widespread in metabolically diverse species from both the Archaea and Bacteria domains indicating that the enzyme has a more extensive and fundamental role in prokaryotic biology than previously recognized. A remarkable feature of carbonic anhydrase is the existence of three distinct classes (designated alpha, beta and gamma) that have no significant sequence identity and were invented independently. Thus, the carbonic anhydrase classes are excellent examples of convergent evolution of catalytic function. Genes encoding enzymes from all three classes have been identified in the prokaryotes with the beta and gamma classes predominating. All of the mammalian isozymes (including the 10 human isozymes) belong to the alpha class; however, only nine alpha class carbonic anhydrase genes have thus far been found in the Bacteria domain and none in the Archaea domain. The beta class is comprised of enzymes from the chloroplasts of both monocotyledonous and dicotyledonous plants as well as enzymes from phylogenetically diverse species from the Archaea and Bacteria domains. The only gamma class carbonic anhydrase that has thus far been isolated and characterized is from the methanoarchaeon Methanosarcina thermophila. Interestingly, many prokaryotes contain carbonic anhydrase genes from more than one class; some even contain genes from all three known classes. In addition, some prokaryotes contain multiple genes encoding carbonic anhydrases from the same class. The presence of multiple carbonic anhydrase genes within a species underscores the importance of this enzyme in prokaryotic physiology; however, the role(s) of this enzyme is still largely unknown. Even though most of the information known about the function(s) of carbonic anhydrase primarily relates to its role in cyanobacterial CO(2) fixation, the prokaryotic enzyme has also been shown to function in cyanate degradation and the survival of intracellular pathogens within their host. Investigations into prokaryotic carbonic anhydrase have already led to the identification of a new class (gamma) and future research will undoubtedly reveal novel functions for carbonic anhydrase in prokaryotes.  相似文献   

10.
This study finds lengthened circadian period in a congenic strain of mice homozygous for a null mutation in carbonic anhydrase isoenzyme-II gene on proximal Chromosome 3. Carbonic anhydrase II has the highest turnover rate of any constitutive enzyme. It catalyzes the reversible hydration of carbon dioxide to control intercellular acid/base balance. A strain of congenic mice has a carbonic anhydrase II null mutation within a DBA/2J inbred strain insert on a C57BL/6J inbred strain background. The locomotor activity levels and period of circadian rhythms were examined in the homozygous null mutants and their progenitors, mice heterozygous for the region around the carbonic anhydrase gene. The heterozygous mice siblings and the wild-type siblings served as the controls. During behavioral studies, male and female offspring and parents were housed singly in constant darkness. Locomotor activity was monitored using an infrared photobeam array. Mice homozygous for the carbonic anhydrase null mutation had a longer circadian period than either heterozygote or wild type littermates. Carbonic anhydrase null mutants also had low locomotor activity compared to either heterozygous or wild-type litter mates. This implies that either the physiological changes resulting from absence of carbonic anhydrase II isozyme or the presence of DBA/2J alleles around the carbonic anhydrase locus influence the circadian period and level of locomotor activity in laboratory mice.  相似文献   

11.
Carbonic anhydrase, a zinc enzyme catalyzing the interconversion of carbon dioxide and bicarbonate, is nearly ubiquitous in the tissues of highly evolved eukaryotes. Here we report on the first known plant-type (beta-class) carbonic anhydrase in the archaea. The Methanobacterium thermoautotrophicum DeltaH cab gene was hyperexpressed in Escherichia coli, and the heterologously produced protein was purified 13-fold to apparent homogeneity. The enzyme, designated Cab, is thermostable at temperatures up to 75 degrees C. No esterase activity was detected with p-phenylacetate as the substrate. The enzyme is an apparent tetramer containing approximately one zinc per subunit, as determined by plasma emission spectroscopy. Cab has a CO(2) hydration activity with a k(cat) of 1.7 x 10(4) s(-1) and K(m) for CO(2) of 2.9 mM at pH 8.5 and 25 degrees C. Western blot analysis indicates that Cab (beta class) is expressed in M. thermoautotrophicum; moreover, a protein cross-reacting to antiserum raised against the gamma carbonic anhydrase from Methanosarcina thermophila was detected. These results show that beta-class carbonic anhydrases extend not only into the Archaea domain but also into the thermophilic prokaryotes.  相似文献   

12.
This study finds lengthened circadian period in a congenic strain of mice homozygous for a null mutation in carbonic anhydrase isoenzyme-II gene on proximal Chromosome 3. Carbonic anhydrase II has the highest turnover rate of any constitutive enzyme. It catalyzes the reversible hydration of carbon dioxide to control intercellular acid/base balance. A strain of congenic mice has a carbonic anhydrase II null mutation within a DBA/2J inbred strain insert on a C57BL/6J inbred strain background. The locomotor activity levels and period of circadian rhythms were examined in the homozygous null mutants and their progenitors, mice heterozygous for the region around the carbonic anhydrase gene. The heterozygous mice siblings and the wild-type siblings served as the controls. During behavioral studies, male and female offspring and parents were housed singly in constant darkness. Locomotor activity was monitored using an infrared photobeam array. Mice homozygous for the carbonic anhydrase null mutation had a longer circadian period than either heterozygote or wild type littermates. Carbonic anhydrase null mutants also had low locomotor activity compared to either heterozygous or wild-type litter mates. This implies that either the physiological changes resulting from absence of carbonic anhydrase II isozyme or the presence of DBA/2J alleles around the carbonic anhydrase locus influence the circadian period and level of locomotor activity in laboratory mice.  相似文献   

13.
Carbonic anhydrase III, a cytosolic enzyme found predominantly in skeletal muscle, has a turnover rate for CO2 hydration 500-fold lower and a KI for inhibition by acetazolamide 700-fold higher (at pH 7.2) than those of red cell carbonic anhydrase II. Mutants of human carbonic anhydrase III were made by replacing three residues near the active site with amino acids known to be at the corresponding positions in isozyme II (Lys-64----His, Arg-67----Asn, and Phe-198----Leu). Catalytic properties were measured by stopped-flow spectrophotometry and 18O exchange between CO2 and water using mass spectrometry. The triple mutant of isozyme III had a turnover rate for CO2 hydration 500-fold higher than wild-type carbonic anhydrase III. The binding constants, KI, for sulfonamide inhibitors of the mutants containing Leu-198 were comparable to those of carbonic anhydrase II. The mutations at residues 64, 67, and 198 were catalytically independent; the lowered energy barrier for the triple mutant was the sum of the energy changes for each of the single mutants. Moreover, the triple mutant of isozyme III catalyzed the hydrolysis of 4-nitrophenyl acetate with a specific activity and pH dependence similar to those of isozyme II. Phe-198 is thus a major contributor to the low CO2 hydration activity, the weak binding of acetazolamide, and the low pKa of the zinc-bound water in carbonic anhydrase III. Intramolecular proton transfer involving His-64 was necessary for maximal turnover.  相似文献   

14.
In this study, bovine articular and human chondrocytes from the C-20/A4 cell line were tested for the functional activity and molecular presence of the enzyme carbonic anhydrase. This enzyme is classically considered to be important in the maintenance of high cellular buffering capacity by catalysing the slow attainment of equilibrium between CO(2) and HCO(3)(-). The first functional assay measured the rate of pH equilibration after administration of a fixed dose of CO(2) solution to cell lysates. Compared to positive controls (human erythrocytes, murine M1 cells and purified carbonic anhydrase), chondrocyte lysates attained equilibrium at a significantly slower rate, similar to the rate obtained with a negative control (Xenopus oocytes). A second functional assay studied CO(2) hydration kinetics in intact C-20/A4 cells, using a pH-sensitive fluorescent dye, as the CO(2) content of the extracellular solution was changed. It was shown that C-20/A4 cells accelerate hydration only to a small degree. Hydration kinetics were reduced to the spontaneous rate in the presence of acetazolamide. Western immunoblotting with isoform-nonspecific antibodies to carbonic anhydrase demonstrated weak staining in both bovine and human chondrocytes.  相似文献   

15.
Human carbonic anhydrase (CA, EC 4.2.1.1) VII is a cytosolic enzyme with high carbon dioxide hydration activity. Here we report an unexpected S-glutathionylation of hCA VII which has also been observed earlier in vivo for hCA III, another cytosolic isoform. Cys183 and Cys217 were found to be the residues involved in reaction with glutathione for hCA VII. The two reactive cysteines were then mutated and the corresponding variant (C183S/C217S) expressed. The native enzyme, the variant and the S-glutathionylated adduct (sgCA VII) as well as hCA III were fully characterized for their CO(2) hydration, esterase/phosphatase activities, and inhibition with sulfonamides. Our findings suggest that hCA VII could use the in vivo S-glutathionylation to function as an oxygen radical scavenger for protecting cells from oxidative damage, as the activity and affinity for inhibitors of the modified enzyme are similar to those of the wild type.  相似文献   

16.
The presence of carbonic anhydrase activity was demonstrated in guinea pig skeletal muscle mitochondria purified by Percoll gradient centrifugation such that contamination by sarcoplasmic reticulum vesicles was less than 5%. Assay of purified heavy sarcoplasmic reticulum vesicles for carbonic anhydrase activity showed these to have somewhat less activity than the mitochondria, so that any contribution by sarcoplasmic reticulum vesicles to mitochondrial activity would be negligible. In agreement with this observation, rabbit skeletal muscle mitochondria prepared by the Percoll method had no detectable activity. Assay of the guinea pig muscle mitochondrial enzyme activity in the presence of Triton X-100 showed a sixfold greater activity than in its absence, indicating a matrix location for the carbonic anhydrase. The enzyme is highly sensitive to the sulfonamide inhibitor ethoxzolamide, with Ki = 8.7 nM. The activation energy obtained from the rate constant for CO2 hydration, kenz with units (mg/ml)-1 s-1, over the range 4 to 37 degrees C was 12.8 kcal/mol. These properties are those expected for a carbonic anhydrase of the CA II class of isozymes, rather than for CA I, CA III, and the liver mitochondrial enzyme CA V.  相似文献   

17.
Ubiquitin was isolated from bovine erythrocytes by a relatively simple procedure involving extraction with chloroform and ethanol, chromatography on DEAE-cellulose, and gel filtration. Amino acid and partial sequence analyses showed it to be identical to previously isolated material. Ubiquitin released p-nitrophenolate from p-nitrophenyl acetate, but did not cleave other esterase substrates that were tested. It had a turnover number of 116 mmol for p-nitrophenyl acetate at pH 7.7 and 30 degrees C, and this activity was relatively stable to heat treatment. Electrophoretic studies indicated that the ubiquitin was sequentially acetylated by p-nitrophenyl acetate, as judged by the appearance of more anodically migrating components. The reactions of ubiquitin with p-nitrophenyl acetate at pH 7.0 were biphasic and consisted of (a) an initial phase, during which the release of p-nitrophenol resulted from monoacetylation of the ubiquitin and from ubiquitin-catalyzed hydrolysis of the ester; and (b) a second phase, during which the release of p-nitrophenol resulted only from the breakdown and reformation of the acetyl-enzyme complex. Ubiquitin also showed CO2 hydration activity and could be localized following gel electrophoresis by the CO2-bromthymol blue staining method. The strong inhibitor of carbonic anhydrase, acetazolamide, also inhibited the CO2 hydration activity and p-nitrophenyl acetate activity of ubiquitin. An antibody against this protein did not precipitate bovine carbonic anhydrase II. The esterase activity of ubiquitin was much higher than those previously reported for the carbonic anhydrases.  相似文献   

18.
碳酸酐酶(carbonic anhydrase)作为一种活性中心含有锌离子的金属酶,能够可逆催化CO2生成碳酸氢盐的水合反应,该反应在生物体内承担着多样的生理学功能,具有高度的生物学意义。除广泛存在于真核生物以外,该酶在淡水、海水、嗜常温、嗜热、厌氧、好氧、致病、产酸、自养、异养等多种原核微生物中也有广泛的分布,并参与光合作用、呼吸作用和以CO2作为底物的反应,维持生理pH以及离子转运等生理过程。近年来,随着温室效应的日益加剧.生物固定CO2作为该酶的一种全新应用引起了研究者的广泛关注。回顾了碳酸酐酶作为催化剂参与CO2固定过程的历史、现状和最新发现,同时展望了未来应用的趋势。  相似文献   

19.
Carbonic anhydrase in human platelets.   总被引:1,自引:0,他引:1       下载免费PDF全文
The carbonic anhydrase activity of human platelets was investigated by measuring the kinetics of CO2 hydration in supernatants of platelet lysates by using a pH stopped-flow apparatus. An average carbonic anhydrase concentration of 2.1 microM was determined for pellets of human platelets. Analysis of the kinetic properties of this carbonic anhydrase yielded a Km value of 1.0 mM, a catalytic-centre activity kcat. of 130000 s-1 and an inhibition constant Ki towards ethoxzolamide of 0.3 nM. From these values, CO2 hydration inside platelets is estimated to be accelerated by a factor of 2500. When platelet lysates were subjected to affinity chromatography, only the high-activity carbonic anhydrase II could be eluted from the affinity column, whereas the carbonic anhydrase isoenzyme I, which is known to occur in high concentrations in human erythrocytes, appeared to be absent.  相似文献   

20.
In cyanobacteria and many chemolithotrophic bacteria, the CO(2)-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) is sequestered into polyhedral protein bodies called carboxysomes. The carboxysome is believed to function as a microcompartment that enhances the catalytic efficacy of RubisCO by providing the enzyme with its substrate, CO(2), through the action of the shell protein CsoSCA, which is a novel carbonic anhydrase. In the work reported here, the biochemical properties of purified, recombinant CsoSCA were studied, and the catalytic characteristics of the carbonic anhydrase for the CO(2) hydration and bicarbonate dehydration reactions were compared with those of intact and ruptured carboxysomes. The low apparent catalytic rates measured for CsoSCA in intact carboxysomes suggest that the protein shell acts as a barrier for the CO(2) that has been produced by CsoSCA through directional dehydration of cytoplasmic bicarbonate. This CO(2) trap provides the sequestered RubisCO with ample substrate for efficient fixation and constitutes a means by which microcompartmentalization enhances the catalytic efficiency of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号