首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetragonisca angustula stingless bees are considered as solitary foragers that lack specific communication strategies. In their orientation towards a food source, these social bees use chemical cues left by co-specifics and the information obtained in previous foraging trips by the association of visual stimuli with the food reward. Here, we investigated their ability to learn the association between odors and reward (sugar solution) and the effect on learning of previous encounters with scented food either inside the hive or during foraging. During food choice experiments, when the odor associated with the food was encountered at the feeding site, the bees’ choice is biased to the same odor afterwards. The same was not the case when scented food was placed inside the nest. We also performed a differential olfactory conditioning of proboscis extension response with this species for the first time. Inexperienced bees did not show significant discrimination levels. However, when they had had already interacted with scented food inside the hive, they were able to learn the association with a specific odor. Possible olfactory information circulation inside the hive and its use in their foraging strategies is discussed.  相似文献   

2.
Although several independent lines of evidence show that bees can make use of information provided by their dance language, there is an ongoing controversy about the significance of the dance information versus odor cues in the search behavior of recruited bees. A series of experiments was performed to assess the relative significance of dance information and odors for the site-specific search of recruit bees. In these experiments recruit bees were trapped automatically at arrays of artificial flowers at various distances from the hive. The distribution of directions in which the recruits searched for food was compared between recruitment by dancers performing well-oriented dances on the vertical side of the comb and dancers performing disoriented dances on a horizontal comb. The results show quantitatively that bees use both odor cues and the dance information. The greater the distance to the feeding site, the greater is the relative significance of the dance information.  相似文献   

3.
A recent study showed that the stingless bee Melipona quadrifasciata could learn to discriminate odors in a classical conditioning of proboscis extension response (PER). Here we used this protocol to investigate the ability of these bees to use olfactory information obtained within the colony in an experimental context: the PER paradigm. We compared their success in solving a classical differential conditioning depending on the previous olfactory experiences received inside the nest. We found that M. quadrifasciata bees are capable of transferring the food-odor information acquired in the colony to a differential conditioning in the PER paradigm. Bees attained higher discrimination levels when they had previously encountered the rewarded odor associated to food inside the hive. The increase in the discrimination levels, however, was in some cases unspecific to the odor used indicating a certain degree of generalization. The influence of the food scent offered at a field feeder 24 h before the classical conditioning could also be seen in the discrimination attained by the foragers in the PER setup, detecting the presence of long-term memory. Moreover, the improved performance of recruited bees in the PER paradigm suggests the occurrence of social learning of nectar scents inside the stingless bees’ hives.  相似文献   

4.
Prior work has shown that yellowjacket waSPS remember food odors and use them as cues when foraging. There is also evidence they have mechanisms to recruit nest mates to highly rewarding food sources, as naïve individuals are more likely to go to food sources with scents similar to those visited by nest mates. We asked whether recruitment requires behavioral stimulation by returning foragers, as in honey bees, or if sampling the food source inside the nest is sufficient. We tested this by eliminating the behavior of returning foragers by inserting a scented sugar solution directly into a Vespula germanica nest. Exiting foragers were given a choice of the test scent and a control scent. WaSPS were more likely to choose the test scent. We conclude that behavioral interactions with returning foragers are not necessary to stimulate nest mates to associate an odor with a food source and search for a resource bearing that odor, and that experience with the scented reward inside the nest is sufficient to achieve this result.  相似文献   

5.
Worker honey bees (Apis mellifera) performing field duties are known to possess individual task specializations. However, little evidence has been forthcoming about individual specializations among the younger pre-foraging worker bees performing hive duties. This paper reports results obtained from behavioural observations of worker bees in seven hives. An information-theory analysis of these data reveals that the divergence from independence (D2) of worker bee identity and behavioural pattern performed has a low value in all of the experimental hives. Young worker bees performing hive duties therefore do not possess detectable individual specializations. Environmental and life-history considerations that may account for this difference in behaviour between field and hive worker bees are discussed.  相似文献   

6.
In honeybees (Apis mellifera), the process of nectar collection is considered a straightforward example of task partitioning with two subtasks or two intersecting cycles of activity: (1) foraging and (2) storing of nectar, linked via its transfer between foragers and food processors. Many observations suggest, however, that nectar collection and processing in honeybees is a complex process, involving workers of other sub-castes and depending on variables such as resource profitability or the amount of stored honey. It has been observed that food processor bees often distribute food to other hive bees after receiving it from incoming foragers, instead of storing it immediately in honey cells. While there is little information about the sub-caste affiliation and the behaviour of these second-order receivers, this stage may be important for the rapid distribution of nutrients and related information. To investigate the identity of these second-order receivers, we quantified behaviours following nectar transfer and compared these behaviours with the behaviour of average worker hive-bees. Furthermore, we tested whether food quality (sugar concentration) affects the behaviour of the second-order receivers. Of all identified second-order receivers, 59.3% performed nurse duties, 18.5% performed food-processor duties and 22.2% performed forager duties. After food intake, these bees were more active, had more trophallaxes (especially offering contacts) compared to average workers and they were found mainly in the brood area, independent of food quality. Our results show that the liquid food can be distributed rapidly among many bees of the three main worker sub-castes, without being stored in honey cells first. Furthermore, the results suggest that the rapid distribution of food partly depends on the high activity of second-order receivers. Received 31 August 2006; revised 8 December 2006; accepted 11 December 2006.  相似文献   

7.
Previous evidence indicates that the recognition of the nectar delivered by forager honeybees within the colony may have been a primitive method of communication on food resources. Thus, the association between scent and reward that nectar foragers establish while they collect on a given flower species should be retrieved during trophallaxis, i.e., the transfer of liquid food by mouth, and, accordingly, foraging experience could affect the occurrence of these interactions inside the nest. We used experimental arenas to analyze how crop scents carried by donor bees affect trophallaxis among foragers, i.e., donors and receivers, which differ in their foraging experience. Results showed that whenever the foragers had collected unscented sugar solution from a feeder the presence of scents in the solution carried by donors did not affect the occurrence of trophallaxis nor its dynamics. In contrast, whenever the foragers had previous olfactory information, new scents present in the crop of the donors negatively affected the occurrence, but not the dynamics of trophallaxis. Thus, the association learned at the food source seems to be retrieved during trophallaxis, and it is possible that known scents present in the mouthparts of nest-mates may operate as a triggering stimulus to elicit trophallactic behavior within the hive.  相似文献   

8.
The antennal lobe (AL) is the first center for processing odors in the insect brain, as is the olfactory bulb (OB) in vertebrates. Both the AL and the OB have a characteristic glomerular structure; odors sensed by olfactory receptor neurons are represented by patterns of glomerular activity. Little is known about when and how an odor begins to be perceived in a developing brain. We address this question by using calcium imaging to monitor odor-evoked neural activity in the ALs of bees of different ages. We find that odor-evoked neural activity already occurs in the ALs of bees as young as 1 or 2 days. In young bees, the responses to odors are relatively weak and restricted to a small number of glomeruli. However, different odors already evoke responses in different combinations of glomeruli. In mature bees, the responses are stronger and are evident in more glomeruli, but continue to have distinct odor-dependent signatures. Our findings indicate that the specific glomerular patterns for odors are conserved during the development, and that odor representations are fully developed in the AL during the first 2 weeks following emergence.  相似文献   

9.
Social insect colonies face the challenge of adjusting the behavior of individuals performing various tasks to a changing environment. It has been shown in several species that characteristics of interaction patterns between nestmates provide social information that allows individuals to adjust their behavior in adaptive ways. A well-studied example is the modulation of recruitment by dancing in honeybees ( Apis mellifera ) in response to the time, the foragers have to search for unloading partners and the number of unloading bees. Here we tested if experiences that hive bees acquired during past social interactions affect interactions with the incoming foragers. Bees returning with food containing a floral scent that was familiar to the hive bees from previous interactions had more food receivers during unloading and more followers during dancing displays compared with foragers returning with food containing a novel scent or unscented food. We also confirm that the number of receivers during food unloading is positively related to the motivation to dance immediately after unloading. Our results show that prior social experiences affect the ways in which individuals interact in the context of honeybee nectar collection and, therefore, how learning in hive bees contributes to the organization of this collective task.  相似文献   

10.
Foragers of a stingless bee, Melipona seminigra, are able to use the optic flow experienced en route to estimate flight distance. After training the bees to collect food inside a flight tunnel with black-and-white stripes covering the side walls and the floor, their search behavior was observed in tunnels lacking a reward. Like honeybees, the bees accurately estimated the distance to the previously offered food source as seen from the sections of the tunnel where they turned around in search of the food. Changing the visual flow by decreasing the width of the flight tunnel resulted in the underestimation of the distance flown. The removal of image motion cues either in the ventral or lateral field of view reduced the bees' ability to gauge distances. When the feeder inside the tunnel was displaced together with the bees feeding on it while preventing the bee from seeing any image motion during the displacement the bees experienced different distances on their way to the food source and during their return to the nest. In the subsequent test the bees searched for the food predominantly at the distance associated with their return flight.  相似文献   

11.
Honeybees of different ages and reproductive castes cohabit in the hive where they are exposed to many odors that might affect associative learning. Our aim was to analyze the role of odors pre-exposed as volatiles on appetitive learning in honeybees of different ages and search for their long-term effect both under natural and laboratory conditions. By evaluating memory acquisition and retention through a differential proboscis extension response conditioning, we found that hive-exposed odors offered as a reinforced conditioned stimulus during training promoted a learning-reduced effect [latent inhibition (LI)]. On the other hand, no effect was found when the non-reinforced conditioned stimulus was pre-exposed. The LI effect varied with the odor identity. However, only slight differences were found with the age of the bees. Exposure-conditioning intervals longer than 24 h did not show an LI effect unless the odor concentration was increased or exposure was prolonged. Our results show that pre-exposed volatiles could either reduce learning performance, if this odor is later associated with food, or be irrelevant in the case that alternative scented resources circulate within the colony. The differential effects found according to the olfactory exposure characteristics could strongly influence the propagation of chemosensory information within the hive.  相似文献   

12.
The honeybee (Apis mellifera) waggle dance, which is performed inside the hive by forager bees, informs hive mates about a potent food source, and recruits them to its location. It consists of a repeated figure-8 pattern: two oppositely directed turns interspersed by a short straight segment, the “waggle run”. The waggle run consists of a single stride emphasized by lateral waggling motions of the abdomen. Directional information pointing to a food source relative to the sun''s azimuth is encoded in the angle between the waggle run line and a reference line, which is generally thought to be established by gravity. Yet, there is tantalizing evidence that the local (ambient) geomagnetic field (LGMF) could play a role. We tested the effect of the LGMF on the recruitment success of forager bees by placing observation hives inside large Helmholtz coils, and then either reducing the LGMF to 2% or shifting its apparent declination. Neither of these treatments reduced the number of nest mates that waggle dancing forager bees recruited to a feeding station located 200 m north of the hive. These results indicate that the LGMF does not act as the reference for the alignment of waggle-dancing bees.  相似文献   

13.
Alarm pheromone and its major component isopentylacetate induce stress-like responses in forager honey bees, impairing their ability to associate odors with a food reward. We investigated whether isopentylacetate exposure decreases appetitive learning also in young worker bees. While isopentylacetate-induced learning deficits were observed in guards and foragers collected from a queen-right colony, learning impairments resulting from exposure to this pheromone could not be detected in bees cleaning cells. As cell cleaners are generally among the youngest workers in the colony, effects of isopentylacetate on learning behavior were examined further using bees of known age. Adult workers were maintained under laboratory conditions from the time of adult emergence. Fifty percent of the bees were exposed to queen mandibular pheromone during this period, whereas control bees were not exposed to this pheromone. Isopentylacetate-induced learning impairments were apparent in young (less than one week old) controls, but not in bees of the same age exposed to queen mandibular pheromone. This study reveals young worker bees can exhibit a stress-like response to alarm pheromone, but isopentylacetate-induced learning impairments in young bees are suppressed by queen mandibular pheromone. While isopentylacetate exposure reduced responses during associative learning (acquisition), it did not affect one-hour memory retrieval.  相似文献   

14.
目的 蜜蜂天生具有丰富的嗅觉辨识能力,觅食、交配、导航以及社交活动均依赖其嗅觉系统,是研究嗅觉感知和学习记忆的行为及神经机制的理想模型。蜜蜂既能够将某个复合气味作为一个整体也可以将复合气味的各组成成分进行辨别和区分,但是在特征依赖的联合记忆中依据何种原则进行加工并存储到长期记忆还不清楚。方法 本文利用特征阳性(feature positive:AB+,B-)和特征阴性(feature negative:AB-,B+)的奖赏性嗅觉条件化,训练蜜蜂对复合气味和成分气味的辨别,并检测蜜蜂对复合气味(AB)、成分气味(B)以及特征气味(A)的中长时记忆(3 h)和长时记忆(24 h)。结果 在特征阳性的奖赏性嗅觉条件化中,蜜蜂对训练过的气味可以形成稳定的中长时和长时记忆,并且对复合气味中的特征气味的记忆与复合气味的记忆呈现高度相似。但在特征阴性的奖赏性嗅觉条件化中,蜜蜂虽能够在3 h和24 h对训练过的两种气味具有显著的伸喙反应差异,且对特征阴性的气味无显著反应,但对复合气味的反应随时间的推移而增加。结论 实验结果表明,蜜蜂选择性地将与奖赏信息联合出现的气味巩固到长时记忆中,但并未依据特征成分加工储存到长时记忆中。奖赏信息预示着食物源,与生存息息相关,表明对环境信息进行选择性的记忆巩固加工并储存可能是低等动物高效地编码生存相关信息的重要策略。  相似文献   

15.

Background

Honeybees (Apis mellifera) exhibit an extraordinarily tuned division of labor that depends on age polyethism. This adjustment is generally associated with the fact that individuals of different ages display different response thresholds to given stimuli, which determine specific behaviors. For instance, the sucrose-response threshold (SRT) which largely depends on genetic factors may also be affected by the nectar sugar content. However, it remains unknown whether SRTs in workers of different ages and tasks can differ depending on gustatory and olfactory experiences.

Methodology

Groups of worker bees reared either in an artificial environment or else in a queen-right colony, were exposed to different reward conditions at different adult ages. Gustatory response scores (GRSs) and odor-memory retrieval were measured in bees that were previously exposed to changes in food characteristics.

Principal Findings

Results show that the gustatory responses of pre-foraging-aged bees are affected by changes in sucrose solution concentration and also to the presence of an odor provided it is presented as scented sucrose solution. In contrast no differences in worker responses were observed when presented with odor only in the rearing environment. Fast modulation of GRSs was observed in older bees (12–16 days of age) which are commonly involved in food processing tasks within the hive, while slower modulation times were observed in younger bees (commonly nurse bees, 6–9 days of age). This suggests that older food-processing bees have a higher plasticity when responding to fluctuations in resource information than younger hive bees. Adjustments in the number of trophallaxis events were also found when scented food circulated inside the nest, and this was positively correlated with the differences in timing observed in gustatory responsiveness and memory retention for hive bees of different age classes.

Conclusions

This work demonstrates the accessibility of chemosensory information in the honeybee colonies with respect to incoming nectar. The modulation of the sensory-response systems within the hive can have important effects on the dynamics of food transfer and information propagation.  相似文献   

16.
Although it is widely accepted that honeybees use the polarized-light pattern of the sky as a compass for navigation, there is little direct evidence that this information is actually sensed during flight. Here, we ask whether flying bees can obtain compass cues derived purely from polarized light, and communicate this information to their nest-mates through the ‘waggle dance’. Bees, from an observation hive with vertically oriented honeycombs, were trained to fly to a food source at the end of a tunnel, which provided overhead illumination that was polarized either parallel to the axis of the tunnel, or perpendicular to it. When the illumination was transversely polarized, bees danced in a predominantly vertical direction with waggles occurring equally frequently in the upward or the downward direction. They were thus using the polarized-light information to signal the two possible directions in which they could have flown in natural outdoor flight: either directly towards the sun, or directly away from it. When the illumination was axially polarized, the bees danced in a predominantly horizontal direction with waggles directed either to the left or the right, indicating that they could have flown in an azimuthal direction that was 90° to the right or to the left of the sun, respectively. When the first half of the tunnel provided axial illumination and the second half transverse illumination, bees danced along all of the four principal diagonal directions, which represent four equally likely locations of the food source based on the polarized-light information that they had acquired during their journey. We conclude that flying bees are capable of obtaining and signalling compass information that is derived purely from polarized light. Furthermore, they deal with the directional ambiguity that is inherent in polarized light by signalling all of the possible locations of the food source in their dances, thus maximizing the chances of recruitment to it.  相似文献   

17.
Novice foragers of social bees have to decide what food commodity to collect when they start foraging for the first time. In this decision making process two types of factors are involved: internal factors (the response threshold) and external factors (environmental and colony conditions). In this study we will focus on the importance of two external factors, pollen storage level and information from experienced foragers about food availability in the field, on the initial commodity choice of foragers of the stingless bee species Plebeia tobagoensis. We also studied the effect of the initial choice of individuals on their subsequent foraging career. This study was performed in a closed greenhouse compartment, where food availability and colony condition could be controlled. Information on food availability in the field from experienced foragers and pollen storage level both greatly influenced the initial commodity choice of individuals, with more choices for the commodity communicated by experienced foragers or lacking in storage. The initial choice of foragers is of importance for their future foraging career, although a substantial proportion of foragers did switch between food commodities. Because of the ability of novice foragers to become flexibly distributed over foraging tasks, social bees are able to react to changes in their environment without directly having to decrease foraging effort devoted to other foraging tasks. This, in combination with individual flexibility during foraging careers makes it possible for colonies of P. tobagoensis to forage efficiently in an ever-changing environment. Received 7 November 2005; revised 12 January 2006; accepted 16 February 2006.  相似文献   

18.
Naturally occurring odors used by animals for mate recognition, food identification and other purposes must be detected at concentrations that vary across several orders of magnitude. Olfactory systems must therefore have the capacity to represent odors over a large range of concentrations regardless of dramatic changes in the salience, or perceived intensity, of a stimulus. The stability of the representation of an odor relative to other odors across concentration has not been extensively evaluated. We tested the ability of honey bees to discriminate pure odorants across a range of concentrations at and above their detection threshold. Our study showed that pure odorant compounds became progressively easier for honey bees to discriminate with increasing concentration. Discrimination is, therefore, a function of odorant concentration. We hypothesize that the recruitment of sensory cell populations across a range of concentrations may be important for odor coding, perhaps by changing its perceptual qualities or by increasing its salience against background stimuli, and that this mechanism is a general property of olfactory systems.  相似文献   

19.
Chemical signals influence the selection of potential nest cavities by honey bee reproductive swarms. Attractants for swarms include the odors of old dark honey bee brood combs, odors from noncomb hive materials and propolis, and Nasonov pheromone, the odor released from the Nasonov glands of worker bees. Based on crossover and choice test experiments, swarms were shown to prefer, among otherwise identical cavities, those cavities containing Nasonov pheromone over cavities with only comb or other hive odors, cavities containing old comb over those with only noncomb odors or propolis, and cavities containing noncomb odors or propolis over those without bee or hive odor. Synergy between odors was not observed; that is, comb and/or noncomb hive odors did not enhance the attractiveness of Nasonov pheromone. The data support a model based on a hierarchy of olfactory attractants used by honey bee swarms, in order of highest to lowest: Nasonov pheromone, comb odor, noncomb and propolis odors, and, finally, absence of bee- or hive-produced odor.  相似文献   

20.
Social insect colonies operate without central control or any global assessment of what needs to be done by workers. Colony organization arises from the responses of individuals to local cues. Red harvester ants (Pogonomyrmex barbatus) regulate foraging using interactions between returning and outgoing foragers. The rate at which foragers return with seeds, a measure of food availability, sets the rate at which outgoing foragers leave the nest on foraging trips. We used mimics to test whether outgoing foragers inside the nest respond to the odor of food, oleic acid, the odor of the forager itself, cuticular hydrocarbons, or a combination of both with increased foraging activity. We compared foraging activity, the rate at which foragers passed a line on a trail, before and after the addition of mimics. The combination of both odors, those of food and of foragers, is required to stimulate foraging. The addition of blank mimics, mimics coated with food odor alone, or mimics coated with forager odor alone did not increase foraging activity. We compared the rates at which foragers inside the nest interacted with other ants, blank mimics, and mimics coated with a combination of food and forager odor. Foragers inside the nest interacted more with mimics coated with combined forager/seed odors than with blank mimics, and these interactions had the same effect as those with other foragers. Outgoing foragers inside the nest entrance are stimulated to leave the nest in search of food by interacting with foragers returning with seeds. By using the combined odors of forager cuticular hydrocarbons and of seeds, the colony captures precise information, on the timescale of seconds, about the current availability of food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号