首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of inspiratory and expiratory motor units (MU) has been studied. The statistical data indicate that the recruitment of expiratory motoneurons is slower and more uniform than the recruitment of the inspiratory motoneurons. Most of the expiratory motoneurons showed inhibition shortly before the start of the inspiratory phase. Data are given on other characteristics of the activity and segmental location of both groups of motoneurons. It is postulated that the changes in the MU activity at the beginning and the end of the respiratory period and the coincidence in the extremal activity values of the antagonistic groups are attributable to supraspinal influences.Information Transmission Problems Institute, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 3, pp. 289–295, May–June, 1970.  相似文献   

2.
Activity of single motor units in relation to surface electromyography (EMG) was studied in 11 subjects in attention-demanding work tasks with minimal requirement of movement. In 53 verified firing periods, single motor units fired continuously from 30 s to 10 min (duration of the experiment work task) with a stable median firing rate in the range of 8–13 Hz. When the integrated surface EMG were stable, the motor units identified as a rule were continuously active with only small modulations of firing rate corresponding to low-amplitude fluctuations in surface EMG. Marked changes in the surface EMG, either sudden or gradual, were caused by recruitment or derecruitment of motor units, and not by modulations of the motor unit firing rate. Motor unit firing periods (duration 10 s-35 s) in low-level voluntary contractions (approximately 1%–5% EMGmax) performed by the same subjects showed median firing rates (7–12 Hz) similar to the observations in attention-related activation.  相似文献   

3.
Neural drive to inspiratory pump muscles is increased under many pathological conditions. This study determined for the first time how neural drive is distributed to five different human inspiratory pump muscles during tidal breathing. The discharge of single motor units (n = 280) from five healthy subjects in the diaphragm, scalene, second parasternal intercostal, third dorsal external intercostal, and fifth dorsal external intercostal was recorded with needle electrodes. All units increased their discharge during inspiration, but 41 (15%) discharged tonically throughout expiration. Motor unit populations from each muscle differed in the timing of their activation and in the discharge rates of their motor units. Relative to the onset of inspiratory flow, the earliest recruited muscles were the diaphragm and third dorsal external intercostal (mean onset for the population after 26 and 29% of inspiratory time). The fifth dorsal external intercostal muscle was recruited later (43% of inspiratory time; P < 0.05). Compared with the other inspiratory muscles, units in the diaphragm and third dorsal external intercostal had the highest onset (7.7 and 7.1 Hz, respectively) and peak firing frequencies (12.6 and 11.9 Hz, respectively; both P < 0.05). There was a unimodal distribution of recruitment times of motor units in all muscles. Neural drive to human inspiratory pump muscles differs in timing, strength, and distribution, presumably to achieve efficient ventilation.  相似文献   

4.
Orderly recruitment among motoneurons supplying different muscles.   总被引:1,自引:0,他引:1  
Virtually all movements involve the recruitment of motor units from multiple muscles. Given the functional diversity of motor units (motoneurons and the muscle fibers they supply), the effective production of specific movements undoubtedly depends upon some principle(s) to organize the ensemble of active motor units. The principle acting to organize the recruitment of motor units within muscles is the size principle, whereby the first motor units to be recruited have the smallest values for axonal conduction velocity and contractile force, and are the slowest to contract and fatigue. Here we consider the possibility that the size principle applies in the recruitment of motor units across muscles, i.e., that regardless of their muscles of origin, active motor units are recruited in rank order, for example, from low to high conduction velocity. The benefits of orderly recruitment across muscles could be similar to the acknowledged advantages of orderly recruitment within muscles. One benefit is that the neural process involved in organizing active motor units would be simplified. In a muscle-based scheme, the size principle would organize only those motor units within individual muscles, leaving the nervous system with the additional task of coordinating the relative activities of motor units from different muscles. By contrast, in an ensemble-based scheme, orderly recruitment of all motor units according to the size principle would automatically coordinate motor units both within and across motor nuclei. Another potential benefit is the provision for movements with smooth trajectory, the result of interleaving the divergent torque contributions made by motor units from muscles that differ in their orientations about joints. Otherwise, if order were restricted within muscles, the torque trajectory of a joint would change unevenly as participating muscles begin contracting at different times and grade activity at different rates. These considerations support speculation that motor units recruited from co-contracting muscles are collectively recruited according to the size principle.  相似文献   

5.
Involuntary activity of transferred intercostal motor units was examined in patients with brachial plexus injury. Since the internal intercostal nerves were detached from the thorax to reinnervate the musculus biceps brachii, it was possible to record pure intercostal motor activity in humans. Respiratory activity was seen in the latter part of the expiratory phase, thus dividing the phase into two substages (E1 and E2) by the onset of the activity. CO2 rebreathing prolonged the duration of the intercostal motor activity and increased the tidal activity as determined from the integration curve. There was a close linear correlation between these two variables. These observations indicate that expiratory activity and its duration are actively controlled in humans.  相似文献   

6.
Retrograde transport of horseradish peroxidase (HRP) was used to study the organization of the preganglionic parasympathetic innervation of the normal and vagotomized rat stomach. In normal rats, following application of HRP to either the gastric fundus or corpus, HRP accumulated bilaterally in nerve cells in the dorsal vagal motor nuclei, but predominantly in the left nucleus. The biggest populations of cells innervated the lesser curvature of the stomach. When HRP was applied at different periods of time after truncal or selective proximal vagotomy, there was no labeling of nerve cells in the dorsal vagal motor nuclei. Regeneration of efferent vagal nerve fibers and the recovery of gastric activity is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Institute of Physiology, T. G. Shevchenko Kiev State University. Translated from Neirofiziologiya, Vol. 23, No. 2, pp. 231–238, March–April, 1991.  相似文献   

7.
Effects of injections of blockers of the monoaminergic receptor structures into thecentrum medianum-nucl. parafascicularis (CM-Pf) on the activity of neurons in the motor thalamic nuclei (VA-VL) were studied in chronic experiments on awake cats. The animals were trained to perform an operant placing reflex by the forelimb. Injection of a-adrenoblocker, anapriline, into theCM-Pf resulted in enhancement of background activity of neurons of the motor thalamus and facilitation of their spike responses related to conditioned and unconditioned reflex movements. Application of a blocker of serotonin receptors, lysergoamide, evoked opposite changes in the neuronal activity in theVA-VL nuclei: depression of background activity, facilitation of inhibitory processes, and suppression of evoked activity related to conditioned and unconditioned movements. It is supposed that the monoaminergic system of thelocus coeruleus exerts a suppressing influence on the motor thalamus via theCM-Pf complex, while the system of the raphe nuclei facilitates motor thalamic structures.Neirofiziologiya/Neurophysiology, Vol. 28, No. 6, pp. 305–311, November–December, 1996.  相似文献   

8.
The background activity of 123 thalamic neurons was recorded in 30 patients with motor extrapyramidal disorders applying microelectrode techniques to neurosurgical practice. Recordings were taken from the ventro-oral anterior and posterior thalamic nuclei and the adjacent reticular nucleus. A computer analysis was performed of neuronal activity in 44 units and plots produced of autocorrelation and spectral density functions. In patients with parkinsonism and double athetosis, rhythmic activity was found in 48% of cells. A wide variety of regular fluctuations in background neuronal discharges was noted: in the range of theta and delta rhythms (5–7 and 1–4 Hz respectively) with a periodicity of seconds (2–10 sec) and decaseconds (15–40 sec). It was thought possible that several types of regular waves may coexist: phenomena of 2 or 3 accelerated waves and reduced frequency of spike activity of differing periodicity were observed in eight neurons within the same train of spikes. The origin and significance of rhythmically occurring changes in thalamic neuronal spike activity are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR; Institute of Neurosurgery, Ministry of Public Health of the Ukrainian SSR. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 192–201, March–April, 1987.  相似文献   

9.
Henneman's size principle relates the input and output properties of motoneurons and their muscle fibers to size and is the basis for size-ordered activation or recruitment of motor units during movement. After nerve injury and surgical repair, the relationship between motoneuron size and the number and size of the muscle fibers that the motoneuron reinnervates is initially lost but returns with time, irrespective of whether the muscles are self- or cross-reinnervated by the regenerated axons. Although the return of the size relationships was initially attributed to the recovery of the cross-sectional area of the reinnervated muscle fibers and their force per fiber, direct enumeration of the innervation ratio and the number of muscle fibers per motoneuron demonstrated that a size-dependent branching of axons accounts for the size relationships in normal muscle, as suggested by Henneman and his colleagues. This same size-dependent branching accounts for the rematching of motoneuron size and muscle unit size in reinnervated muscles. Experiments were carried out to determine whether the daily amount of neuromuscular activation of motor units accounts for the size-dependent organization and reorganization of motor unit properties. The normal size-dependent matching of motoneurons and their muscle units with respect to the numbers of muscle fibers per motoneuron was unaltered by synchronous activation of all of the motor units with the same daily activity. Hence, the restored size relationships and rematching of motoneuron and muscle unit properties after nerve injuries and muscle reinnervation sustain the normal gradation of muscle force during movement by size-ordered recruitment of motor units and the process of rate coding of action potentials. Dynamic modulation of size of muscle fibers and their contractile speed and endurance by neuromuscular activity allows for neuromuscular adaptation in the context of the sustained organization of the neuromuscular system according to the size principle.  相似文献   

10.
Fuglevand, Andrew J., and Steven S. Segal. Simulationof motor unit recruitment and microvascular unit perfusion: spatial considerations. J. Appl. Physiol.83(4): 1223-1234, 1997.Muscle fiber activity is the principalstimulus for increasing capillary perfusion during exercise. Thecontrol elements of perfusion, i.e., microvascular units (MVUs), supplyclusters of muscle fibers, whereas the control elements of contraction,i.e., motor units, are composed of fibers widely scattered throughoutmuscle. The purpose of this study was to examine how the discordantspatial domains of MVUs and motor units could influence the proportion of open capillaries (designated as perfusion) throughout a muscle crosssection. A computer model simulated the locations of perfused MVUs inresponse to the activation of up to 100 motor units in a muscle with40,000 fibers and a cross-sectional area of 100 mm2. The simulation increasedcontraction intensity by progressive recruitment of motor units. Foreach step of motor unit recruitment, the percentage of active fibersand the number of perfused MVUs were determined for several conditions:1) motor unit fibers widely dispersed and motor unit territories randomly located (whichapproximates healthy human muscle),2) regionalized motor unitterritories, 3) reversed recruitmentorder of motor units, 4) denselyclustered motor unit fibers, and 5)increased size but decreased number of motor units. The simulationsindicated that the widespread dispersion of motor unit fibersfacilitates complete capillary (MVU) perfusion of muscle at low levelsof activity. The efficacy by which muscle fiber activity inducedperfusion was reduced 7- to 14-fold under conditions that decreased thedispersion of active fibers, increased the size of motor units, orreversed the sequence of motor unit recruitment. Such conditions aresimilar to those that arise in neuromuscular disorders, with aging, orduring electrical stimulation of muscle, respectively.

  相似文献   

11.
Thalamic afferent inputs of the motor cortex (area 4) were studied in cats by retrograde axonal transport of horseradish peroxidase (HRP). The main concentration of HRP-labeled neurons was found in rostral zones of the relay nuclei (of the ventrolateral and ventrobasal complex). A few labeled neurons were found in the mediodorsal association nucleus, where their distribution is quite local. HRP-labeled neurons of nonspecific intralaminar nuclei, projecting into the motor cortex, are present only in single numbers and show no tendency toward grouping in any parts of these nuclei. The results are evidence that the motor cortex receives heterogeneous afferentation from various thalamic nuclei, and it is evidently this which guarantees the reliability of transmission of incoming information.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 250–255, March–April, 1985.  相似文献   

12.
Reflex discharges in intercostal nerves and activity of reticulospinal fibers of the ventral and lateral funiculi, evoked by stimulation of the reticular formation and of the splanchnic and intercostal nerves were investigated in cats anesthetized with chloralose (50 mg/kg). Brain-stem neuronal structures participating in the "relaying" of spino-bulbo-spinal activity were shown to lie both in the medial zones of the medullary and pontine reticular formation and in its more lateral regions; they include reticulospinal neurons and also neurons with no projection into the spinal cord. Structures whose stimulation led to prolonged (300–800 msec) inhibition of reflex spino-bulbo-spinal activity were widely represented in the brain stem, especially in the pons. Analogous inhibition of this activity was observed during conditioning stimulation of the nerves. Reticulospinal fibers of the ventral (conduction velocity 16–120 m/sec) and lateral (17–100 m/sec) funiculi were shown to be able to participate in the conduction of spino-bulbo-spinal activity to spinal neurons. In the first case fibers with conduction velocities of 40–120 m/sec were evidently most effective. Evidence was obtained that prolonged inhibition of this activity can take place at the supraspinal level.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Czechoslovakia. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 373–383, July–August, 1976.  相似文献   

13.
We studied the roles of the cerebellum and caudate nuclei in the programming and control of ballistic movements. An experimental model of operant food-procuring movements of the rats was used; the activity of single neurons of the above structures was recorded in the course of these motor performances. To evaluate the impact of the cerebellar–caudate interaction on the process of control of the ballistic (centrally programmed) components of food-procuring motor performance, we also recorded modifications of the neuronal activity in one of the above-mentioned structures induced by electrical extrastimulation of another structure in the course of realization of the above components. It is demonstrated that the cerebellum and, in particular, its dentate nuclei are involved in the programming of ballistic food-procuring movements. Neurons of the caudate nuclei play a significant role in the immediate preparation for and subsequent current control of stereotyped ballistic movements. The high plastic properties of the cerebellar neurons manifested in the process of control of ballistic food-procuring movements are proved.  相似文献   

14.
Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age  = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen''s d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units.  相似文献   

15.
Discharges of 184 motor units of the sartorius muscle functioning during cold tremor were investigated in acute experiments on anesthetized cats. Units whose discharges correlated with respiration cycles and units functionally independent of the rhythm of respiration were discovered. Discharges of both types of motor units possessed the same mean frequency (4–12 spikes/sec) and the same low variability of interspike intervals. Additional temperature stimulation of the vascular temperature receptors and changes in the frequency and depth of the respiratory excursions during cold tremor evoked identical responses in the two types of units. It is concluded that both types of motor units have similar thresholds and are of the slow, phasic type.O. V. Kuusinen State University, Petrozavodsk. Translated from Neirofiziologiya, Vol. 11, No. 4, pp. 355–361, July–August, 1979.  相似文献   

16.
Correlation of cortical unit activity in the motor area for the biceps muscle was studied in chronic experiments on cats. In a group of neurons whose activity correlated with movement 68.1% of units had no sensory input from the working limb whereas in a group of neurons not correlating with movement there were 97.6% such units. In 24.2% of group I neurons cutaneous receptive fields of activation type were discovered on the distal part of the dorsal surface of the working limb. Five neurons responding to sensory input from the joints of the working limb were studied in this group.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 9, No. 6, pp. 563–569, November–December, 1977.  相似文献   

17.
Unit activity was recorded extracellularly from the pontomedullary reticular nuclei of kittens aged 1–5 and 15–30 days, immobilized with diplacin. Properties of neurons located in the medial and lateral zones were compared. As regards the amplitude of spike potentials and types of spontaneous and evoked activity, the cells of the two groups were shown to differ. Tetanic stimulation with a frequency of 300 Hz caused a decrease in the medial zone but an increase in the lateral zone in the number of responding units compared with responses to single stimulation. In neurons of the medial zone intensification of spontaneous activity in the interval between stimuli was more marked and continued after the end of stimulation for a long time. It is suggested that units whose activity is recorded in the medial and lateral zones are mainly giant densely branched and reticular sparsely branched neurons respectively. The difference in the characteristics of activity is connected with the geometry of the dendrites and the foci of their maximal branching.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 140–148, March–April, 1982.  相似文献   

18.
During regular firing of "small" motor units, activated during weak voluntary contraction of the human soleus muscle, thick efferent fibers of n. tibialis were stimulated (a small M response was evoked, in which the small units did not participate). Peristimulus histograms of potentials of single motor units were constructed and the effect of stimulation on interspike interval duration was analyzed. The firing rate of the motor units was 4.5–7.6 spikes/sec. Stimulation of the nerve led to a sharp decrease in probability of their discharge or even complete temporary cessation of firing, i.e., it had a well marked inhibitory effect (lasting 10–20 msec). The latent period of inhibition (35–40 msec) was only a little longer than the latent period of the monosynaptic reflex of the soleus muscle. The effect of an inhibitory volley on duration of the interspike interval of the motor units depended on the time when the volley arrived during the interval. Lengthening of the interval was observed only if the inhibitory volley arrived in the second half or at the end of the interval. It is concluded that inhibition of firing of small motor units is due to Renshaw cells, activated on stimulation of axons of large motoneurons. The efficiency of a short (compared with the duration of the interspike interval) inhibitory volley reaching a motoneuron firing at low frequency characteristic of its adequate activation, is discussed.Institute for Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 88–96, January–February, 1984.  相似文献   

19.
Responses of 137 neurons of the rostral pole of the reticular and anterior ventral thalamic nuclei to electrical stimulation of the ventrolateral nucleus and motor cortex were studied in 17 cats immobilized with D-tubocurarine. The number of neurons responding antidromically to stimulation of the ventrolateral nucleus was 10.5% of all cells tested (latent period of response 0.7–3.0 msec), whereas to stimulation of the motor cortex it was 11.0% (latent period of response 0.4–4.0 msec). Neurons with a dividing axon, one branch of which terminated in the thalamic ventrolateral nuclei, the other in the motor cortex, were found. Orthodromic excitation was observed in 78.9% of neurons tested during stimulation of the ventrolateral nucleus and in 52.5% of neurons during stimulation of the motor cortex. Altogether 55.6% of cells responded to stimulation of the ventrolateral nucleus with a discharge of 3 to 20 action potentials with a frequency of 130–350 Hz. Similar discharges in response to stimulation of the motor cortex were observed in 30.5% of neurons tested. An inhibitory response was recorded in only 6.8% of cells. Convergence of influences from the thalamic ventrolateral nucleus and motor cortex was observed in 55.7% of neurons. The corticofugal influence of the motor cortex on responses arising in these cells to testing stimulation of the ventrolateral nucleus could be either inhibitory or facilitatory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 460–468, September–October, 1978.  相似文献   

20.
Needle electrodes were used to record action potentials of motor units of the rectus femoris muscle during isometric contraction (up to 50% of maximal). Up to 10 motor units working simultaneously could be identified. Under strictly stable conditions of muscular contraction the recruitment order of the motoneurons was constant. The firing rate was inversely proportional as a rule to this recruitment order. As a rule the changes in frequency connected with voluntary contraction of measured strength were in the same direction for different motoneurons. Statistical analysis of the frequency fluctuations observed during contraction of constant strength revealed direct correlation between them. The behavior of the motoneurons as described above is regarded as the result of the diffuse, indeterminate distribution of the synaptic input in the group of motoneurons innervating the muscle studied. It was also shown that even under stable conditions individual motoneurons or groups of them sometimes fired independently. During the performance of different types of movements, the firing rates of the recruited motoneurons varied in different directions and some motoneurons were replaced by others. This shows that when motoneurons function under natural conditions they use not only a common (indeterminate) but also a determinate input.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 77–87, January–February, 1973.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号