首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspiculuris shikoloueta n. sp. is described from the caecum of Aethomys namaquensis (Rodentia: Muridae) from the Kruger National Park, South Africa. It differs from the other species of the genus possessing cervical alae that gradually taper posteriorly in having a complex system of raised pre-cloacal cuticular strips and a pair of similar caudal strips, an almost wholly glandular posterior pharyngeal bulb without obvious valves, and a pair of swollen, raspberry-like, granulate structures lateral to the cloacal opening.  相似文献   

2.
In this first cytogenetic survey on the lamprophiid snake subfamily Pseudoxyrhophiinae, we studied the karyology of ten snake species belonging to seven genera from Madagascar (Compsophis, Leioheterodon, Liophidium, Lycodryas, Madagascarophis, Phisalixella and Thamnosophis) using standard and banding methods. Our results show a wide range of different karyotypes ranging from 2n = 34 to 2n = 46 elements (FN from 40 to 48), with nucleolus organizer regions (NORs) on one (plesiomorphic) or two (derived/apomorphic) microchromosome pairs, and W chromosome at early or advanced states of diversification from the Z chromosome. The observed W chromosome variations further support the most accepted hypothesis that W differentiation from the Z chromosome occurred by progressive steps. We also propose an evolutionary scenario for the observed high karyotype diversity in this group of snakes, suggesting that it is derived from a putative primitive pseudoxyrhophiine karyotype with 2n = 46, similar to that of Leioheterodon geayi, via a series of centric fusions and inversions among macrochromosomes and translocations of micro‐ either to micro‐ or to macrochromosomes. This primitive Pseudoxyrhophiinae karyotype might have derived from a putative Lamprophiidae ancestor with 2n = 48, by means of a translocation of a micro‐ to a macrochromosome. In turn, the karyotype of this lamprophiid common ancestor may have derived from the assumed primitive snake karyotype (2n = 36 chromosomes, with 16 biarmed macro‐ and 20 microchromosomes) by a series of centric fissions and one inversion. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 450–460.  相似文献   

3.
It is only in the Hawaiian Islands that species of the otherwise marine genus Telmatogeton have evolved into freshwater. An analysis of polytene chromosomes and karyotypes of two marine species and five freshwater species revealed that paracentric inversions and centric fusions were important in chromosomal evolution. The sequence of polytene chromosome bands common to most species, established as the Telmatogeton standard sequence, is found in a population of T. torrenticola from West Maui. Most species and other populations of T. torrenticola may be derived from the standard sequence by paracentric inversions. Similarities with the standard band sequence places T. japonicus (n=7) rather than T. pacificus (n=4) in the proposed phylogeny as the species closest to the marine ancestor of the freshwater species. One of three species (T. fluviatilis from Oahu, T. torrenticola from West Maui, or an undescribed species from East Maui), each with seven pairs of chromosomes is considered to be closest to the original freshwater species. T. torrenticola is a complex species in which there is an accumulation of fixed inversions and centric fusions in stepwise fashion in populations from west to east (West Maui n=7; East Maui n=6; Kohala Mountains n=5 and Mauna Kea n=4 both from the island of Hawaii). The population of T. torrenticola from Molokai has a reduced chromosome number (n=4) and fixed inversions. T. abnormis and T. hirtus, the only species which exhibit differentiated sex chromosomes, may be derived from the standard sequency by paracentric inversions. T. abnormis (n=4) has a simple XY system and T. hirtus (n=3/4) has a complex XY1Y2 system. Unique sequences of bands, differences in staining intensity of puffs and bands, and an inversion form the basis for the differentiation of the various Y-chromosomes in these species.  相似文献   

4.
Chi JX  Huang L  Nie W  Wang J  Su B  Yang F 《Chromosoma》2005,114(3):167-172
The Indian muntjac (Muntiacus muntjak vaginalis) has a karyotype of 2n=6 in the female and 7 in the male, the karyotypic evolution of which through extensive tandem fusions and several centric fusions has been well-documented by recent molecular cytogenetic studies. In an attempt to define the fusion orientations of conserved chromosomal segments and the molecular mechanisms underlying the tandem fusions, we have constructed a highly redundant (more than six times of whole genome coverage) bacterial artificial chromosome (BAC) library of Indian muntjac. The BAC library contains 124,800 clones with no chromosome bias and has an average insert DNA size of 120 kb. A total of 223 clones have been mapped by fluorescent in situ hybridization onto the chromosomes of both Indian muntjac and Chinese muntjac and a high-resolution comparative map has been established. Our mapping results demonstrate that all tandem fusions that occurred during the evolution of Indian muntjac karyotype from the acrocentric 2n=70 hypothetical ancestral karyotype are centromere–telomere (head–tail) fusions.  相似文献   

5.
Sixteen species ofLongitarsus have been chromosomally surveyed, showing a continuous range of even numbers from 2n=26 to 2n=32 chromosomes. Among the total of twenty-three known species, about 40% display a 14+Xy male karyotypic formula, the possible modal and most primitive one for the genus. The current taxonomy of species groupings is in good agreement with the chromosome numbers in some cases, but not in others. Also, there is no interrelationship between chromosome numbers and foodplant selection. The number of large bivalents at metaphase I is generally negatively correlated with the diploid value, suggesting the possible role of centric fusions coupled to shifts in the amount of chromatin as the main chromosomal changes in the evolution ofLongitarsus. The karyotypes of a few studied species are composed of metacentric chromosomes, some of them of rather large size, and a minute y-chromosome. A possible example of polymorphism for the chromosome number inL. nigrofasciatus is reported and briefly discussed.  相似文献   

6.
Haploid chromosome numbers (n) of parasitic Hymenoptera (= traditional Parasitica + Chrysidoidea) vary from 2 to 23. However, this range can be subdivided into three intervals with n= 14–23 (less derived parasitic wasps, e.g., some Ichneumonidae and Braconidae as well as Gasteruptiidae), 8–13 (many other parasitic Hymenoptera) and 2–7 (Dryinidae, the majority of Chalcidoidea and some advanced Braconidae, e.g. Aphidiinae). The symmetric karyotype with a relatively high chromosome number (n= 14–17) and the prevalence of biarmed chromosomes must be considered as a groundplan feature of parasitic Hymenoptera. Independent reductions of chromosome numbers (n≤ 10–11) occurred in some groups of the superfamily Ichneumonoidea as well as in the common ancestor of the Proctotrupoidea sensu lato, Ceraphronoidea, Cynipoidea and Chalcidoidea. Further multiple decreases in chromosome numbers (n≤ 4–6) took place in some Braconidae, various lineages of the superfamily Chalcidoidea as well as in the family Dryinidae. Two main trends prevailed in the karyotype evolution of parasitic wasps: the reduction of chromosome numbers (mainly due to tandem fusions and less frequently due to centric ones) and karyotypic dissymmetrization (through an increase in size differentiation of chromosomes and/or in the share of acrocentrics in a chromosome set). Although karyotypic features of parasitic Hymenoptera can be used for solving taxonomic problems at various levels, this method is the most effective at the species level.  相似文献   

7.
Evidence of extensive chromosomal evolution in a biologically and economically important group of African murids of the Praomys/Mastomys complex was provided by examination of G- and C-band chromosomal data on P. coucha (2n = 32), P. fumatus (2n = 38), P. hildebrandti (2n = 32), P. jacksoni (2n = 28), P. misonnei (2n = 36), and P. cf. tullbergi (2n = 35). A coding system was developed for the chromosomal characters, and analyses were performed by a computer program to find the shortest tree with a minimum of 35 autosomal rearrangements (pericentric inversions, complex translocations, centric fusions, centric fissions, tandem fusions, euchromatic additions, and heterochromatic additions). The resulting phylogenetic hypothesis differs from traditionally accepted hypotheses regarding this complex group of rodents. The cytogenetic data show that 1) there is no support for the dichotomy of Mastomys/Praomys previously based on morphology, 2) the 2n = 32 species from eastern Africa (P. hildebrandti) is distinct from the 2n = 32 species from southern Africa (P. natalensis), and 3) there is a close association between P. jacksoni and P. cf. tullbergi. Polyacrylamide gel electrophoresis of liver membrane proteins demonstrated few differences in protein mobilities between species and even fewer between individuals of the same species taken from different habitats and localities in Kenya. Monoclonal antibodies produced against liver proteins of one species and tested for reactivity to other species confirmed the evolutionary similarity of species of this complex. This immunologic approach may provide a robust data set for future phylogenetic studies of muroid rodents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The karyotypes of three of the four extant species of the genus Auliscomys (A. micropus, living in central [2n = 32, NF = 34] and southern [2n = 34, NF = 36, 37] Chile; A. sublimis [2n = 28, NF = 32] and A. boliviensis [2n = 22, NF = 32], which inhabit the Andean Altiplano) were analyzed. Comparisons of G-, C-, and AgNOR-banded karyotypes showed that extensive conservation of entire chromosomes and chromosomal regions had occurred during the evolution of this genus, with centromeretelomere tandem fusions and centric fusions probably being the most frequent chromosome changes. A chromosomal phylogeny, based on the chromosome homoeologies detected and parsimonious analysis of the nature and distribution of the inferred chromosomal changes, is proposed. This hypothetical phylogeny assumes that the ancestral telocentric karyotype would have undergone three consecutive tandem fusions, first originating the 2n = 32 (NF = 34) karyomorph exhibited by present-day specimens of A. micropus captured in central Chile and then the 2n = 28 (NF = 32) karyotype of A. sublimis. Subsequent centric fusions involving the tandem-fusion products would presumably have generated the 2n = 22 (NF = 32) A. boliviensis karyotype. Assuming some conditions related to early geographic distribution, this chromosomal phylogeny is in agreement with a paleogeographic model, which explains the present distribution of living Auliscomys species mainly on the basis of geologic and climatic events.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Chromosomal evolution in Cervidae   总被引:3,自引:0,他引:3  
F Fontana  M Rubini 《Bio Systems》1990,24(2):157-174
On the basis of chromosome data obtained on 30 species and 20 subspecies of Cervidae, a report is submitted on the karyosystematics of this family. The primitive karyotype of Cervidae may be inferred to be composed of 35 acrocentric pairs (2n = 70 FN = 70). During the phyletic evolution of this family different types of chromosome rearrangements were probably selected and the group may have differentiated karyologically into three branches: (1) the Cervinae that fixed a centric fusion resulting in a metacentric pair of autosomes (2n = 68, FN = 70), as shown by the basic karyotype of Cervus elaphus, and where Robertsonian fusions are the preeminent type of chromosome rearrangement; (2) the Odocoileinae, in which pericentric inversions and Robertsonian fusions were favored, yielding first a submetacentric X and then a submetacentric autosome pair. The most representative karyotype is 2n = 70, FN = 74--as in Odocoileus hemionus; and (3) the Muntiacinae, in which centric and tandem fusions were the most common chromosome rearrangements. While Muntiacus reevesi has a karyotype 2n = 46, FN = 46, the chromosome number drops down to 2n = 6 in the females of the M. muntjak vaginalis subspecies group and M. rooseveltorum. Therefore, while the karyotypes are conserved within the subfamilies Cervinae and Odocoileinae; the subfamily Muntiacinae appears to be the most chromosomally diversified group. The few karyological data on the Moschus berezovskii suggest that the Moschinae should be placed in a separate family, the Moschidae.  相似文献   

10.
The G- and C-banded karyotype ofHolochilus brasiliensis collected in central Brazil (2n=55, AN=56, acrocentric X and Y) can be regarded as the most representative of the ancestral form of the genus.H. magnus (2n=52, AN=58, acrocentric X and Y) andH. brasiliensis vulpinus (2n=40, AN=56), both living in southern Brazil, would be in different phases of chromosome number reduction due to centric fusions.H. magnus, in addition, shows an X of variable morphology and a metacentric Y. This fact, coupled with its distinct morphology and restricted distribution, suggests that it may represent a distinct trend in the genus' main evolutionary line.  相似文献   

11.
E. Petitpierre 《Genetica》1975,45(3):349-354
SixChrysolina species from Catalonia and the Canary Islands (Spain), viz.americana, gemina, femoralis, cerealis, menthastri andpolita, have similar diploid karyotypes of 24 (sub)metacentric chromosomes, and show Xy sex-determining system.C. banksi andobsoleta have 2n ()=23; their karyotype is presumably derived from that of the former group by loss of the y chromosomes. InC. haemoptera andC. carnifex 40 elements appear in the diploid set. It seems that 2n=24 is the most frequent number in theChrysolina. Higher chromosome numbers have possibly originated through centric fissions, as the acrocentric shape ofC. carnifex chromosomes seems to suggest. The 2n=23 and 24 species feed onLabiatae, while the two higher chromosome number species are associated with plants belonging to other families.  相似文献   

12.
Homologous segments identified by G-banding sequences of chromosomes of Peromyscus boylii, Neotoma micropus, Oryzomys capito, (Family Cricetidae) Rattus norvegicus, Melomys burtoni, and Apodemus sylvaticus (Family Muridae) were used to hypothesize a chromosomal condition for the cricetid ancestor. A critical assumption in proposing the primitive G-banding sequences for a given chromosome is that if the outgroup and ingroup taxa have a specific sequence, then the ancestor of the ingroup taxa also had that same sequence. Using this methodology, (chromosome numbers refer to proposed homology to the standardized karyotype for Peromyscus), we propose that: (1) the primitive banding pattern of chromosome 1 was identical to that of Neotoma; (2) the primitive patterns of chromosomes 2, 3, 4, 6, 7, 8, 9, 10, 11, and 12 were primitive banding patterns of 5 and 13 were undetermined; (4) a major portion of the banding patterns of 14 and X were present in the ancestral karyotype. Only the largest 14 autosomes and X were examined because the smaller elements had insufficient G-band definition to ensure reasonable accuracy. The karyotype ancestral to that of Peromyscus, Neotoma, and Oryzomys may be as above and the banding patterns of 5, 13, and 14 were acrocentric and identical to those shown for Peromyscus, Neotoma, and Oryzomys (Fig. 1). In the primitive karyotype, heterochromatin (C-band material) was probably limited to the centromeric regions. If the primitive karyotype is as described above, then it is possible to determine the direction, type, and magnitude of chromosomal evolution evident in the various cricetid lineages. Based on the available data, radiation from the ancestral cytotype is characterized by a nonrandom distribution of types of chromosomal changes. Within many genera, more rearrangements occur in the 14 largest autosomal chromosomes of some congeneric species than distinguish the proposed primitive conditions for the genera Peromyscus, Neotoma, and Oryzomys. It would appear that the extensive morphological radiation from the primitive cricetid ancestor as indicated by the presence of over 100 surviving genera within the family, was not accompanied by extensive karyotypic changes. The magnitude of chromosomal variation that accompanies speciation in these genera appears to range from no detectable chromosomal evolution to a radical reorganization of the genome.  相似文献   

13.
Kinetochores of grasshoppers with Robertsonian chromosome fusions   总被引:2,自引:0,他引:2  
The pachytene karyotypes of three grasshopper species with 2 and 3 Robertsonian fusions were constructed from electron micrographs of serially sectioned spermatocyte nuclei. Tracings of the synaptonemal complexes permitted identification of each bivalent and its centromeric region. Chromosomes with the centromere in a terminal position have a knob of centric heterochromatin on the synaptonemal complex where it ends at the nuclear envelope. In Chorthippus and in Chloealtis the submetacentric Robertsonian fusion chromosomes each have a single centric knob in the appropriate place. In Neopodismopsis each of the 2 submetacentric chromosomes have a centric knob which is double in size and structure. In spermatogonial metaphases the submetacentric chromosomes of Neopodismopsis have 70–80 microtubules per kinetochore while the telocentric chromosomes have 30–40 tubules per kinetochore. These observations are correlated with evidence from light microscopy that Robertsonian fusions may produce mono- or dicentric chromosomes.  相似文献   

14.
Chromosomal studies ofMedicago lesinsii (n = 8) and its close relativeM. murex (n = 7) have led to the competing hypotheses that the latter is derived directly from the former, or that both originated from a common ancestor. In contrast to the relatively variableM. murex, M. lesinsii proved to be almost uniform isozymically, except that most populations of Greece differed by one allele from plants of the remainder of the range. This Greek variant ofM. lesinsii was indistinguishable from one of the isozyme variants ofM. murex. The greater level of allozyme variation inM. murex was consistent with its greater ecological amplitude and competitive ability. Also, this suggests thatM. murex is unlikely to have originated directly from the less variableM. lesinsii. The data suggest that either both species originated from a common ancestor, or that the n = 8 species evolved from the n = 7 species, a mode of chromosome evolution not previously hypothesized for the genus.  相似文献   

15.
Structural rearrangements of chromosomes have played a decisive role in the karyotypic evolution of species. It is also known that inversions, translocations, fusions, fissions, heterochromatin variations and other chromosomal changes occur as transient events in natural populations. Herein we report the occurrence of a rare event of centric fission of a metacentric chromosome in a laboratory population ofDrosophila, called Cytorace 1. This centric fission has been fixed in a sub-population of Cytorace 1, resulting in a new chromosomal lineage called Fissioncytorace-1.  相似文献   

16.
Genomic in situ hybridization offers a powerful tool for investigating genome organisation and evolution of taxa known, or suspected, to be allopolyploids. The question of the diploid progenitors of cultivated peanut (Arachis hypogaea, 2n=4x=40) has been the subject of numerous studies at cytogenetical, cytochemical, biochemical and molecular levels, but no definitive conclusions have been reached. The biotinylated total genomic DNA from potential diploidArachis species were separately hybridized in situ to root tip chromosomes ofA. hypogaea and wild speciesA. monticola (2n=4x=40) without or mixed with an excess of unlabelled DNA from the species not used as a probe. Among the range of different species combinations used, the strong and uniform signals given by labelledA. ipaensis DNA when hybridized toA. hypogaea andA. monticola in combination with unlabelledA. villosa DNA indicates that overall molecular composition of twenty chromosomes ofA. hypogaea andA. monticola is very similar toA. ipaensis chromosomes. ProbingA. hypogaea andA. monticola chromosomes with labelled genomic DNA fromA. villosa mixed with unlabelled DNA fromA. ipaensis likewise labelled strongly and uniformly the other twenty chromosomes. BarringA. ipaensis, all the diploidArachis species presently investigated had characteristic centromeric bands in the twenty chromosomes within the complement indicating a clear division ofA. ipaensis from other species. InA. hypogaea andA. monticola only twenty chromosomes showed centromeric bands. These results (i) confirm the allopolyploid nature ofA. hypogaea andA. monticola, (ii) strongly support the view that wildA. monticola and cultivatedA. hypogaea are very closely related, and (iii) indicate thatA. villosa andA. ipaensis are the diploid wild progenitors of the tetraploid species studied. The present results also reveal that the nucleolus organizing region (NOR) originating fromA. villosa alone is expressed in the two tetraploid species.  相似文献   

17.
We have investigated the karyotype relationships of two oriental voles, i.e. the Yulong vole (Eothenomys proditor, 2n = 32) and the large oriental vole (Eothenomys miletus, 2n = 56) as well as the Clarke's vole (Microtus clarkei, 2n = 52), by a combined approach of cross-species chromosome painting and high-resolution G-banding comparison. Chromosome-specific painting probes were generated from flow-sorted chromosomes of E. proditor and hybridized onto metaphases of E. proditor, E. miletus and M. clarkei, leading to the establishment of genome-wide comparative chromosome maps. Our results demonstrate that Robertsonian translocations (centric fusions) have played a major role in the karyotype evolution of oriental voles with no obvious evidence for the involvement of tandem fusions as proposed previously and that the genome organizations of vole species are highly conserved. The comparative chromosome maps of these three vole species belonging to two phylogenetically distinct genera provide a framework for future studies on the karyotype evolution in voles.  相似文献   

18.
Fluorescence in situ hybridization (FISH) was used to define homologous segments among representatives of 7 of the 11 recognized leporid genera. Chromosome painting using 22 rabbit chromosome-specific paints derived from flow-sorted chromosomes revealed that at least 18 fusions and six fissions differentiate the extant karyotypes from the presumed ancestral state (2n = 48). The riverine rabbit, Bunolagus monticularis, has the most derived karyotype, differing from the ancestor by seven fusions and five fissions, followed by Pronolagus rupestris, with four fusions and one fission. These findings are consistent with the proposed Palaeolaginae/Leporinae dichotomy in the lagomorphs. The molecular cytogenetic data allow for a refinement of the structural changes that have shaped genome evolution in this group of mammals and underscore the rapid radiation of the Leporidae suggested by mitochondrial DNA sequence data.  相似文献   

19.
The chromosomes of 14 specimens of the genus Reithrodon from three different localities of Argentina and two localities of Uruguay were studied using G-and C-banding techniques. Specimens of Uruguay showed a karyotype of 2n=28 chromosomes having a large metacentric X, and a telocentric Y chromosome. This karyotype is very similar to that recently described in a sample from southern Brazil, differing only in the nature of the Y chromosome, which is metacentric in the Brazilian form. All specimens from Argentina showed a 2n=34 karyotype, differing from the Brazilian karyotype by two centric fusions, an acquisition of chromosome material, and at least one pericentric inversion, and by the telocentric nature of both the X and the Y chromosomes. G-and C-banding suggest that the metacentric gonosomes in the Brazilian form resulted from a double autosomal-X-Y Robertsonian translocation. The Uruguayan cytotype is interpreted as derived from a hypothetical neo-X/Y1Y2 ancestral form by the secondary loss of the Y1 chromosome. The karyotypic differences between the Brazilian-Uruguayan and the Argentinian forms afford evidence of species differentiation. It is proposed to assign the former to Reithrodon typicus, and the later to R. auritus.  相似文献   

20.
The chromosomal locations of several families of tandem repetitive DNA sequences and the 5S rDNA were determined using fluorescence in situ hybridization (FISH) in the five North American charr species: Salvelinus namaycush, S. fontinalis, S. alpinus, S. malma, and S. confluentus. The pattern of hybridization of three centromeric repetitive sequences previously isolated from S. namaycush and S. alpinus was unique in each species. Dual-color FISH experiments showed that in several species many of the centromeres had the EcoRI-DraI family in addition to either the AluI-RsaI type A or type B families. The EcoRI-DraI family which was found only at the centromeres of acrocentric chromosomes in S. namaycush, S. fontinalis and S. malma was also found at centromeres of selected metacentrics in S. alpinus (one pair) and S. confluentus (four pairs) whose chromosomes have undergone additional centric fusions compared to the other species. The locations of 5S rDNA sequences were different in each species except for the two most closely related (S. alpinus and S. malma). Two whole-arm chromosome paint probes, one specific for the short and the other for the long arm of the lake charr sex chromosomes, hybridize to the same chromosome pair in all species. Results with other paint probes suggest that independent centric fusions have occurred in S. alpinus and S. confluentus which is consistent with the phylogenetic tree obtained previously for Salvelinus with cytogenetic and DNA data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号