首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is generally accepted that amyloid formation requires partial, but not complete unfolding of a polypeptide chain. Amyloid formation by β-2 microglobulin (β2m), however, readily occurs under strongly native conditions provided that there is exposure to specific transition metal cations. In this review, we discuss transition metal catalyzed conformational changes in several amyloidogenic systems including prion protein, Alzheimer's and Parkinson's diseases. For some systems, including β2m from dialysis related amyloidosis (DRA), catalysis overcomes an entropic barrier to protein aggregation. Recent data suggest that β2m samples conformations that are under thermodynamic control, resulting in local or partial unfolding under native conditions. Furthermore, exposure to transition metal cations stabilizes these partially unfolded states and promotes the formation of small oligomers, whose structures are simultaneously near-native and amyloid-like. By serving as a tether, Cu2+ enables the encounter of amyloidogenic conformations to occur on time scales which are significantly more rapid than would occur between freely diffusing monomeric protein. Once amyloid formation occurs, the requirement for Cu2+ is lost. We assert that β2m amyloid fiber formation at neutral pH may be facilitated by rearrangements catalyzed by the transient and pair wise tethering of β2m at the blood/dialysate interface present during therapeutic hemodialysis.  相似文献   

2.
Beta-2 Microglobulin (beta2m) is a small, globular protein, with high solubility under conditions comparable to human serum. A complication of hemodialysis in renal failure patients is the deposition of unmodified beta2m as amyloid fibers. In vitro, exposure of beta2m to equimolar Cu(2+) under near-physiological conditions can result in self-association leading to amyloid fiber formation. Previously, we have shown that the early steps in this process involve a catalyzed structural rearrangement followed by formation of discrete oligomers. These oligomers, however, have a continued requirement for Cu(2+) while mature fibers are resistant to addition of metal chelate. Here, we report that the transition from Cu(2+) dependent to chelate resistant states occurs in the context of small oligomers, dimeric to hexameric in size. These species require Cu(2+) to form, but once generated, do not need metal cation for stability. Importantly, this transition occurs gradually over several days and the resulting oligomers are isolatable and kinetically stable on timescales exceeding weeks. In addition, formation is enhanced by levels of urea similar to those found in hemodialysis patients. Our results are consistent with our hypothesis that transient encounter of full-length wild-type beta2m with transition metal cation at the dialysis membrane interface is causal to dialysis related amyloidosis.  相似文献   

3.
Deng NJ  Yan L  Singh D  Cieplak P 《Biophysical journal》2006,90(11):3865-3879
According to experimental data, binding of the Cu(2+) ions destabilizes the native state of beta2-microglobulin (beta2m). The partial unfolding of the protein was generally considered an early step toward fibril formation in dialysis-related amyloidosis. Recent NMR studies have suggested that the destabilization of the protein might be achieved through increased flexibility upon Cu(2+) binding. However, the molecular mechanism of destabilization due to Cu(2+), its role in amyloid formation, and the relative contributions of different potential copper-binding sites remain unclear. To elucidate the effect of ion ligation at atomic detail, a series of molecular dynamics simulations were carried out on apo- and Cu(2+)-beta2m systems in explicit aqueous solutions, with varying numbers of bound ions. Simulations at elevated temperatures (360 K) provide detailed pictures for the process of Cu(2+)-binding-induced destabilization of the native structure at the nanosecond timescale, which are in agreement with experiments. Conformational transitions toward partially unfolded states were observed in protein solutions containing bound copper ions at His-31 and His-51, which is marked by an increase in the protein vibrational entropy, with TDeltaS(vibr) ranging from 30 to 69 kcal/mol. The binding of Cu(2+) perturbs the secondary structure and the hydrogen bonding pattern disrupts the native hydrophobic contacts in the neighboring segments, which include the beta-strand D2 and part of the beta-strand E, B, and C and results in greater exposure of the D-E loop and the B-C loop to the water environment. Analysis of the MD trajectories suggests that the changes in the hydrophobic environment near the copper-binding sites lower the barrier of conformational transition and stabilize the more disordered conformation. The results also indicate that the binding of Cu(2+) at His-13 has little effect on the conformational stability, whereas the copper-binding site His-31, and to a lesser extent His-51, are primarily responsible for the observed changes in the protein conformation and dynamics.  相似文献   

4.
In the US alone, more than 250,000 people have impaired renal function that necessitates treatment by dialysis. A debilitating complication of long-term treatment is the deposition of beta2-microglobulin (beta2m) as amyloid fibers within the joint space. However, the intrinsic propensity of isolated beta2m protein to initiate in vitro fiber formation is negligible under conditions matched to the neutral pH and ionic conditions of serum. Here, we present evidence for a novel interaction between beta2m and Cu(2+) at a concentration within institutionally recommended limits for this metal ion in dialysate solution. Mass spectrometry, using electrospray ionization from native conditions, demonstrates that the binding of Cu(2+) is specific over Ca(2+) or Zn(2+). Despite maintaining a native-like conformation upon Cu(2+) binding, the folded protein is unusually destabilized against thermal and urea denaturation. We further demonstrate that destabilization by Cu(2+) uniquely promotes de novo fiber formation at 37 degrees C and neutral pH. Since the incidence of amyloidosis is dramatically reduced upon elimination of copper from dialysis membranes, our results provide a molecular understanding for dialysis-associated amyloid formation by beta2m.  相似文献   

5.
Many polypeptides can self-associate into linear, aggregated assemblies termed amyloid fibers. High-resolution structural insights into the mechanism of fibrillogenesis are elusive owing to the transient and mixed oligomeric nature of assembly intermediates. Here, we report the conformational changes that initiate fiber formation by beta-2-microglobulin (beta2m) in dialysis-related amyloidosis. Access of beta2m to amyloidogenic conformations is catalyzed by selective binding of divalent cations. The chemical basis of this process was determined to be backbone isomerization of a conserved proline. On the basis of this finding, we designed a beta2m variant that closely adopts this intermediate state. The variant has kinetic, thermodynamic and catalytic properties consistent with its being a fibrillogenic intermediate of wild-type beta2m. Furthermore, it is stable and folded, enabling us to unambiguously determine the initiating conformational changes for amyloid assembly at atomic resolution.  相似文献   

6.
The deposition of beta-2-microglobulin (beta2m) as amyloid fibers results in debilitating complications for renal failure patients who are treated by hemodialysis. In vitro, wild-type beta2m can be converted to amyloid under physiological conditions by exposure to biomedically relevant concentrations of Cu(2+). In this work, we have made comparative measurements of the structural and oligomeric changes in beta2m at time points preceding fibrillogenesis. Our results show Cu(2+) mediates the formation of a monomeric, activated state followed by the formation of a discrete dimeric intermediate. The dimeric intermediates then assemble into tetra- and hexameric forms which display little additional oligomerization on the time scales of their own formation (<1 h). Amyloid fiber formation progresses from these intermediate states but on much longer time scales (>1 week). Although Cu(2+) is necessary for the generation and stabilization of these intermediates, it is not required for the stability of mature amyloid fibers. This suggests that Cu(2+) acts as an initiating factor of amyloidosis by inducing oligomer formation. (1)H NMR and near-UV circular dichroism are used to establish that oligomeric intermediates are native-like in structure. The native-like structure and discrete oligomeric size of beta2m amyloid intermediates suggest that this protein forms fibrils by structural domain swapping.  相似文献   

7.
Armen RS  Daggett V 《Biochemistry》2005,44(49):16098-16107
The self-assembly of beta(2)-microglobulin into fibrils leads to dialysis-related amyloidosis. pH-mediated partial unfolding is required for the formation of the amyloidogenic intermediate that then self-assembles into amyloid fibrils. Two partially folded intermediates of beta(2)-microglobulin have been identified experimentally and linked to the formation of fibrils of distinct morphology, yet it remains difficult to characterize these partially unfolded states at high resolution using experimental approaches. Consequently, we have performed molecular dynamics simulations at neutral and low pH to determine the structures of these partially unfolded amyloidogenic intermediates. In the low-pH simulations, we observed the formation of alpha-sheet structure, which was first proposed by Pauling and Corey. Multiple simulations were performed, and two distinct intermediate state ensembles were identified that may account for the different fibril morphologies. The predominant early unfolding intermediate was nativelike in structure, in agreement with previous NMR studies. The late unfolding intermediate was significantly disordered, but it maintained an extended elongated structure, with hydrophobic clusters and residual alpha-extended chain strands in specific regions of the sequence that map to amyloidogenic peptides. We propose that the formation of alpha-sheet facilitates self-assembly into partially unfolded prefibrillar amyloidogenic intermediates.  相似文献   

8.
Hamill AC  Wang SC  Lee CT 《Biochemistry》2007,46(26):7694-7705
Shape-reconstruction analysis applied to small angle neutron scattering (SANS) data is used to determine the in vitro conformations of alpha-chymotrypsin oligomers that form as a result of partial unfolding with a photoresponsive surfactant. In the presence of the photoactive surfactant under visible light, the native oligomers (dimers or compact hexamers) rearrange into expanded corkscrew-like hexamers. Converting the surfactant to the photopassive form with UV light illumination causes the hexamers to laterally aggregate and intertwine into dodecamers with elongated, twisted conformations containing cross-sectional dimensions similar to amyloid protofilaments. Secondary-structure measurements with FT-IR indicate that this photoinduced hexamer-to-dodecamer association occurs through intermolecular beta sheets stabilized with hydrogen bonds, similar to amyloid formation. Traditional structural characterization techniques such as X-ray crystallography and NMR are not easily amenable to the study of these non-native protein conformations; however, SANS is ideally suited to the study of these associated intermediates, providing direct observation of the mechanism of oligomeric formation in an amyloid-forming protein. Combined with photoinitiated hexamer-to-dodecamer associations in the presence of the photoresponsive surfactant, this study could provide unique insight into the amyloidosis disease pathway, as well as novel disease treatment strategies.  相似文献   

9.
Beta2-microglobulin (beta2-m), a typical immunoglobulin domain made of seven beta-strands, is a major component of amyloid fibrils formed in dialysis-related amyloidosis. To understand the mechanism of amyloid fibril formation in the context of full-length protein, we prepared various mutants in which proline (Pro) was introduced to each of the seven beta-strands of beta2-m. The mutations affected the amyloidogenic potential of beta2-m to various degrees. In particular, the L23P, H51P, and V82P mutations significantly retarded fibril extension at pH 2.5. Among these, only L23P is included in the known "minimal" peptide sequence, which can form amyloid fibrils when isolated as a short peptide. This indicates that the residues in regions other than the minimal sequence, such as H51P and V82P, determine the amyloidogenic potential in the full-length protein. To further clarify the mutational effects, we measured their stability against guanidine hydrochloride of the native state at pH 8.0 and the amyloid fibrils at pH 2.5. The amyloidogenicity of mutants showed a significant correlation with the stability of the amyloid fibrils, and little correlation was observed with that of the native state. It has been proposed that the stability of the native state and the unfolding rate to the amyloidogenic precursor as well as the conformational preference of the denatured state determine the amyloidogenicity of the proteins. The present results reveal that, in addition, stability of the amyloid fibrils is a key factor determining the amyloidogenic potential of the proteins.  相似文献   

10.
Compact packing, burial of hydrophobic side-chains, and low free energy levels of folded conformations contribute to stability of native proteins. Essentially, the same factors are implicated in an even higher stability of mature amyloid fibrils. Although both native insulin and insulin amyloid are resistant to high pressure and influence of cosolvents, intermediate aggregation-prone conformations are susceptible to either condition. Consequently, insulin fibrillation may be tuned under hydrostatic pressure or-- through cosolvents and cosolutes-- by preferential exclusion or binding. Paradoxically, under high pressure, which generally disfavors aggregation of insulin, an alternative "low-volume" aggregation pathway, which leads to unique circular amyloid is permitted. Likewise, cosolvents are capable of preventing, or altering amyloidogenesis of insulin. As a result of cosolvent-induced perturbation, distinct conformational variants of fibrils are formed. Such variants, when used as templates for seeding daughter generations, reproduce initial folding patterns regardless of environmental biases. By the close analogy, this suggests that the "prion strains" phenomenon may mirror a generic, common feature in amyloids. The susceptibility of amyloidogenic conformations to pressure and cosolvents is likely to arise from their "frustration", as unfolding results in less-densely packed side-chains, void volumes, and exposure of hydrophobic groups. The effects of cosolvents and pressure are discussed in the context of studies on other amyloidogenic protein models, amyloid polymorphism, and "strains".  相似文献   

11.
A key pathological event in dialysis-related amyloidosis is the fibril formation of beta(2)-microglobulin (beta 2-m). Because beta 2-m does not form fibrils in vitro, except under acidic conditions, predisposing factors that may drive fibril formation at physiological pH have been the focus of much attention. One factor that may be implicated is Cu(2+) binding, which destabilizes the native state of beta 2-m and thus stabilizes the amyloid precursor. To address the Cu(2+)-induced destabilization of beta 2-m at the atomic level, we studied changes in the conformational dynamics of beta 2-m upon Cu(2+) binding. Titration of beta 2-m with Cu(2+) monitored by heteronuclear NMR showed that three out of four histidines (His13, His31, and His51) are involved in the binding at pH 7.0. (1)H-(15)N heteronuclear NOE suggested increased backbone dynamics for the residues Val49 to Ser55, implying that the Cu(2+) binding at His51 increased the local dynamics of beta-strand D. Hydrogen/deuterium exchange of amide protons showed increased flexibility of the core residues upon Cu(2+) binding. Taken together, it is likely that Cu(2+) binding increases the pico- to nanosecond fluctuation of the beta-strand D on which His51 exists, which is propagated to the core of the molecule, thus promoting the global and slow fluctuations. This may contribute to the overall destabilization of the molecule, increasing the equilibrium population of the amyloidogenic intermediate.  相似文献   

12.

Background

Amyloidogenic proteins are most often associated with neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, but there are more than two dozen human proteins known to form amyloid fibrils associated with disease. Lysozyme is an antimicrobial protein that is used as a general model to study amyloid fibril formation. Studies aimed at elucidating the process of amyloid formation of lysozyme tend to focus on partial unfolding of the native state due to the relative instability of mutant amyloidogenic variants. While this is well supported, the data presented here suggest the native structure of the variants may also play a role in primary nucleation.

Results

Three-dimensional structural analysis identified lysozyme residues 21, 62, 104, and 122 as displaced in both amyloidogenic variants compared to wild type lysozyme. Residue interaction network (RIN) analysis found greater clustering of residues 112–117 in amyloidogenic variants of lysozyme compared to wild type. An analysis of the most energetically favored predicted dimers and trimers provided further evidence for a role for residues 21, 62, 104, 122, and 112–117 in amyloid formation.

Conclusions

This study used lysozyme as a model to demonstrate the utility of combining 3D structural analysis with RIN analysis for studying the general process of amyloidogenesis. Results indicated that binding of two or more amyloidogenic lysozyme mutants may be involved in amyloid nucleation by placing key residues (21, 62, 104, 122, and 112–117) in proximity before partial unfolding occurs. Identifying residues in the native state that may be involved in amyloid formation could provide novel drug targets to prevent a range of amyloidoses.
  相似文献   

13.
Alternative conformations of beta(2)-microglobulin (beta(2)m) are involved in its transformation from soluble monomeric precursor molecules to the insoluble polymeric material that constitutes beta(2)m amyloid. Accordingly, non-native conditions such as low pH or high ionic strength promote beta(2)m amyloid formation in vitro. The early events in these processes are not well known, partly because of the paucity of techniques available for the characterization of transient folding intermediates in proteins. We have used high-resolution separations in capillaries (capillary electrophoresis, CE) to resolve putative conformer fractions in native and structurally modified beta(2)m and to show the induction of alternatively folded beta(2)m under different experimental conditions. The conformer fractions are observed as distinct peaks in the separation profiles and thus it is possible to probe for the reactivity of these individual beta(2)m species with specific ligands that, upon binding, alter analyte mobility in affinity capillary electrophoresis experiments. Interactions were shown in this way for the negatively charged substances heparin, Congo red, and suramin, as well as for Cu(2+) ions. Marked differences in the binding behavior of the beta(2)m conformational variants compared with native beta(2)m could be demonstrated. This approach for conformer separation and binding characterization is a valuable starting point for the assessment of various ligand molecules, or analogues thereof, as agents capable of perturbing the mechanisms of fibril formation.  相似文献   

14.
A debilitating complication of long-term hemodialysis is the deposition of beta-2-microglobulin (beta2m) as amyloid plaques in the joint space. We have recently shown that Cu(2+) can be a contributing, if not causal, factor at concentrations encountered during dialysis therapy. The basis for this effect is destabilization and incorporation of beta2m into amyloid fibers upon binding of Cu(2+). In this work, we demonstrate that while beta2m binds Cu(2+) specifically in the native state, it is binding of Cu(2+) by non-native states of beta2m which is responsible for destabilization. Mutagenesis of potential coordinating groups for Cu(2+) shows that native state binding of Cu(2+) is mediated by residues and structures that are different than those which bind in non-native states. An increased affinity for copper by non-native states compared to that of the native state gives rise to overall destabilization. Using mass spectrometry, NMR, and fluorescence techniques, we show that native state binding is localized to H31 and W60 and is highly specific for Cu(2+) over Zn(2+) and Ni(2+). Binding of Cu(2+) in non-native states of beta2m is mediated by residues H13, H51, and H84, but not H31. Although denatured beta2m has characteristics of a globally unfolded state, it nevertheless demonstrates the following strong specificity of binding: Cu(2+) > Zn(2+) > Ni(2+). This requires the existence of a well-defined structure in the unfolded state of this protein. As Cu(2+) effects are reported in many other amyloidoses, e.g., PrP, alpha-synuclein, and Abeta, our results may be extended to the emerging field of divalent ion-associated amyloidosis.  相似文献   

15.
Light chain (AL) amyloidosis is an incurable human disease, where the amyloid precursor is a misfolding‐prone immunoglobulin light‐chain. Here, we identify the role of somatic mutations in the structure, stability and in vitro fibril formation for an amyloidogenic AL‐12 protein by restoring four nonconservative mutations to their germline (wild‐type) sequence. The single restorative mutations do not affect significantly the native structure, the unfolding pathway, and the reversibility of the protein. However, certain mutations either decrease (H32Y and H70D) or increase (R65S and Q96Y) the protein thermal stability. Interestingly, the most and the least stable mutants, Q96Y and H32Y, do not form amyloid fibrils under physiological conditions. Thus, Q96 and H32 are key residues for AL‐12 stability and fibril formation and restoring them to the wild‐type residues preclude amyloid formation. The mutants whose equilibrium is shifted to either the native or unfolded states barely sample transient partially folded states, and therefore do not form fibrils. These results agree with previous observations by our laboratory and others that amyloid formation occurs because of the sampling of partially folded states found within the unfolding transition (Blancas‐Mejia and Ramirez‐Alvarado, Ann Rev Biochem 2013;82:745–774). Here we provide a new insight on the AL amyloidosis mechanism by demonstrating that AL‐12 does not follow the established thermodynamic hypothesis of amyloid formation. In this hypothesis, thermodynamically unstable proteins are more prone to amyloid formation. Here we show that within a thermal stability range, the most stable protein in this study is the most amyloidogenic protein.  相似文献   

16.
beta 2-Microglobulin is a small, major histocompatibility complex class I-associated protein that undergoes aggregation and accumulates as amyloid deposits in human tissues as a consequence of long-term haemodialysis. The folding process of this amyloidogenic protein has been studied in vitro by diluting the guanidine hydrochloride-denatured protein in refolding buffer at pH 7.4 and monitoring the folding process by means of a number of spectroscopic probes that allow the native structure of the protein to be detected as it develops. These techniques include fluorescence spectroscopy, far and near-UV circular dichroism, 8-anilino-1-naphthalenesulfonic acid binding and double jump assays. All spectroscopic probes indicate that a significant amount of structure forms within the dead-time of stopped-flow measurements (<5 ms). The folding reaction goes to completion through a fast phase followed by a slow phase, whose rate constants are ca 5.1 and 0.0030 s(-1) in water, respectively. Unfolding-folding double jump experiments, together with the use of peptidyl prolyl isomerase, reveal that the slow phase of folding of beta 2-microglobulin is not fundamentally determined by cis/trans isomerisation of X-Pro peptide bonds. Other folding-unfolding double jump experiments also suggest that the fast and slow phases of folding are not related to independent folding of different populations of protein molecules. Rather, we provide evidence for a sequential mechanism of folding where denatured beta 2-microglobulin collapses to an ensemble of partially folded conformations (I(1)) which fold subsequently to a more highly structured species (I(2)) and, finally, attain the native state. The partially folded species I(2) appears to be closely similar to previously studied amyloidogenic forms of beta 2-microglobulin, such as those adopted by the protein at mildly acid pH values and by a variant with six residues deleted at the N terminus. Since amyloid formation in vivo originates from partial denaturation of beta 2-microglobulin under conditions favouring the folding process, the long-lived, partially structured species detected here might be significantly populated under some physiological conditions and hence might play an important role in the process of amyloid formation.  相似文献   

17.
Beta(2)-microglobulin (beta(2)m) is the amyloidogenic protein in dialysis-related amyloidosis, but the mechanisms underlying beta(2)m fibrillogenesis in vivo are largely unknown. We study a structural variant of beta(2)m that has been linked to cancer and inflammation and may be present in the circulation of dialysis patients. This beta(2)m variant, DeltaK58-beta(2)m, is a disulfide-linked two-chain molecule consisting of amino acid residues 1-57 and 59-99 of intact beta(2)m, and we here demonstrate and characterize its decreased conformational stability as compared to wild-type (wt) beta(2)m. Using amide hydrogen/deuterium exchange monitored by mass spectrometry, we show that DeltaK58-beta(2)m has increased unfolding rates compared to wt-beta(2)m and that unfolding is highly temperature dependent. The unfolding rate is 1 order of magnitude faster in DeltaK58-beta(2)m than in wt-beta(2)m, and at 37 degrees C the half-time for unfolding is more than 170-fold faster than at 15 degrees C. Conformational changes are also reflected by a very prominent Congo red binding of DeltaK58-beta(2)m at 37 degrees C, by the evolution of thioflavin T fluorescence, and by changes in intrinsic fluorescence. After a few days at 37 degrees C, in contrast to wt-beta(2)m, DeltaK58-beta(2)m forms well-defined high molecular weight aggregates that are detected by size-exclusion chromatography. Atomic force microscopy after seeding with amyloid-beta(2)m fibrils under conditions that induce minimal fibrillation in wt-beta(2)m shows extensive amyloid fibrillation in DeltaK58-beta(2)m samples. The results highlight the instability and amyloidogenicity under near physiological conditions of a slightly modified beta(2)m variant generated by limited proteolysis and illustrate stages of amyloid formation from early conformational variants to overt fibrillation.  相似文献   

18.
The solution structure of human beta2-microglobulin (beta2-m), the nonpolymorphic component of class I major histocompatibility complex (MHC-I), was determined by (1)H NMR spectroscopy and restrained modeling calculations. Compared to previous structural data obtained from the NMR secondary structure of the isolated protein and the crystal structure of MHC-I, in which the protein is associated to the heavy-chain component, several differences are observed. The most important rearrangements were observed for (1) strands V and VI (loss of the C-terminal and N-terminal end, respectively), (2) interstrand loop V-VI, and (3) strand I, including the N-terminal segment (displacement outward of the molecular core). These modifications can be considered as the prodromes of the amyloid transition. Solvation of the protected regions in MHC-I decreases the tertiary packing by breaking the contiguity of the surface hydrophobic patches at the interface with heavy chain and the nearby region at the surface charge cluster of the C-terminal segment. As a result, the molecule is placed in a state in which even minor charge and solvation changes in response to pH or ionic-strength variations can easily compromise the hydrophobic/hydrophilic balance and trigger the transition into a partially unfolded intermediate that starts with unpairing of strand I and leads to polymerization and precipitation into fibrils or amorphous aggregates. The same mechanism accounts for the partial unfolding and fiber formation subsequent to Cu(2+) binding, which is shown to occur primarily at His 31 and involve partially also His 13, the next available His residue along the partial unfolding pathway.  相似文献   

19.
《Journal of molecular biology》2013,425(15):2722-2736
The transition of proteins from their soluble functional state to amyloid fibrils and aggregates is associated with the onset of several human diseases. Protein aggregation often requires some structural reshaping and the subsequent formation of intermolecular contacts. Therefore, the study of the conformation of excited protein states and their ability to form oligomers is of primary importance for understanding the molecular basis of amyloid fibril formation. Here, we investigated the oligomerization processes that occur along the folding of the amyloidogenic human protein β2-microglobulin. The combination of real-time two-dimensional NMR data with real-time small-angle X-ray scattering measurements allowed us to derive thermodynamic and kinetic information on protein oligomerization of different conformational states populated along the folding pathways. In particular, we could demonstrate that a long-lived folding intermediate (I-state) has a higher propensity to oligomerize compared to the native state. Our data agree well with a simple five-state kinetic model that involves only monomeric and dimeric species. The dimers have an elongated shape with the dimerization interface located at the apical side of β2-microglobulin close to Pro32, the residue that has a trans conformation in the I-state and a cis conformation in the native (N) state. Our experimental data suggest that partial unfolding in the apical half of the protein close to Pro32 leads to an excited state conformation with enhanced propensity for oligomerization. This excited state becomes more populated in the transient I-state due to the destabilization of the native conformation by the trans-Pro32 configuration.  相似文献   

20.
Protein aggregation into insoluble fibrillar structures known as amyloid characterizes several neurodegenerative diseases, including Alzheimer's, Huntington's and Creutzfeldt‐Jakob. Transthyretin (TTR), a homotetrameric plasma protein, is known to be the causative agent of amyloid pathologies such as FAP (familial amyloid polyneuropathy), FAC (familial amyloid cardiomiopathy) and SSA (senile systemic amyloidosis). It is generally accepted that TTR tetramer dissociation and monomer partial unfolding precedes amyloid fibril formation. To explore the TTR unfolding landscape and to identify potential intermediate conformations with high tendency for amyloid formation, we have performed molecular dynamics unfolding simulations of WT‐TTR and L55P‐TTR, a highly amyloidogenic TTR variant. Our simulations in explicit water allow the identification of events that clearly discriminate the unfolding behavior of WT and L55P‐TTR. Analysis of the simulation trajectories show that (i) the L55P monomers unfold earlier and to a larger extent than the WT; (ii) the single α‐helix in the TTR monomer completely unfolds in most of the L55P simulations while remain folded in WT simulations; (iii) L55P forms, early in the simulations, aggregation‐prone conformations characterized by full displacement of strands C and D from the main β‐sandwich core of the monomer; (iv) L55P shows, late in the simulations, severe loss of the H‐bond network and consequent destabilization of the CBEF β‐sheet of the β‐sandwich; (v) WT forms aggregation‐compatible conformations only late in the simulations and upon extensive unfolding of the monomer. These results clearly show that, in comparison with WT, L55P‐TTR does present a much higher probability of forming transient conformations compatible with aggregation and amyloid formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号