首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pregnancy-induced noncoding RNA (PINC) and retinoblastoma-associated protein 46 (RbAp46) are upregulated in alveolar cells of the mammary gland during pregnancy and persist in alveolar cells that remain in the regressed lobules following involution. The cells that survive involution are thought to function as alveolar progenitor cells that rapidly differentiate into milk-producing cells in subsequent pregnancies, but it is unknown whether PINC and RbAp46 are involved in maintaining this progenitor population. Here, we show that, in the post-pubertal mouse mammary gland, mPINC is enriched in luminal and alveolar progenitors. mPINC levels increase throughout pregnancy and then decline in early lactation, when alveolar cells undergo terminal differentiation. Accordingly, mPINC expression is significantly decreased when HC11 mammary epithelial cells are induced to differentiate and produce milk proteins. This reduction in mPINC levels may be necessary for lactation, as overexpression of mPINC in HC11 cells blocks lactogenic differentiation, while knockdown of mPINC enhances differentiation. Finally, we demonstrate that mPINC interacts with RbAp46, as well as other members of the polycomb repressive complex 2 (PRC2), and identify potential targets of mPINC that are differentially expressed following modulation of mPINC expression levels. Taken together, our data suggest that mPINC inhibits terminal differentiation of alveolar cells during pregnancy to prevent abundant milk production and secretion until parturition. Additionally, a PRC2 complex that includes mPINC and RbAp46 may confer epigenetic modifications that maintain a population of mammary epithelial cells committed to the alveolar fate in the involuted gland.  相似文献   

2.
3.
4.
5.
The claudins are a family of tight junction proteins that display varied tissue distribution and preferential specificity. We recently identified by microarray analysis, members of this family, particularly claudin 1 (cldn1), as highly upregulated genes in the mouse mammary gland during early involution. Gene expression was confirmed by immunohistochemistry and real-time PCR. We then examined gene and protein expression throughout normal mammary gland development. The cldn3 gene showed a steady increase in expression from pregnancy to involution, while cldn1 and cldn4 gene expression increased during pregnancy, but decreased sharply by D10 of lactation, and once again was significantly increased by D1 of involution (P < 0.001 for both genes). The different patterns of gene expression observed between cldn3, and cldn1, and 4 suggest that different family members may be functionally important at different times during mouse mammary gland development. All three genes exhibited a high level of expression at day 1 (D1) of involution, followed by a dramatic decrease in gene expression to day 10 of involution. Immunostaining with the cldn3 antibody showed intense staining of epithelial cells; however, a lesser degree of staining was evident with the cldn1 antibody. In addition to the lateral staining of epithelial cells, basal staining was evident at D1 and D2 of involution and cytoplasmic staining was evident during lactation. Since claudins are known to play a role as tight junction proteins, lateral and basal staining may suggest a role in other functions such as vesicle trafficking or remodeling of tight junctions at different stages of mammary gland development. Cldn1 and 3 antibodies also stained epithelial cells in mouse mammary tumors. In summary, cldn1, 3, and 4 are differentially expressed in the mammary gland during pregnancy, lactation, and involution, suggesting different roles for these proteins at different stages of mammary gland function. In addition, cldn1 and cldn3 are detected in mammary tumors and the wide distribution of cldn3 in particular, suggest specific roles for these proteins in mammary tumorigenesis.  相似文献   

6.
7.
8.
9.
Extracellular matrix metalloproteinase inducer (EMMPRIN/basigin/CD147) is a cell surface protein, which has been associated with the induction of matrix metalloproteinase (MMP) genes during cancer metastasis. EMMPRIN plays a role in a variety of physiological processes as is evident by the diverse deficiencies detectable in EMMPRIN knockout mice. We have analysed the role of EMMPRIN in the induction of MMP genes during mammary gland differentiation and involution. Co‐transfection studies showed that EMMPRIN has diverse effects on MMP promoter activity in different mammary and non‐mammary cell lines. Expression of EMMPRIN mRNA is enhanced markedly by insulin in a mammary gland cell line but appears to have no direct effect on MMP gene expression in these cells. Microarray analysis and quantitative PCR show that EMMPRIN is expressed throughout mammary gland differentiation in the mouse. Its expression decreases during early pregnancy and briefly after induction of mammary gland involution by litter removal. Immunohistochemical analysis shows that EMMPRIN expression is limited to the stromal compartment during pregnancy, whereas it is strongly expressed in the epithelium during lactation. In summary the data argue against a causal role for EMMPRIN for the induction of MMP gene expression during adult mammary gland development. These data therefore support a physiological role for EMMPRIN other than MMP induction in mammary gland biology. J. Cell. Biochem. 106: 52–62, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

10.
11.
The steroid hormones 17 beta-estradiol and progesterone play a central role in the pathogenesis of breast cancer and regulate key phases of mammary gland development. This suggests that developmental regulatory molecules whose activity is influenced by ovarian hormones may also contribute to mammary carcinogenesis. In a screen designed to identify protein kinases expressed in the mammary gland, we previously identified a novel SNF1-related serine/threonine kinase, Hunk (hormonally upregulated Neu-associated kinase). During postnatal mammary development, Hunk mRNA expression is restricted to a subset of mammary epithelial cells and is temporally regulated with highest levels of expression occurring during early pregnancy. In addition, treatment of mice with 17 beta-estradiol and progesterone results in the rapid and synergistic upregulation of Hunk expression in a subset of mammary epithelial cells, suggesting that the expression of this kinase may be regulated by ovarian hormones. Consistent with the tightly regulated pattern of Hunk expression during pregnancy, mammary glands from transgenic mice engineered to misexpress Hunk in the mammary epithelium manifest temporally distinct defects in epithelial proliferation and differentiation during pregnancy, and fail to undergo normal lobuloalveolar development. Together, these observations suggest that Hunk may contribute to changes in the mammary gland that occur during pregnancy in response to ovarian hormones.  相似文献   

12.
13.
Although apoptosis is important in determining cell fate and maintaining tissue homeostasis, the initiation and control of apoptotic cell death in epithelium is not well understood. Post-lactationai involution of the mammary gland provides both an important developmental process and a normal physiological setting for studying apoptosis of epithelium. We used a differential screening strategy, based on previous studies correlating morphology with gene expression and nucleic acid integrity during mammary gland involution, to isolate genes involved in the regulation and execution of apoptotic cell death in regressing mammary epithelium. This screening strategy yielded a large number of genes the expression of which is significantly altered during mammary gland involution. These include genes associated with cell death processes, tissue remodelling and mesenchymal differentiation. In addition, a number of novel genes have been isolated. We have used Northern analysis and in situ hybridisation to study the expression of a selection of these putative death-associated genes during post-lactational mouse mammary gland involution.  相似文献   

14.
Han LQ  Li HJ  Wang YY  Wang LF  Yang GQ  Wang YL  Yang GY 《遗传》2012,34(3):335-341
为了研究小鼠不同泌乳期乳脂肪合成相关基因的表达规律,文章采用荧光定量PCR检测了小鼠乳腺中与脂肪合成和分泌相关20个基因的mRNA相对表达丰度和表达差异。结果表明,在乳腺中脂蛋白脂酶(LPL)、乙酰辅酶A羧化酶(ACACA)、硬脂酰辅酶A去饱和酶(SCD)、黄嘌呤脱氢酶(XDH)、嗜乳脂蛋白(BTN)、脂肪酸分化蛋白(ADFP)基因都具有高mRNA表达丰度(表达丰度>5%),脂肪酸转运体(CD36)、脂肪酸合成酶(FASN)、1-酰基甘油磷酸酰基转移酶(AGPAT6)和甘油酰基转移酶(DGAT)基因具有中等mRNA表达丰度(5%>表达丰度>1%),与妊娠期乳腺基因的mRNA表达相比,在泌乳期这些基因的mRNA表达均有显著上调(P<0.05),并且ACACA、SCD、FASN、AGPAT6和DGAT等脂肪合成酶基因的表达在泌乳中期(12 d)最高,而在泌乳初期(6 d)和泌乳末期(18 d)较低,呈现低-高-低的表达模式。转录因子固醇调节元件结合蛋白(SREBF)基因在泌乳开始时mRNA表达增加,在泌乳中期(12 d)表达有10倍上调,其变化规律与脂肪合成酶基因的表达模式相同,说明SREBF基因在小鼠乳腺脂肪合成酶基因的表达调控中发挥重要调节作用。  相似文献   

15.
为了研究小鼠不同泌乳期乳脂肪合成相关基因的表达规律, 文章采用荧光定量PCR检测了小鼠乳腺中与脂肪合成和分泌相关20个基因的mRNA相对表达丰度和表达差异。结果表明, 在乳腺中脂蛋白脂酶(LPL)、乙酰辅酶A羧化酶(ACACA)、硬脂酰辅酶A去饱和酶(SCD)、黄嘌呤脱氢酶(XDH)、嗜乳脂蛋白(BTN)、脂肪酸分化蛋白(ADFP)基因都具有高mRNA表达丰度 (表达丰度>5%), 脂肪酸转运体(CD36)、脂肪酸合成酶(FASN)、1-酰基甘油磷酸酰基转移酶(AGPAT6)和甘油酰基转移酶(DGAT)基因具有中等mRNA表达丰度(5%>表达丰度>1%), 与妊娠期乳腺基因的mRNA表达相比, 在泌乳期这些基因的mRNA表达均有显著上调(P<0.05), 并且ACACA、SCD、FASN、AGPAT6和DGAT等脂肪合成酶基因的表达在泌乳中期(12 d)最高, 而在泌乳初期(6 d)和泌乳末期(18 d)较低, 呈现低-高-低的表达模式。转录因子固醇调节元件结合蛋白(SREBF)基因在泌乳开始时mRNA表达增加, 在泌乳中期(12 d)表达有10倍上调, 其变化规律与脂肪合成酶基因的表达模式相同, 说明SREBF基因在小鼠乳腺脂肪合成酶基因的表达调控中发挥重要调节作用。  相似文献   

16.
17.
18.
Ornithine decarboxylase (ODC), antizyme (AZ), and antizyme inhibitor (AIn) play a key role in regulation of intracellular polyamine levels by forming a regulatory circuit through their interactions. To gain insight into their functional importance in cell growth and differentiation, we systematically examined the changes of their expression, cellular polyamine contents, expression of genes related to polyamine metabolism, and β-casein gene expression during murine mammary gland development. The activity of ODC and AZ1 as well as putrescine level were low in the virgin and involuting stages, but they increased markedly during late pregnancy and early lactation when mammary cells proliferate extensively and begin to augment their differentiated function. The level of spermidine and expression of genes encoding spermidine synthase and AIn increased in a closely parallel manner with that of casein gene expression during pregnancy and lactation. On the other hand, the level of spermidine/spermine N 1-acetyltransferase (SSAT) mRNA and AZ2 mRNA decreased during those periods. Immunohistochemical analysis showed the translocation of ODC and AIn between the nucleus and cytoplasm and the continuous presence of AZ in the nucleus during gland development. Reduction of AIn by RNA interference inhibited expression of β-casein gene stimulated by lactogenic hormones in HC11 cells. In contrast, reduction of AZ by AZsiRNA resulted in the small increase of β-casein gene expression. These results suggested that AIn plays an important role in the mammary gland development by changing its expression, subcellular localization, and functional interplay with AZ.  相似文献   

19.
During pregnancy and lactation, metabolic adaptations involve changes in expression of desaturases and elongases (Elovl2 and Elovl5) in the mammary gland and liver for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (AA) required for fetal and postnatal growth. Adipose tissue is a pool of LC-PUFAs. The response of adipose tissue for the synthesis of these fatty acids in a lipid-deficient diet of dams is unknown. The aim of this study was to explore the role of maternal tissue in the synthesis of LC-PUFAs in rats fed a low-lipid diet during pregnancy and lactation. Fatty acid composition (indicative of enzymatic activity) and gene expression of encoding enzymes for fatty acid synthesis were measured in liver, mammary gland and adipose tissue in rats fed a low-lipid diet. Gene expression of desaturases, elongases, fatty acid synthase (Fasn) and their regulator Srebf-1c was increased in the mammary gland, liver and adipose tissue of rats fed a low-lipid diet compared with rats from the adequate-lipid diet group throughout pregnancy and lactation. Genes with the highest (P < 0.05) expression in the mammary gland, liver and adipose tissue were Elovl5 (1333%), Fads2 (490%) and Fasn (6608%), respectively, in a low-lipid diet than in adequate-lipid diet. The percentage of AA in the mammary gland was similar between the low-lipid diet and adequate-lipid diet groups during the second stage of pregnancy and during lactation. The percentage of monounsaturated and saturated fatty acids was significantly (P < 0.05) increased throughout pregnancy and lactation in all tissues in rats fed a low-lipid diet than in rats fed an adequate-lipid diet. Results suggest that maternal metabolic adaptations used to compensate for lipid-deficient diet during pregnancy and lactation include increased expression of genes involved in LC-PUFAs synthesis in a stage- and tissue-specific manner and elevated lipogenic activity (saturated and monounsaturated fatty acid synthesis) of maternal tissues including adipose tissue.  相似文献   

20.
Previous studies in our laboratory have demonstrated the mammary-specific expression of the entire rat beta-casein gene with 3.5 kilobases (kb) of 5' and 3.0 kb of 3' DNA in transgenic mice (Lee et al., Nucleic Acids Res. 16:1027-1041, 1988). In an attempt to localize sequences that dictate this specificity, lines of transgenic mice carrying two different rat beta-casein promoter-bacterial chloramphenicol acetyltransferase (cat) fusion genes have been established. Twenty and eight lines of transgenic mice carrying two fusion genes containing either 2.3 or 0.5 kb, respectively, of 5'-flanking DNA of the rat beta-casein gene along with noncoding exon I and 0.5 kb of intron A were identified, most of which transmitted the transgenes to their offspring in a Mendelian pattern. CAT activity was detected predominantly in the lactating mammary gland of female transgenic mice but not in the male mammary fat pad. A several-hundred-fold variation in the level of cat expression was observed in the mammary gland of different lines of mice, presumably due to the site of integration of the transgenes. CAT activity was increased in the mammary gland during development from virgin to midpregnancy and lactation. Unexpectedly, the casein-cat transgenes were also expressed in the thymus of different lines of both male and female mice, in some cases at levels equivalent to those observed in the mammary gland, and in contrast to the mammary gland, CAT activity was decreased during pregnancy and lactation in the thymus. Thus, 0.5 kb of 5'-flanking DNA of the rat beta-casein gene along with noncoding exon I and 0.5 kb of intron A are sufficient to target bacterial cat gene expression to the mammary gland of lactating mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号