首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of melittin with phosphatidylcholine molecules in pure vesicles, binary mixtures and a ternary mixture of dimyristoylphosphatidylcholine IDMPC), dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC) was investigated by differential scanning calorimetry. Melittin binds preferentially with DMPC, and results in segregation of DMPC in binary mixtures of DMPC/DPPC and DMPC/DSPC and in a ternary mixture of DMPC/DPPC/DSPC. The results indicate that the hydrophobic part of peptide interacts preferentially with the phospholipid which has the same size of hydrophobic region or fatty acyl chains.  相似文献   

2.
Abuja PM  Zenz A  Trabi M  Craik DJ  Lohner K 《FEBS letters》2004,566(1-3):301-306
The effects of a mammalian cyclic antimicrobial peptide, rhesus theta defensin 1 (RTD-1) and its open chain analogue (oRTD-1), on the phase behaviour and structure of model membrane systems (dipalmitoyl phosphatidylcholine, DPPC and dipalmitoyl phosphatidylglycerol, DPPG) were studied. The increased selectivity of RTD-1 for anionic DPPG over zwitterionic DPPC was shown by differential scanning calorimetry. RTD-1, at a molar peptide-lipid ratio of 1:100, induced considerable changes in the phase behaviour of DPPG, but not of DPPC. The main transition temperature, Tm, was unchanged, but additional phase transitions appeared above Tm. oRTD-1 induced similar effects. However, the effects were not observable below a peptide:lipid molar ratio of 1:50, which correlates with the weaker biological activity of oRTD-1. Small- and wide-angle X-ray scattering revealed for DPPG the appearance of additional structural features induced by RTD-1 above Tm, which were interpreted as correlated lamellar structures, with increased order of the fatty acyl side chains of the lipid. It is proposed that after initial electrostatic interaction of the cationic rim of the peptide with the anionic DPPG headgroups, leading to stabilized lipid-peptide clusters, the hydrophobic face of the peptide assists in its interaction with the fatty acyl side chains eventually leading to membrane disruption.  相似文献   

3.
A fatty acid spin label, 16-doxyl-stearic acid, was used to determine the percent interdigitated lipid in mixtures of a neutral phospholipid and an acidic phospholipid. Interdigitation of the acidic lipid was induced with polymyxin B (PMB) at a mole ratio of PMB to acidic lipid of 1:5. This compound does not bind significantly to neutral lipids or induce interdigitation of the neutral lipids by themselves. The neutral lipids used were dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), or dipalmitoylphosphatidylethanolamine (DPPE), and the acidic lipids were dipalmitoylphosphatidylglycerol (DPPG) or dipalmitoylphosphatidic acid (DPPA). The percent interdigitated lipid was determined from the percent of the spin label which is motionally restricted, assuming that the spin label is homogeneously distributed in the lipid. Assuming further that 100% of the acidic lipid is interdigitated at this saturating concentration of PMB, the percentage of the neutral lipid which can become interdigitated along with it was calculated. The results indicate that about 20 mole % DPPC can be incorporated into and become interdigitated in the interdigitated bilayer of PMB/DPPG at 4 degrees C. As the temperature approaches the phase transition temperature, the lipid becomes progressively less interdigitated; this occurs to a greater degree for the mixtures than for the single acidic lipid. Thus the presence of DPPC promotes transformation of the acidic lipid to a non-interdigitated bilayer at higher temperatures. At the temperature of the lipid phase transition little or none of the lipid in the mixture is interdigitated. Thus the lipid phase transition detected by calorimetry is not that of the interdigitated bilayer. The shorter chain length DMPC can be incorporated to a greater extent than DPPC, 30-50 mol%, in the interdigitated bilayer of PMB-DPPG. This may be a result of reduced exposure of the terminal methyl groups of the shorter myristoyl chains at the polar/apolar interface of the interdigitated bilayer. Less than 29% of the total lipid was interdigitated in a DPPC/DPPA/PMB 1:1:0.2 mixture indicating that none of the DPPC in this mixture becomes interdigitated. This is attributed to the lateral interlipid hydrogen bonding interactions of DPPA which inhibits formation of an interdigitated bilayer. DPPE was found to be incorporated into the interdigitated bilayer of PMB-DPPG to a similar extent as DPPC if the amount of PMB added is sufficient to bind to only the DPPG in the mixture. Differential scanning calorimetry showed that the remaining non-interdigitated DPPE-enriched mixture phase separates into its own domain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
山莨菪碱诱导DPPG脂质体交插结构,其脂酰链末端插到对面分子层脂酰链第五个碳原子的位置,而生物膜中普遍存在的DPPC不能被山莨菪碱诱导形成交插相,但DPPG/DPPC混合物则能形成交插相,即伴随DPPG的交插,DPPC分子也发生交插。当DPPG/DPPC摩尔比为2:1或1:1时,其脂酰链末端插到对面分子层第八个碳原子的位置。当DPPG/DPPC摩尔比为1:2时,就不能发生交插而呈完全的非交插状态。同时,发现当体系中钠离子浓度达到400mmol/L时,山莨菪碱就不能再诱导DPPG形成交插凝胶相。  相似文献   

5.
Phosphatidylserine (PS) extracted from pig brain and synthetic dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were used to make DPPC/DMPC and DPPC/PS large unilamellar liposomes with a diameter of approximately 1 microm. Chlorpromazine-HCl (CPZ), an amphipathic cationic psychotropic drug of the phenothiazine group, is known to partition into lipid bilayer membranes of liposomes with partition coefficients depending on the acyl chain length and to alter the bilayer structure in a manner depending on the phospholipid headgroups. The effects of adding CPZ to these membranes were studied by differential scanning calorimetry and proton cross polarization solid state magic angle spinning (13)C-nuclear magnetic resonance spectroscopy (CP-MAS-(13)C-NMR). CP-MAS-(13)C-NMR spectra of the DPPC (60%)/DMPC (40%) and the DPPC (54%)/DMPC (36%)/CPZ (10%) liposomes, show that CPZ has low or no interaction with the phospholipids of this neutral and densely packed bilayer. Conversely, the DPPC (54%)/PS (36%)/CPZ (10%) bilayer at 25 degrees C demonstrates interaction of CPZ with the phospholipid headgroups (PS). This CPZ interaction causes about 30% of the acyl chains to enter the gauche conformation with low or no CPZ interdigitation among the acyl chains at this temperature (25 degrees C). The DPPC (54%)/PS (36%)/CPZ (10%) bilayer at a sample temperature of 37 degrees C (T(C)=31.2 degrees C), shows CPZ interdigitation among the phospholipids as deduced from the finding that approximately 30% of the phospholipid acyl chains carbon resonances shift low-field by 5-15 ppm.  相似文献   

6.
High sensitivity differential scanning calorimetry (DSC) was used to investigate the thermotropic phase properties of binary mixtures of disaturated phosphocholines (PCs) and alpha-bromoacyl taxane derivatives. The alpha-bromoacyl taxanes were synthesized as hydrolyzable hydrophobic prodrugs of paclitaxel. The PCs used were 1, 2-dimyristoyl-sn-glycero-3-phosphatidyl-choline (DMPC), 1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1, 2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). The bromoacyl chain lengths of the taxane prodrugs were varied from 6 to 12 or 16 carbons. For comparison, paclitaxel and PC mixtures were also examined. DSC data from DPPC and bromoacyl taxane mixtures showed a complete abolition of the pretransition and significant broadening of the main phase transition with increasing amounts of bromoacyl taxane prodrugs. The effects were more pronounced with the long-chain compared to the short-chain prodrugs. Under equivalent DSC conditions, the short-chain DMPC showed greater changes in thermotropic phase behavior than with DPPC on taxane addition, suggesting an enhanced degree of association with the fluid-type bilayers. Under similar conditions, the long-chain DSPC bilayers showed a far less significant change in phase behavior on taxane addition than DPPC. These changes were also chain length-dependent for both the PCs and the taxane prodrugs. In contrast, PC and paclitaxel (lacking the acyl chain) mixtures under similar conditions showed insignificant changes in the endotherms, suggesting only slight insertion of the molecule into the PC bilayers. From the DSC data it is apparent that taxane prodrugs solvated in DMPC bilayers more than in DPPC and DSPC bilayers, and taxane prodrugs with longer acyl chains were able to associate with PCs better than those with shorter chain prodrugs. DSC data also suggest that paclitaxel was poorly associated with any of the PCs. In general, the amount of taxane association with bilayers decreased in order: DMPC > DPPC > DSPC. In contrast, the transition enthalpy (DeltaH) of DMPC, DPPC, and DSPC mixtures with paclitaxel showed significantly lower enthalpies than with taxane prodrugs. Taken together, the DSC data suggest that the acyl chains of paclitaxel prodrugs have some access into the bilayers via alignment with the acyl chain of the PC component.  相似文献   

7.
The effect of the antibiotic polymyxin B on dipalmitoylphosphatidylglycerol (DPPG) bilayers has been studied by Raman and infrared spectroscopies and small-angle X-ray diffraction. Each polymyxin B molecule binds five DPPG molecules at physiological pH and induces a macroscopic phase separation of the complex rather than a lateral phase separation. Below the phase transition of DPPG/polymyxin B bilayers, the results obtained show that the intermolecular vibrational coupling is high and suggest that the acyl chains of the bound lipid are interdigitated and that the hydrophobic tail of the antibiotic does not penetrate this tight assembly. On the other hand, the phase transition of DPPG is shifted down from 41 degrees C to 37 degrees C in the complexes and remains highly cooperative. Above the phase transition of the complexes, the conformation of the acyl chains of DPPG is slightly more disordered as a result of the penetration of the polymyxin chain, but the structure of the glycerol backbone of the lipid does not seem to be affected. However, the rotational rate of the lipid appears to be restricted by the peptide.  相似文献   

8.
This work presents a biophysical study on the interactions of a monorhamnolipid (monoRL) produced by Pseudomonas aeruginosa MA01 with model phosphatidylcholine membranes. The molecular characterization of the biological activities, including the modulation of phospholipid membranes structure, of this monoRL biosurfactant is of importance for the validation of this particular Pseudomonas aeruginosa strain as a useful biosurfactant producer. The marked amphiphilic structure of monoRL is expected to result in strong interactions with the phospholipid constituents of membrane bilayers. Incorporation of monoRL into DMPC completely abolished the pretransition, and the main gel to liquid-crystalline phase transition was progressively broadened and shifted to lower temperatures, as observed by differential scanning calorimetry. Partial phase diagrams for DPPC and DSPC indicated near-ideal behavior. However, the DMPC diagram indicated fluid phase immiscibility. X-ray diffraction showed and apparent increase in d-value for DPPC containing monoRL, which might be the result of an effective increase in the bilayer thickness, or in the thickness of the hydration layer between bilayers. FTIR indicated that interaction of monoRL with the phospholipid acyl chains did not result in a large additional disordering of the acyl chain region of the fluid bilayer. Analysis of the CO stretching band of DPPC indicated an important effect of monoRL on the interfacial region of phosphatidylcholine bilayers, which might contribute to explain some of the biological activities of this glycolipid.  相似文献   

9.
We previously reported that 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) forms an interdigitated gel phase in the presence of 1-palmitoyl-sn-glycero-3-phosphocholine (16:0LPC) at concentrations below 30 mol%. In the present investigation, fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH), X-ray diffraction, and differential scanning calorimetry (DSC) were used to investigate the effect of cholesterol on the phase behavior of 16:0LPC/DPPC binary mixtures. At 25 degrees C, 30 mol% 16:0LPC significantly decreases the DPH fluorescence intensity during the transition of DPPC from the L(beta') phase to the L(betaI) phase. However, the addition of cholesterol to 16:0LPC/DPPC mixtures results in a substantial increase in fluorescence intensity. The changes in DPH fluorescence intensity reflect the probe's redistribution from an orientation parallel to the acyl chain to the center of the bilayer, suggesting a bilayer structure transition from interdigitation to noninterdigitation. The normal repeat period of small angle X-ray diffraction patterns can be restored and a reflection appears at 0.42 nm with a broad shoulder around 0.41 nm in wide angle X-ray diffraction patterns when 10 mol% cholesterol is incorporated into 30 mol% 16:0LPC/DPPC vesicles, indicating that the mixtures are in the gel phase (L(beta')). Moreover, DSC results demonstrate that 10 mol% cholesterol is sufficient to significantly decrease the main enthalpy, cooperativity and lipid chain melting of 30 mol% 16:0LPC/DPPC binary mixtures, which are L(betaI), indicating that the transition of the interdigitated phase is more sensitive to cholesterol than that of the noninterdigitated phase. Our data imply that the interdigitated gel phase induced by 16:0LPC is prevented in the presence of 10 mol% cholesterol, but unlike ethanol, an increasing concentration of 16:0LPC is not able to restore the interdigitation structure of the lipid mixtures.  相似文献   

10.
The interactions between a drug and lipids may be critical for the pharmacological activity. We previously showed that the ability of a fluoroquinolone antibiotic, ciprofloxacin, to induce disorder and modify the orientation of the acyl chains is related to its propensity to be expelled from a monolayer upon compression [1]. Here, we compared the binding of ciprofloxacin on DPPC and DPPG liposomes (or mixtures of phospholipids [DOPC:DPPC], and [DOPC:DPPG]) using quasi-elastic light scattering and steady-state fluorescence anisotropy. We also investigated ciprofloxacin effects on the transition temperature (T(m)) of lipids and on the mobility of phosphate head groups using Attenuated Total Reflection Fourier Transform Infrared-Red Spectroscopy (ATR-FTIR) and (31)P Nuclear Magnetic Resonance (NMR) respectively. In the presence of ciprofloxacin we observed a dose-dependent increase of the size of the DPPG liposomes whereas no effect was evidenced for DPPC liposomes. The binding constants K(app) were in the order of 10(5) M(-1) and the affinity appeared dependent on the negative charge of liposomes: DPPG>DOPC:DPPG (1:1; M:M)>DPPC>DOPC:DPPC (1:1; M:M). As compared to the control samples, the chemical shift anisotropy (Deltasigma) values determined by (31)P NMR showed an increase of 5 and 9 ppm for DPPC:CIP (1:1; M:M) and DPPG:CIP (1:1; M:M) respectively. ATR-FTIR experiments showed that ciprofloxacin had no effect on the T(m) of DPPC but increased the order of the acyl chains both below and above this temperature. In contrast, with DPPG, ciprofloxacin induced a marked broadening effect on the transition with a decrease of the acyl chain order below its T(m) and an increase above this temperature. Altogether with the results from the conformational analysis, these data demonstrated that the interactions of ciprofloxacin with lipids depend markedly on the nature of their phosphate head groups and that ciprofloxacin interacts preferentially with anionic lipid compounds, like phosphatidylglycerol, present at a high content in these membranes.  相似文献   

11.
Binary phase diagrams have been constructed from differential scanning calorimetry (DSC) data for the systems 1-palmitoyl-2-oleylphosphatidylcholine (POPC)/dimyristoylphosphatidylcholine (DMPC), POPC/dipalmitoylphosphatidylcholine (DPPC) and POPC/distearoylphosphatidylcholine (DSPC). Mixtures of POPC with DMPC exhibit complete miscibility in the gel and liquid crystalline states. Mixtures of POPC with DPPC or with DSPC exhibit gel phase immiscibility over the composition range 0-75% DPPC (or DSPC). These results, when taken together with previous studies of mixtures of phosphatidylcholines, are consistent with the hypothesis that PCs whose order-disorder transition temperatures (Tm values) differ by less than 33 deg. C exhibit gel state miscibility. Those whose Tm values differ by more than 33 deg. C exhibit gel state immiscibility. 2H-NMR spectroscopy has been used to further study mixed model membranes composed of POPC and DPPC, in which either lipid has been labeled with deuterium in the 2-, 10- or 16-position of the palmitoyl chain(s) or in the N-methyls of the choline head group. POPC/DPPC mixtures in the liquid crystalline state are intermediate in order between pure POPC and DPPC at the same temperature. The POPC palmitoyl chain is always more disordered than the palmitoyl chains of DPPC in liquid crystalline POPC/DPPC mixtures. This is attributed to the fact that a POPC palmitoyl chain is constrained by direct bonding to have at least one oleyl chain among its nearest neighbors, while a DPPC palmitoyl chain must have at least one neighboring palmitoyl chain. When liquid crystalline POPC, DPPC and POPC/DPPC mixtures are compared at a reduced temperature (relative to the acyl chain order-disorder transition), POPC/DPPC mixtures are more disordered than predicted from the behavior of the pure components, in agreement with enthalpy data derived from DSC studies. Within the temperature range of the broad phase transition of 1:1 POPC/DPPC, a superposition of gel and liquid crystalline spectra is observed for 1:1 POPC/[2H]DPPC, while 1:1[2H]POPC/DPPC exhibits only a liquid crystalline spectrum. Thus, at temperatures within the phase transition region, the liquid crystalline phase is POPC-rich and the gel phase is DPPC-rich. Comparison of the liquid crystalline quadrupole splittings within the thermal phase transition range suggests that mixing of the residual liquid crystalline POPC and DPPC is highly non-ideal.  相似文献   

12.
The phase behavior of lipid mixtures containing 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0, 22:6 PC) with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was studied with bilayers using differential scanning calorimetry (DSC), and with monolayers monitoring pressure/area isotherms and surface elasticity, and lipid domain formation followed by epifluorescence microscopy. From DSC studies it is concluded that DPPC/18:0, 22:6 PC phase separates into DPPC-rich and 18:0, 22:6 PC-rich phases. In monolayers, phase separation is indicated by changes in pressure-area isotherms implying phase separation where 18:0, 22:6 PC is 'squeezed out' of the remaining DPPC monolayer. Phase separation into lipid domains in the mixed PC monolayer is quantified by epifluorescence microscopy using the fluorescently labeled phospholipid membrane probe, 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl). These results further describe the ability of docosahexaenoic acid to participate in lipid phase separations in membranes.  相似文献   

13.
Interaction of polymyxin B nonapeptide with anionic phospholipids   总被引:1,自引:0,他引:1  
The interaction of polymyxin B nonapeptide (PMBN) and polymyxin B (PMB) with the anionic phospholipids phosphatidylserine (PS), dipalmitoylphosphatidylglycerol (DPPG), dipalmitoylphosphatidic acid (DPPA), and 1:1 mixtures (w/w) of DPPA and distearoylphosphatidylcholine (DSPC) was studied by calorimetry, electron spin resonance, and fluorescence spectrometry, electron microscopy, and fusion and leakage assays. The phase transition temperatures of DPPA and DPPG were very similar when bound to PMB or PMBN, indicating that the lipids are in a similar state when bound to the cationic peptides. Both PMB and PMBN caused the interdigitation of DPPG bilayers, suggesting that the penetration of hydrophobic side chains from a peptide bound electrostatically on the surface is sufficient to induce this phenomenon. Stopped-flow experiments revealed that PMBN and PMB induced the fusion of small unilamellar PS and large unilamellar DPPA-DSPC vesicles. The aggregation of vesicles was found to be diffusion-controlled process; the subsequent fusion took place with a frequency of 10(2)-(5 X 10(2] s-1 for small vesicles and 1-100 s-1 for large vesicles. The freeze-fracture replicas of the PMB-treated vesicles displayed 12-50-nm depressions on several superimposed bilayers, indicating the formation of stable lipid-PMB domains. Since the incubation with PMBN produced similar depressions only if the specimens were fixed, PMBN-induced domain formation seems to be a reversible rapid process. The differences in the phospholipid-peptide interactions are correlated with the differences in the physiological action of the antibiotic PMB and the nonbactericidal PMBN on the cell envelope of Gram-negative bacteria.  相似文献   

14.
Phospholipase A(2) (PLA(2)) is an interfacially active enzyme whose hydrolytic activity is known to be enhanced in one-component phospholipid bilayer substrates exhibiting dynamic micro-heterogeneity. In this study the activity of PLA(2) towards large unilamellar vesicles composed of DPPC:SMPC and DMPC:DSPC:SMPC is investigated using fluorescence and HPLC techniques. Phase diagrams of the mixtures are established by differential scanning calorimetry and the PLA(2) activity, monitored by the lag time, is correlated with the phase behavior of the mixtures. In addition, the degree of lipid hydrolysis in the DMPC:DSPC:SMPC lipid mixtures is detected by HPLC. The PLA(2) activity is found to be significantly increased in the temperature range of the coexistence region where the lipid mixtures exhibit lateral gel-fluid phase separation. Furthermore, in the entire temperature range it is demonstrated that PLA(2) preferentially hydrolyzes the short chain DMPC lipid. This discriminative effect becomes less pronounced when the asymmetric lipid SMPC is present in the lipid substrate. Inclusion of SMPC into either DPPC or DMPC:DSPC vesicles prolongs the lag time. The results clearly show that the PLA(2) activity is significantly enhanced by lipid bilayer micro-heterogeneity in both one-component and multi-component lipid bilayer substrates. The PLA(2) activity measurements are discussed in terms of dynamic gel-fluid lipid domain formation due to density fluctuations and static lipid domain formation due to gel-fluid phase separation.  相似文献   

15.
D Otten  L L?bbecke    K Beyer 《Biophysical journal》1995,68(2):584-597
The perturbation of phospholipid bilayer membranes by a nonionic detergent, octaethyleneglycol mono-n-dodecylether (C12E8), was investigated by 2H- and 31P-NMR, static and dynamic light scattering, and differential scanning calorimetry. Preequilibrated mixtures of the saturated phospholipids 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC), and 1,2-dilauroyl-sn-glycero-3-phosphorylcholine (DLPC) with the detergent were studied over a broad temperature range including the temperature of the main thermotropic phase transition of the pure phospholipids. Above this temperature, at a phospholipid/detergent molar ratio 2:1, the membranes were oriented in the magnetic field. Cooling of the mixtures below the thermotropic phase transition temperatures of the pure phospholipids led to micelle formation. In mixtures of DPPC and DMPC with C12E8, a narrow calorimetric signal at the onset temperature of the solubilization suggested that micelle formation was related to the disorder-order transition in the phospholipid acyl chains. The particle size changed from 150 nm to approximately 7 nm over the temperature range of the bilayer-micelle transition. The spontaneous orientation of the membranes at high temperatures enabled the direct determination of segmental order parameters from the deuterium spectra. The order parameter profiles of the phospholipid acyl chains could be attributed to slow fluctuations of the whole membrane and to detergent-induced local perturbations of the bilayer order. The packing constraints in the mixed bilayers that eventually lead to bilayer solubilization were reflected by the order parameters of the interfacial phospholipid acyl chain segments and of the phospholipid headgroup. These results are interpreted in terms of the changing average shape of the component molecules. Considering the decreasing cross sectional areas in the acyl chain region and the increasing hydration of the detergent headgroups, the bilayer-micelle transition is the result of an imbalance in the chain and headgroup repulsion. A neutral or pivotal plane can be defined on the basis of the temperature dependence of the interfacial quadrupolar splittings.  相似文献   

16.
To investigate the mechanisms by which vesicles of pulmonary surfactant adsorb to an air-liquid interface, we measured the effect of different phospholipids and of their concentration both in the subphase and at the interface on this process. Adsorbing vesicles contained the hydrophobic surfactant proteins mixed with the following four sets of surfactant phospholipids that varied the content of anionic headgroups and mixed acyl chains independently: the complete set of purified phospholipids (PPL) from calf surfactant; modified PPL (mPPL) from which the anionic phospholipids were removed; a mixture of dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylglycerol (DPPG) (9:1, mol:mol); and DPPC alone. The initial reduction in surface tension depended strongly on the anionic phospholipids and the subphase concentration. The acyl groups had no effect. Adsorption beyond the initial stage depended more on the mixed acyl groups, became increasingly independent of subphase concentration, and was determined instead by the interfacial concentration of the surface film. The different constituents produced the same effects in vesicles adsorbing to a clean interface or in a preexisting film to which vesicles of SP:DPPC adsorbed. Adsorption for vesicles of SP:PPL adsorbing to DPPC or of SP:DPPC to PPL above a certain threshold surface concentration followed exactly the same isotherm. Our results fit best with a two-step model for adsorption. The anionic phospholipids first promote the initial juxtaposition of vesicles to the interface. Compounds with mixed acyl constituents at the point of contact between vesicle and interface then facilitate fusion with the surface.  相似文献   

17.
The thermal properties of various mixtures of two nonionic surfactants, decyldimethylphosphine oxide (APO10) and dodecyldimethylphosphine oxide (APO12) and two phospholipids, dimyristoylphosphatidyl choline (DMPC) and dipalmitoylphosphatidyl choline (DPPC), were examined by differential scanning calorimetry at various mole fractions. The addition of APO12 to DMPC multilamellar vesicles lowered the temperature of the main transition, produced considerable broadening, and eliminated the pre-transition. Phase separation, as evidenced by the existence of a cloud point, T(cp), occurred when the mole fraction of APO12, with respect to DMPC was 0.58 and above. A small abrupt increase in heat capacity was observed at, or slightly above, the cloud point of APO12 and all mixed micelle solutions. It appeared that mixed micelles coexisted with mixed bilayers when the mole fraction was between 0.58 and 0.75 and perhaps as low as a mole ratio of 0.32. All of the mixtures, except APO12/DMPC, exhibited a clear endotherm below the temperature corresponding to the cloud point, which likely reflects the growth in micellar size. Overlapping chain length dependent endothermic peaks, perhaps resulting from reorganization and/or continued association of the micelles, were observed above the cloud point for all of the mixtures except for APO10/DMPC solutions. However, solutions of mixed micelles consisting of APO10/DMPC with mole fractions of surfactant between 0.81 and 0.93 portrayed a broad unidentified exotherm of about 2+/-1 kcal/mol, which was centered nearly 10-20 degrees C above the cloud point.  相似文献   

18.
Diazeniumdiolate reactivity in model membrane systems.   总被引:1,自引:1,他引:0  
The effect of small unilamellar phospholipid vesicles on the acid-catalyzed dissociation of nitric oxide from diazeniumdiolate ions, R(1)R(2)N[N(O)NO](-), [1: R(1)=H(2)N(CH(2))(3)-, R(2)=H(2)N(CH(2))(3)NH(CH(2))(4)-; 2: R(1)=R(2)=H(2)N(CH(2))(3)-; 3: R(1)=n-butyl-, R(2)=n-butyl-NH2+(CH(2))(6)-; 4: R(1)=R(2)=nPr-] has been examined at pH 7.4 and 37 degrees C. NO release was catalyzed by anionic liposomes (DPPG, DOPG, DMPS, POPS and DOPA) and by mixed phosphatidylglycerol/phosphatidylcholine (DPPG/DPPC and DOPG/DPPC) covesicles, while cationic liposomes derived from 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the zwitterionic liposome DMPC did not significantly affect the dissociation rates of the substrates examined. Enhancement of the dissociation rate constant in DPPG liposome media (0.010M phosphate buffer, pH 7.4, 37 degrees C) at 10mM phosphoglycerol levels, ranged from 37 for 1 to 1.2 for the anionic diazeniumdiolate 4, while DOPA effected the greatest rate enhancement, achieving 49-fold rate increases with 1 under similar conditions. The observed catalysis decreases with increase in the bulk concentration of electrolytes in the reaction media. Quantitative analysis of catalytic effects has been obtained through the application of pseudo-phase kinetic models and equilibrium binding constants at different liposome interfaces are compared. The stoichiometry of nitric oxide release from 1 and 2 in DPPG/DPPC liposome media has been obtained through oxyhemoglobin assay. DPPG=1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)], DOPG=1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)], DMPS=1,2-dimyristoyl-sn-glycero-3-[phospho-l-serine], POPS=1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-l-serine], DOPA=1,2-dioleoyl-sn-glycero-3-phosphate; DPPC=1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DMPC=1,2-dimyristoyl-sn-glycero-3-phosphocholine, DOTAP=1,2-dioleoyl-3-trimethylammonium-propane.  相似文献   

19.
Glycerol and polymyxin have been shown by X-ray diffraction to induce interdigitated bilayers in phosphatidylcholine (PC) and phosphatidylglycerol (PG), respectively (McDaniel, R.V., et al. (1983) Biochim. Biophys. Acta 731, 97-108; Ranck, J.-L. and Tocanne, J.-F. (1982) FEBS Lett. 143, 175-178). In the present study we have investigated the phase behavior of PC and PG in the presence of glycerol and polymyxin by differential scanning calorimetry and the use of fatty acid spin labels. Interdigitation causes a large increase in the order parameter of a fatty acid spin labeled near the terminal methyl, 16-doxylstearate, so that it was similar to that of a fatty acid labeled much closer to the polar head group region, 5-doxylstearate. Thus interdigitation abolishes the fluidity gradient found in a non-interdigitated bilayer. 16-Doxylstearate may be useful in detecting interdigitation of lipid bilayers caused by other substances. The different samples all went through two transitions on heating or cooling, or both. However, use of the fatty acid spin label showed that the molecular events during these transitions varies for different samples. The results suggested that PC-glycerol freezes from the liquid-crystalline phase into a non-interdigitated gel phase. This subsequently becomes interdigitated upon lowering the temperature a few degrees, in a low enthalpy transition. PG-polymyxin shows a similar behavior except that the enthalpy of the non-interdigitated gel to interdigitated phase transition is greater and the transition is reversible on heating. Thus on heating PG-polymyxin first goes through a transition from the interdigitated phase to a non-interdigitated gel phase and then, in a separate transition, to the liquid-crystalline phase. This occurs because the fatty acid chains in the presence of polymyxin become too disordered with increase in temperature to maintain the interdigitated state. PG-glycerol goes into the interdigitated state less readily than the other mixtures. If cooled rapidly, PG-glycerol freezes into a metastable phase which is more disordered than the interdigitated phase. It goes into the interdigitated phase in an exothermic transition on heating. An increase in fatty acid chain length causes greater steric hindrance to interdigitation but also increases the stabilizing energy gained by interdigitation.  相似文献   

20.
Simvastatin is a lipid-lowering drug in the pharmaceutical group statins. Interaction of a drug with lipids may define its role in the system and be critical for its pharmacological activity. We examined the interactions of simvastatin with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) and anionic dipalmitoyl phosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) as a function of temperature at different simvastatin concentrations using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The FTIR results indicate that the effect of simvastatin on membrane structure and dynamics depends on the type of membrane lipids. In anionic DPPG MLVs, high simvastatin concentrations (12, 18, 24 mol%) change the position of the CH2 antisymmetric stretching mode to lower wavenumber values, implying an ordering effect. However, in zwitterionic DPPC MLVs, high concentrations of simvastatin disorder systems both in the gel and liquid crystalline phases. Moreover, in DPPG and DPPC MLVs, simvastatin has opposite dual effects on membrane dynamics. The bandwidth of the CH2 antisymmetric stretching modes increases in DPPG MLVs, implying an increase in the dynamics, whereas it decreases in DPPC MLVs. Simvastatin caused broadening of the phase transition peaks and formation of shoulders on the phase transition peaks in DSC curves, indicating multi-domain formations in the phospholipid membranes. Because physical features of membranes such as lipid order and fluidity may be changed with the bioactivity of drugs, opposing effects of simvastatin on the order and dynamics of neutral and charged phospholipids may be critical to deduce the action mechanism of the drug and estimate drug-membrane interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号