首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tight-skin (TSK/+) mouse, a genetic model for systemic sclerosis, develops cutaneous fibrosis. Although a fibrillin 1 gene mutation and immunological abnormalities have been demonstrated, the roles of adhesion molecules have not been investigated. To directly assess roles of adhesion molecules in skin fibrosis, TSK/+ mice lacking L-selectin and/or ICAM-1 were generated. The deficiency of ICAM-1, but not L-selectin, significantly suppressed ( approximately 48%) the development of skin sclerosis in TSK/+ mice. Similarly, ICAM-1 antisense oligonucleotides inhibited skin fibrosis in TSK/+ mice. Although T cell infiltration was modest into the skin of TSK/+ mice, ICAM-1 deficiency down-regulated this migration, which is consistent with the established roles of endothelial ICAM-1 in leukocyte infiltration. In addition, altered phenotype or function of skin fibroblasts was remarkable and dependent on ICAM-1 expression in TSK/+ mice. ICAM-1 expression was augmented on TSK/+ dermal fibroblasts stimulated with IL-4. Although growth or collagen synthesis of TSK/+ fibroblasts cultured with IL-4 was up-regulated, it was suppressed by the loss or blocking of ICAM-1. Collagen expression was dependent on the strain of fibroblasts, but not on the strain of cocultured T cells. Thus, our findings indicate that ICAM-1 expression contributes to the development of skin fibrosis in TSK/+ mice, especially via ICAM-1 expressed on skin fibroblasts.  相似文献   

2.
Collagen V is a minor component of the heterotypic I/III/V collagen fibrils and the defective product in most cases of classical Ehlers Danlos syndrome (EDS). The present study was undertaken to elucidate the impact of collagen V mutations on skin development, the most severely affected EDS tissues, using mice harboring a targeted deletion of the alpha2(V) collagen gene (Col5a2). Contrary to the original report, our studies indicate that the Col5a2 deletion (a.k.a. the pN allele) represents a functionally null mutation that affects matrix assembly through a complex sequence of events. First the mutation impairs assembly and/or secretion of the alpha1(V)(2)alpha2(V) heterotrimer with the result that the alpha1(V) homotrimer is the predominant species deposited into the matrix. Second, the alpha1(V) homotrimer is excluded from incorporation into the heterotypic collagen fibrils and this in turn severely impairs matrix organization. Third, the mutant matrix stimulates a compensatory loop by the alpha1(V) collagen gene that leads to additional deposition of alpha1(V) homotrimers. These data therefore underscore the importance of the collagen V heterotrimer in dermal fibrillogenesis. Furthermore, reduced thickness of the basement membranes underlying the epidermis and increased apoptosis of the stromal fibroblasts in pN/pN skin strongly indicate additional roles of collagen V in the development of a functional skin matrix.  相似文献   

3.
The tight-skin (TSK/+) mouse, a genetic model of systemic sclerosis (SSc), develops cutaneous fibrosis and defects in pulmonary architecture. Because hepatocyte growth factor (HGF) is an important mitogen and morphogen that contributes to the repair process after tissue injury, we investigated the role of HGF in cutaneous fibrosis and pulmonary architecture defects in SSc using TSK/+ mice. TSK/+ mice were injected in the gluteal muscle with either hemagglutinating virus of Japan (HVJ) liposomes containing 8 mug of a human HGF expression vector (HGF-HVJ liposomes) or a mock vector (untreated control). Gene transfer was repeated once weekly for 8 weeks. The effects of HGF gene transfection on the histopathology and expression of tumor growth factor (TGF)-beta and IL-4 mRNA in TSK/+ mice were examined. The effect of recombinant HGF on IL-4 production by TSK/+ CD4+ T cells stimulated by allogeneic dendritic cells (DCs) in vitro was also examined. Histologic analysis revealed that HGF gene transfection in TSK/+ mice resulted in a marked reduction of hypodermal thickness, including the subcutaneous connective tissue layer. The hypodermal thickness of HGF-treated TSK/+ mice was decreased two-fold to three-fold compared with untreated TSK/+ mice. However, TSK/+ associated defects in pulmonary architecture were unaffected by HGF gene transfection. HGF gene transfection significantly inhibited the expression of IL-4 and TGF-beta1 mRNA in the spleen and skin but not in the lung. We also performed a mixed lymphocyte culture and examined the effect of recombinant HGF on the generation of IL-4. Recombinant HGF significantly inhibited IL-4 production in TSK/+ CD4+ T cells stimulated by allogeneic DCs. HGF gene transfection inhibited IL-4 and TGF-beta mRNA expression, which has been postulated to have a major role in fibrinogenesis and reduced hypodermal thickness, including the subcutaneous connective tissue layer of TSK/+ mice. HGF might represent a novel strategy for the treatment of SSc.  相似文献   

4.
The tight-skin (TSK/+) mouse, a genetic model of systemic sclerosis (SSc), develops cutaneous fibrosis and defects in pulmonary architecture. Because hepatocyte growth factor (HGF) is an important mitogen and morphogen that contributes to the repair process after tissue injury, we investigated the role of HGF in cutaneous fibrosis and pulmonary architecture defects in SSc using TSK/+ mice. TSK/+ mice were injected in the gluteal muscle with either hemagglutinating virus of Japan (HVJ) liposomes containing 8 μg of a human HGF expression vector (HGF-HVJ liposomes) or a mock vector (untreated control). Gene transfer was repeated once weekly for 8 weeks. The effects of HGF gene transfection on the histopathology and expression of tumor growth factor (TGF)-β and IL-4 mRNA in TSK/+ mice were examined. The effect of recombinant HGF on IL-4 production by TSK/+ CD4+ T cells stimulated by allogeneic dendritic cells (DCs) in vitro was also examined. Histologic analysis revealed that HGF gene transfection in TSK/+ mice resulted in a marked reduction of hypodermal thickness, including the subcutaneous connective tissue layer. The hypodermal thickness of HGF-treated TSK/+ mice was decreased two-fold to three-fold compared with untreated TSK/+ mice. However, TSK/+ associated defects in pulmonary architecture were unaffected by HGF gene transfection. HGF gene transfection significantly inhibited the expression of IL-4 and TGF-β1 mRNA in the spleen and skin but not in the lung. We also performed a mixed lymphocyte culture and examined the effect of recombinant HGF on the generation of IL-4. Recombinant HGF significantly inhibited IL-4 production in TSK/+ CD4+ T cells stimulated by allogeneic DCs. HGF gene transfection inhibited IL-4 and TGF-β mRNA expression, which has been postulated to have a major role in fibrinogenesis and reduced hypodermal thickness, including the subcutaneous connective tissue layer of TSK/+ mice. HGF might represent a novel strategy for the treatment of SSc.  相似文献   

5.
The tight skin 2 (Tsk2) mouse model of systemic sclerosis (SSc) has many features of the human disease including tight skin, fibrosis, extracellular matrix abnormalities, and reported antinuclear antibodies (ANA). Here we report that Tsk2/+ mice develop excess dermal fibrosis with age, as skin is not significantly fibrotic until 10 weeks, a full eight weeks after the development of the physical tight skin phenotype. Concomitantly with the tight skin phenotype at two weeks of age, Tsk2/+ mice demonstrate increased levels of total transforming growth factor beta 1 (TGF-β1) and excessive accumulation of dermal elastic fibers. The increase in elastic fibers is not responsible for tight skin, however, because Tsk2/+ mice genetically engineered to lack skin elastic fibers nevertheless have tight skin and fibrosis. Finally, about two months after the first measurable increases of total collagen, a portion of Tsk2/+ mice produce ANAs, but at a similar level to wild-type littermates. The timeline of disease development in the Tsk2/+ mouse shows that fibrosis is progressive, with elastic fiber alterations and TGF-β1 over-production occurring at least two months before bona fide fibrosis, that is not dependent on ANA production.  相似文献   

6.
BACKGROUND: Tight skin mice (TSK) bear a mutated Fibrillin-1 (Fbn-1) gene. Genetic studies show that the TSK mutation is closely associated with the Fbn-1 locus (0-0.7 cM). A previous study showed two recombinants between the Fbn-1 locus and the TSK mutation. TSK mutation and mutated Fbn-1 gene cosegregate in F1 mice. MATERIALS AND METHODS: To elucidate the role of the mutated Fbn-1 gene in occurrence of TSK syndrome, we generated transgenic (Tg) mice expressing mutated Fbn-1 gene. In another set of experiments, we injected normal mice after birth with a plasmid bearing mutated Fbn-1 gene (pdFbn-1). RESULTS: Our results demonstrate that the pdFbn-1 Tg mice developed permanent cutaneous hyperplasia that was permanent. In mice injected as newborns with a plasmid bearing the sense pdFbn-1 gene, cutaneous hyperplasia was transient. In contrast to TSK mice, neither Tg nor mice injected with plasmid developed lung emphysema. The pdFbn-1 Tg and TSK mice spontaneously produced anti-topoisomerase I and anti-Fbn- antibodies, as do humans afflicted by scleroderma; whereas, those injected with a plasmid containing the pdFbn-1 gene produced only anti-Fbn-1 autoantibodies. CONCLUSIONS: The results suggest that, although cutaneous hyperplasia is due to mutated Fbn-1 gene, the TSK syndrome may be multifactorial.  相似文献   

7.
The tight skin 2 (Tsk2) mutation is an ENU induced dominant mutation localized on mouse chromosome 1. While the molecular defect is unknown, Tsk2/+ mice display cutaneous thickening associated with excessive matrix production and are used as a model of scleroderma. The purpose of this study was to examine the cellular mechanisms associated with the excessive synthesis of matrix macromolecules using a collagen promoter GFP reporter transgene (pOBCol3.6GFP) as a marker of Col1a1 expression. This analysis of pOBCol3.6GFP expression in Tsk2/+ skin showed an increase in transgene activity compared to wild-type (+/+) samples. In addition, an increased area of "high" GFP fluorescence in Tsk2/+ dermis in both 1- and 4-month-old mice was observed that was also associated with an increased number of dermal fibroblasts per unit area of dermis. These data collectively suggest an important mechanism of Tsk2/+ skin fibrosis; an increased number of collagen expressing cells as well as elevated collagen expression on a per cell basis. During this study it was noted that Tsk2/+ mice appeared consistently smaller than wild-type (+/+) siblings and measurements of body length revealed a decrease (5-10%) in 1- and 2-month-old Tsk2/+ mice as well as a decrease in body weight in both age groups as compared to wild-type (+/+) control mice. Femur length was also decreased (2-9%) in Tsk2/+ mice. Finally, in contrast to Tsk/+ mice that display an emphysema-like lung pathology, histological sections of lungs from Tsk2/+ mice were normal and indistinguishable from wild-type (+/+) controls.  相似文献   

8.
9.
Although the collagen V heterotrimer is known to be involved in the control of fibril assembly, the role of the homotrimer in fibrillar organization has not yet been examined. Here, the production of substantial amounts of recombinant collagen V homotrimer has allowed a detailed study of its role in homotypic and heterotypic fibril formation. After removal of terminal regions by pepsin digestion, both the collagen V heterotrimer and homotrimer formed thin homotypic fibrils, thus showing that diameter limitation is at least in part an intrinsic property of the collagen V triple helix. When mixed with collagen I, however, various complementary approaches indicated that the collagen V heterotrimer and homotrimer exerted different effects in heterotypic fibril formation. Unlike the heterotrimer, which was buried in the fibril interior, the homotrimer was localized as thin filamentous structures at the surface of wide collagen I fibrils and did not regulate fibril assembly. Its localization at the fibril surface suggests that the homotrimer can act as a molecular linker between collagen fibrils or macromolecules in the extracellular matrix or both. Thus, depending on their respective distribution in tissues, the different collagen V isoforms might fulfill specific biological functions.  相似文献   

10.
The accumulation of misfolded proteins is associated with various neurodegenerative conditions. Mutations in PMP-22 are associated with the human peripheral neuropathy, Charcot-Marie-Tooth Type 1A (CMT1A). PMP-22 is a short-lived 22 kDa glycoprotein, which plays a key role in the maintenance of myelin structure and compaction, highly expressed by Schwann cells. It forms aggregates when the proteasome is inhibited or the protein is mutated. This study reports the application of atomic force microscopy (AFM) as a detector of profound topographical and mechanical changes in Trembler-J mouse (CMT1A animal model). AFM images showed topographical differences in the extracellular matrix and basal lamina organization of Tr-J/+ nerve fibers. The immunocytochemical analysis indicated that PMP-22 protein is associated with type IV collagen (a basal lamina ubiquitous component) in the Tr-J/+ Schwann cell perinuclear region. Changes in mechanical properties of single myelinating Tr-J/+ nerve fibers were investigated, and alterations in cellular stiffness were found. These results might be associated with F-actin cytoskeleton organization in Tr-J/+ nerve fibers. AFM nanoscale imaging focused on topography and mechanical properties of peripheral nerve fibers might provide new insights into the study of peripheral nervous system diseases.  相似文献   

11.
Non-neuronal nicotinic acetylcholine receptors (nAChRs) are abundantly expressed in skin and their function remains to be elucidated. Herein, we report that cutaneous alpha7 nAChR plays a role in the physiological control of cutaneous homeostasis. We studied in vitro effects of functional inactivation of alpha7 receptor on the expression of apoptosis regulators in keratinocytes (KC) lacking alpha7 nAChR, and extracellular matrix regulators in the skin of alpha7 knockout (KO) mice. Elimination of the alpha7 component of nicotinergic signaling in KC decreased relative amounts of the pro-apoptotic Bad and Bax at both the mRNA and the protein levels, suggesting that alpha7 nAChR is coupled to stimulation of keratinocyte apoptosis. The skin of alpha7 KO mice featured decreased amounts of the extracellular matrix proteins collagen 1alpha1 and elastin as well as the metalloproteinase-1. Taken together, these results suggest an important role for alpha7 nAChR in mediating plethoric effects of non-neuronal acetylcholine on cutaneous homeostasis.  相似文献   

12.
The tight skin (TSK/+) mouse has been proposed as an experimental model for progressive systemic sclerosis because of the biochemical alterations in collagen synthesis and pathological similarities to the human disease. Here, we report the analysis of tight skin mice sera for the presence of anti-cytoplasmic and anti-nuclear autoantibodies and determination of the frequency of hybridomas producing anti-cellular autoantibodies. The binding specificity of TSK mAbs to nuclear and cytoplasmic antigens such as keratin, actin, vimentin, and mitochondria was determined. Of 71 monoclonal antibodies that we have studied, only 3 appear to bind to foreign as well as self-antigens, indicating that the majority of these antibodies do not belong to the class of natural autoantibodies. Our results also showed that the frequency of hybridomas producing anti-nuclear and anti-cytoplasmic antibodies was higher in TSK mice than in C57BL/6 pa/pa, the control mouse strain, used in these studies. The results of the analysis of V gene usage showed that the majority of anti-cytoplasmic and anti-nuclear antibodies are encoded by genes from a restricted number of VH and VK genes families. In the sera of TSK mice we have detected the presence autoantibodies specific for cytoplasmic antigens in addition to anti-nuclear and anti-topoisomerase I antibodies which are characteristic of scleroderma. Since the presence of anti-cytoplasmic antibodies has not been described in scleroderma, the significance of their production in tight skin mice is not clear. However, the presence of such autoantibodies in the animal model provides a basis for investigation of this type of antibodies in human disease.  相似文献   

13.
Skin integrity and function depends to a large extent on the composition of the extracellular matrix, which regulates tissue organization. Collagen XII is a homotrimer with short collagenous domains that confer binding to the surface of collagen I-containing fibrils and extended flexible arms, which bind to non-collagenous matrix components. Thereby, collagen XII helps to maintain collagen suprastructure and to absorb stress. Mutant or absent collagen XII leads to reduced muscle and bone strength and lax skin, whereas increased collagen XII amounts are observed in tumor stroma, scarring and fibrosis.This study aimed at uncovering in vivo mechanisms by which collagen XII may achieve these contrasting outcomes. We analyzed skin as a model tissue that contains abundant fibrils, composed of collagen I, III and V with collagen XII decorating their surface, and which is subject to mechanical stress. The impact of different collagen XII levels was investigated in collagen XII-deficient (Col12-KO) mice and in mice with collagen XII overexpression in the dermis (Col12-OE). Unchallenged skin of these mice was histologically inconspicuous, but at the ultrastructural level revealed distinct aberrations in collagen network suprastructure. Repair of excisional wounds deviated from controls in both models by delayed healing kinetics, which was, however, caused by completely different mechanisms in the two mouse lines. The disorganized matrix in Col12-KO wounds failed to properly sequester TGFβ, resulting in elevated numbers of myofibroblasts. These are, however, unable to contract and remodel the collagen XII-deficient matrix. Excess of collagen XII, in contrast, promotes persistence of M1-like macrophages in the wound bed, thereby stalling the wounds in an early inflammatory stage of the repair process and delaying healing.Taken together, we demonstrate that collagen XII is a key component that assists in orchestrating proper skin matrix structure, controls growth factor availability and regulates cellular composition and function. Together, these functions are pivotal for re-establishing homeostasis after injury.  相似文献   

14.
Fibulin-4 is an extracellular matrix protein essential for elastic fiber formation. Frameshift and missense mutations in the fibulin-4 gene (EFEMP2/FBLN4) cause autosomal recessive cutis laxa (ARCL) 1B, characterized by loose skin, aortic aneurysm, arterial tortuosity, lung emphysema, and skeletal abnormalities. Homozygous missense mutations in FBLN4 are a prevalent cause of ARCL 1B. Here we generated a knock-in mouse strain bearing a recurrent fibulin-4 E57K homozygous missense mutation. The mutant mice survived into adulthood and displayed abnormalities in multiple organ systems, including loose skin, bent forelimb, aortic aneurysm, tortuous artery, and pulmonary emphysema. Biochemical studies of dermal fibroblasts showed that fibulin-4 E57K mutant protein was produced but was prone to dimer formation and inefficiently secreted, thereby triggering an endoplasmic reticulum stress response. Immunohistochemistry detected a low level of fibulin-4 E57K protein in the knock-in skin along with altered expression of selected elastic fiber components. Processing of a precursor to mature lysyl oxidase, an enzyme involved in cross-linking of elastin and collagen, was compromised. The knock-in skin had a reduced level of desmosine, an elastin-specific cross-link compound, and ultrastructurally abnormal elastic fibers. Surprisingly, structurally aberrant collagen fibrils and altered organization into fibers were characteristics of the knock-in dermis and forelimb tendons. Type I collagen extracted from the knock-in skin had decreased amounts of covalent intermolecular cross-links, which could contribute to the collagen fibril abnormalities. Our studies provide the first evidence that fibulin-4 plays a role in regulating collagen fibril assembly and offer a preclinical platform for developing treatments for ARCL 1B.  相似文献   

15.
Deficiency of the extracellular matrix protein tenascin-X (TNX) causes a recessive form of Ehlers‐Danlos syndrome (EDS) characterized by hyperextensible skin and hypermobile joints. It is not known whether the observed alterations of dermal collagen fibrils and elastic fibers in these patients are caused by disturbed assembly and deposition or by altered stability and turnover. We used biophysical measurements and immunofluorescence to study connective tissue properties in TNX knockout and wild-type mice. We found that TNX knockout mice, even at a young age, have greatly disturbed biomechanical properties of the skin. No joint abnormalities were noted at any age. The spatio-temporal expression of TNX during normal mouse skin development, during embryonic days 13–19 (E13–E19), was distinct from tropoelastin and the dermal fibrillar collagens type I, III, and V. Our data show that TNX is not involved in the earliest phase (E10–E14) of the deposition of collagen fibrils and elastic fibers during fetal development. From E15 to E19, TNX starts partially to colocalize with the dermal collagens and elastin, and in adult mice, TNX is present in the entire dermis. In adult TNX knockout mice, we observed an apparent increase of elastin. We conclude that TNX knockout mice only partially recapitulate the phenotype of TNX-deficient EDS patients, and that TNX could potentially be involved in maturation and/or maintenance of the dermal collagen and elastin network.  相似文献   

16.
Vascular smooth muscle cells (SMCs), the major cellular constituent of the medial layer of an artery, synthesize the majority of connective tissue proteins, including fibrillar collagen types I, III, and V/XI. Proper collagen synthesis and deposition, which are important for the integrity of the arterial wall, require the antioxidant vitamin C. Vitamin C serves as cofactor for the enzymes prolyl and lysyl hydroxylase, which are responsible for the proper hydroxylation of collagen. Here, the role of type V collagen in the assembly of collagen fibrils in the extracellular matrix (ECM) of cultured vascular SMCs was investigated. Treatment of SMCs with vitamin C resulted in a dramatic induction in the levels of the cell-layer associated pepsin-resistant type V collagen, whereas only a minor induction in the levels of types I and III collagen was detected. Of note, the deposition of type V collagen was accompanied by the formation of striated collagen fibrils in the ECM. Immunohistochemistry demonstrated that type V collagen, but not type I collagen, became masked as collagen fibrils matured. Furthermore, the relative ratio of type V to type I collagen decreased as the ECM matured as a function of days in culture, and this decrease was accompanied by an increase in the diameter of collagen fibrils. Together these results suggest that the masking of type V collagen is caused by its internalization on continuous deposition of type I collagen on the exterior of the fibril. Furthermore, they suggest that type V collagen acts as framework for the initial assembly of collagen molecules into heterotypic fibrils, regulating the diameter and architecture of these fibrils.  相似文献   

17.
18.
Summary The presence of types II, IX and V collagen was probed in the organ of Corti of the adult gerbil cochlea by use of immunocytochemistry at the light- and electron-microscopic levels. Type II collagen is found in the connective tissues of the osseous spiral lamina and spiral limbus. In the region of the sensory hair cells it is present in the tectorial membrane and antibodies bind to the thick unbranched radial fibers. Type IX collagen co-localizes with type II collagen in the tectorial membrane, where antibodies bind to the thick unbranched radial fibers. Type V collagen is present in the connective tissue of the spiral limbus, the osseous spiral lamina, the eighth nerve, and the tectorial membrane. In the tectorial membrane, the staining with antibodies to type V collagen is more diffuse than that seen for types II and IX collagen and antibodies to type V bind to the thin, highly branched fibers in which the thick fibers are embedded. The results indicate that collagens characteristic of cartilage are localized in the organ of Corti. Within the tectorial membrane, types II and IX collagen form heterotypic thick fibers embedded in a reticular network of type V collagen fibers. These collagens form a highly structured matrix which contributes to the rigidity of the tectorial membrane and allow it to withstand the physical stresses associated with transmission of the stimuli necessary for sensory transduction.  相似文献   

19.
Lumican is a member of the small leucine-rich proteoglycan (SLRP) family. It contributes to the organisation of the collagen network and plays an important role in cell migration and tissue repair. The present study aimed to determine the influence of lumican expression on adhesion, anchorage-dependent and -independent growth, migration, in vitro invasion and in vivo melanoma growth. For that purpose, B16F1 mouse melanoma cells were stably transfected with an expression plasmid containing the complete lumican cDNA. Lumican expression by tumor cells did not change the proliferative activity of mouse melanoma cells in monolayer culture and did not influence either cell adhesion to extracellular matrix gel or type I collagen or cell spreading on these substrates. In contrast, lumican-transfected cells were characterized by a strong reduction of their anchorage-independent proliferation in agarose gel and capacity to invade extracellular matrix gel. After subcutaneous injections of transfected B16F1 cells in syngenic mice, lumican expression significantly decreased subcutaneous tumor formation in vivo, with a concomitant decrease of cyclin D1 expression. Lumican induced and/or increased the apoptosis of B16F1 cells. The results suggest that lumican is involved in the control of melanoma growth and invasion and may be considered, like decorin, as an anti-tumor factor from the extracellular matrix.  相似文献   

20.
Vascular smooth muscle cells (SMCs), the major cellular constituent of the medial layer of an artery, synthesize the majority of connective tissue proteins, including fibrillar collagen types I, III, and V/XI. Proper collagen synthesis and deposition, which are important for the integrity of the arterial wall, require the antioxidant vitamin C. Vitamin C serves as cofactor for the enzymes prolyl and lysyl hydroxylase, which are responsible for the proper hydroxylation of collagen. Here, the role of type V collagen in the assembly of collagen fibrils in the extracellular matrix (ECM) of cultured vascular SMCs was investigated. Treatment of SMCs with vitamin C resulted in a dramatic induction in the levels of the cell‐layer associated pepsin‐resistant type V collagen, whereas only a minor induction in the levels of types I and III collagen was detected. Of note, the deposition of type V collagen was accompanied by the formation of striated collagen fibrils in the ECM. Immunohistochemistry demonstrated that type V collagen, but not type I collagen, became masked as collagen fibrils matured. Furthermore, the relative ratio of type V to type I collagen decreased as the ECM matured as a function of days in culture, and this decrease was accompanied by an increase in the diameter of collagen fibrils. Together these results suggest that the masking of type V collagen is caused by its internalization on continuous deposition of type I collagen on the exterior of the fibril. Furthermore, they suggest that type V collagen acts as framework for the initial assembly of collagen molecules into heterotypic fibrils, regulating the diameter and architecture of these fibrils. J. Cell. Biochem. 80:146–155, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号