首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The human epithelial cancer mucin MUC1 is able to break tolerance and to induce humoral immune responses in healthy subjects and in cancer patients. We recently showed that clusters of sequence-variant repeats are interspersed in the repeat domain of MUC1 at high frequency, which should contribute to the structural and immunological features of the mucin. Here we elucidated the potential effects exerted by sequence-variant repeats on their O-glycosylation. Evidence from in vitro glycosylation with polypeptide N-acetylgalactosaminyltransferases GalNAc-T1 and GalNAc-T2 in concert with mass spectrometric analyses of in vivo glycosylated MUC1 probes from transiently transfected HEK293 cells indicated reduced glycosylation densities of repeats with three concerted replacements: AHGVTSAPESRPAPGSTAPA. The Pro to Ala replacement in STAPA exerts not only proximal effects on the ppGalNAc-T2 preferred site at -3 and -4, but also more distant effects on the ppGalNAc-T1 preferred site at -15 (TSAPESRPAPGSTAPA). We also examined the conformational changes of MUC1 glycopeptides induced by the concerted DT to ES replacements and revealed a higher conformational flexibility of ES/P peptides compared to DT/P peptides. Differences in conformational flexibilities and in O-glycosylation densities could underlie the observed differential humoral responses in humans. We were able to show that the natural immunoglobulin G (IgG) responses to the repeat domain of MUC1 in sera from nonmalignant control subjects are preferentially directed to variant repeat clusters. In contrast, the IgG response in patients with adenocarcinoma shifted to higher frequencies of preferential DTR peptide binding.  相似文献   

2.
MUC1: the polymorphic appearance of a human mucin   总被引:14,自引:0,他引:14  
Hanisch FG  Müller S 《Glycobiology》2000,10(5):439-449
  相似文献   

3.
A recombinant mucin O-glycosylation reporter protein, containing 1.7 tandem repeats (TRs) from the transmembrane mucin MUC1, was constructed. The reporter protein, MUC1(1.7TR)-IgG2a, was produced in CHO-K1 cells to study the glycosylation of the MUC1 TR and the in vivo role of polypeptide-GalNAc-T4 glycosyltransferase. N-terminal sequencing of MUC1(1.7TR)-IgG2a showed that all five potential O-glycosylation sites within the TR were used, with an average density of 4.5 glycans per repeat. The least occupied site was Thr in the PDTR motif, where 75% of the molecules were glycosylated, compared to 88-97% at the other sites. This glycan density was confirmed by an alternative liquid chromatography-mass spectrometry (LC-MS) based approach. The O-linked oligosaccharides were released from MUC1(1.7TR)-IgG2a and analyzed by nano-LC-MS and LC-MS/MS. Four oligosaccharides were present, NeuAcalpha2-3Galbeta1-3GalNAcol, NeuAcalpha2-3Galbeta1-3(NeuAcalpha2-6)GalNAcol, Galbeta1-3(NeuAcalpha2-6)GalNAcol, and Galbeta1-3GalNAcol, the two first being most abundant. Coexpression of the human polypeptide-GalNAc-T4 transferase with MUC1(1.7TR)-IgG2a increased the glycan occupancy at Thr in PDTR, Ser in VTSA, and Ser in GSTA, supporting the function of GalNAc-T4 proposed from previous in vitro studies. The expression of GalNAc-T4 with a mutation in the first lectin domain (alpha) had no glycosylation effect on PDTR and GSTA but surprisingly gave a dominant negative effect with a decreased glycosylation to around 50% at the Ser in VTSA. The results show that introduction of glycosyltransferases can specifically alter the sites for O-glycosylation in vivo.  相似文献   

4.
The MUC1 mucin represents a prime target antigen for cancer immunotherapy because it is abundantly expressed and aberrantly glycosylated in carcinomas. Attempts to generate strong humoral immunity to MUC1 by immunization with peptides have generally failed partly because of tolerance. In this study, we have developed chemoenzymatic synthesis of extended MUC1 TR glycopeptides with cancer-associated O-glycosylation using a panel of recombinant human glycosyltransferases. MUC1 glycopeptides with different densities of Tn and STn glycoforms conjugated to KLH were used as immunogens to evaluate an optimal vaccine design. Glycopeptides with complete O-glycan occupancy (five sites per repeat) elicited the strongest antibody response reacting with MUC1 expressed in breast cancer cell lines in both Balb/c and MUC1.Tg mice. The elicited humoral immune response showed remarkable specificity for cancer cells suggesting that the glycopeptide design holds promise as a cancer vaccine. The elicited immune responses were directed to combined glycopeptide epitopes, and both peptide sequence and carbohydrate structures were important for the antigen. A MAb (5E5) with similar specificity as the elicited immune response was generated and shown to have the same remarkable cancer specificity. This antibody may hold promise in diagnostic and immunopreventive measures.  相似文献   

5.
The cell membrane mucin MUC1 is over-expressed and aberrantly glycosylated in many cancers, and cancer-associated MUC1 glycoforms represent potential targets for immunodiagnostic and therapeutic measures. We have recently shown that MUC1 with GalNAcalpha1-O-Ser/Thr (Tn) and NeuAcalpha2-6GalNAcalpha1-O-Ser/Thr (STn) O-glycosylation is a cancer-specific glycoform, and that Tn/STn-MUC1 glycopeptide-based vaccines can override tolerance in human MUC1 transgenic mice and induce humoral immunity with high specificity for MUC1 cancer-specific glycoforms (Sorensen AL, Reis CA, Tarp MA, Mandel U, Ramachandran K, Sankaranarayanan V, Schwientek T, Graham R, Taylor-Papadimitriou J, Hollingsworth MA, et al. 2006. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology. 16:96-107). In order to further characterize the immune response to Tn/STn-MUC1 glycoforms, we generated monoclonal antibodies with specificity similar to the polyclonal antibody response found in transgenic mice. In the present study, we define the immunodominant epitope on Tn/STn-MUC1 glycopeptides to the region including the amino acids GSTA of the MUC1 20-amino acid tandem repeat (HGVTSAPDTRPAPGSTAPPA). Most other MUC1 antibodies are directed to the PDTR region, although patients with antibodies to the GSTA region have been identified. A panel of other MUC1 glycoform-specific monoclonal antibodies was included for comparison. The study demonstrates that the GSTA region of the MUC1 tandem repeat contains a highly immunodominant epitope when presented with immature short O-glycans. The cancer-specific expression of this glycopeptide epitope makes it a prime candidate for immunodiagnostic and therapeutic measures.  相似文献   

6.
The O-glycans that decorate mucin glycoproteins contribute to the biophysical and biochemical properties of these molecules and hence their function as a barrier and lubricant on epithelial surfaces. Alterations in mucin O-glycosylation in certain diseases may contribute to pathology. It is known that both the host cell type and the amino acid sequence of the mucin tandem repeat contribute to the O-glycosylation of a mucin molecule. We expressed an epitope-tagged MUC1 mucin cDNA construct in the airway cell line 16HBE14o- and the colon carcinoma cell line Caco2 and used Fast Atom Bombardment Mass Spectrometry to evaluate the contribution of the host cell to differences in O-glycosylation of a single mucin. Many of the glycans detected on the MUC1 mucin were common to both cell types, as would be predicted from biosynthetic constraints. However, MUC1 synthesized in the airway cell line showed comparatively low levels of sialylation but carried a range of oligo-N-acetyllactosamine structures that were not seen in the colon carcinoma cell line.  相似文献   

7.
Many carcinoma-associated markers are glycoconjugates whose expression undergoes temporal or spatial regulation. Mucin-1 (MUC1), discovered through monoclonal antibody technology, is a well-documented example of such a molecule and influences numerous pathophysiological behaviors, such as the invasion and metastasis of carcinoma cells. Levels of MUC1 expression in carcinomas correlate with the clinical stage of the cancer and inversely correlate with the survival prospects of patients. The MUC1 immune response is known to provide a protective host defense mechanism against cancer. The multiple functions of MUC1 in carcinoma-host interactions are believed to be dependent on the polymorphic nature of MUC1, particularly its glycosylation status.  相似文献   

8.
9.
O-Linked glycans vary between eukaryotic cell types and play an important role in determining a glycoprotein's properties, including stability, target recognition, and potentially immunogenicity. We describe O-linked glycan structures of a recombinant human IgA1 (hIgA1) expressed in transgenic maize. Up to six proline/hydroxyproline conversions and variable amounts of arabinosylation (Pro/Hyp + Ara) were found in the hinge region of maize-expressed hIgA1 heavy chain (HC) by using a combination of matrix-assisted laser-desorption ionization mass spectrometry (MALDI MS), chromatography, and amino acid analysis. Approximately 90% of hIgA1 was modified in this way. An average molar ratio of six Ara units per molecule of hIgA1 was revealed. Substantial sequence similarity was identified between the HC hinge region of hIgA1 and regions of maize extensin-family of hydroxyproline-rich glycoproteins (HRGP). We propose that because of this sequence similarity, the HC hinge region of maize-expressed hIgA1 can become a substrate for posttranslational conversion of Pro to Hyp by maize prolyl-hydroxylase(s) with the subsequent arabinosylation of the Hyp residues by Hyp-glycosyltransferase(s) in the Golgi apparatus in maize endosperm tissue. The observation of up to six Pro/Hyp hydroxylations combined with extensive arabinosylation in the hIgA1 HC hinge region is well in agreement with the Pro/Hyp hydroxylation model and the Hyp contiguity hypothesis suggested earlier in literature for plant HRGP. For the first time, the extensin-like Hyp/Pro conversion and O-linked arabinosylation are described for a recombinant therapeutic protein expressed in transgenic plants. Our findings are of significance to the field of plant biotechnology and biopharmaceutical industry-developing transgenic plants as a platform for the production of recombinant therapeutic proteins.  相似文献   

10.
黏蛋白1(MUC1)是一种高分子量跨膜糖蛋白,广泛分布于机体正常黏膜表面,具有多种功能。MUC1在肿瘤组织中异常表达,与肿瘤的侵袭、转移和预后密切相关,具有重要的临床应用价值。本文对MUC1的结构、功能及其在多种肿瘤转移中的研究进展进行了综述,并对其在肿瘤的临床诊断及治疗中的作用进行了展望。  相似文献   

11.
12.
The MUC1 mucin is an important tumor-associated antigen that shows extensive glycosylation in vivo. The O-glycosylation of this molecule, which has been well characterized in many cell types and tissues, is important in conferring the unusual biochemical and biophysical properties on a mucin. N-Glycosylation is crucial to the folding, sorting, membrane trafficking, and secretion of many proteins. Here, we evaluated the N-glycosylation of MUC1 derived from two sources: endogenous MUC1 isolated from human milk and a recombinant epitope-tagged MUC1F overexpressed in Caco2 colon carcinoma cells. N-Glycans on purified MUC1F/MUC1 were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), gas chromatography-mass spectrometry (GC-MS), and CAD-ESI-MS/MS. The spectra indicate that MUC1F N-glycans have compositions consistent with high-mannose structures (Hex(5-9)HexNAc(2)) and complex/hybrid-type glycans (NeuAc(0-3)Fuc(0-3)Hex(3-8)HexNAc(3-7)). Many of the N-glycan structures are identical on MUC1F and native MUC1; however, a marked difference is seen between the N-glycans on membrane-bound and secreted forms of the native molecule.  相似文献   

13.
MUC1 is a transmembrane glycoprotein expressed on the apical surface of epithelial cells and exhibiting structural features characteristic of receptors for cytokines and growth factors. Its intracellular cytoplasmic tail (CT) contains multiple amino acid sequence motifs that, once phosphorylated, serve as docking sites for SH2 domain-containing proteins mediating signal transduction. Most studies examining MUC1 signaling have focused on cancer cells where MUC1 is overexpressed, aberrantly glycosylated, and constitutively phosphorylated. No studies have determined the signaling pathways activated in response to stimulation of its ectodomain. To better understand the signaling mechanisms of MUC1, we stably transfected HEK293 cells with an expression plasmid encoding a chimeric protein consisting of the extracellular and transmembrane domains of CD8 and the MUC1 CT (CD8/MUC1). Extracellular treatment of HEK293-CD8/MUC1 cells with CD8 antibody induced intracellular Tyr phosphorylation of the MUC1 CT and activated ERK1/2, but not the p38, SAPK/JNK, or ERK5 MAP kinases. Moreover, phosphorylation of ERK1/2 was completely blocked using a CT deletion mutant or a mutant construct in which all Tyr residues in the CT were changed to Phe. These results establish that Tyr phosphorylation of the MUC1 CT is required for activation of a downstream ERK1/2 pathway.  相似文献   

14.
Aberrant glycosylation of mucins is a common phenomenon associated with oncogenic transformation. We investigated the association between expression of the tumor-associated antigens T, Tn, and sialyl-Tn and polymorphism in the length of the MUC1 mucin tandem repeat in a series of gastric carcinomas. We further evaluated the relevance of MUC1 tandem repeat length on the expression of these tumor-associated carbohydrate antigens (TACAs) using a gastric carcinoma cell line model expressing recombinant MUC1 constructs carrying 0, 3, 9, and 42 repeats. Gastric carcinomas showed a high prevalence of Tn and sialyl-Tn antigens, whereas T antigen was less frequently expressed. The expression of T antigen was significantly higher in gastric carcinomas from patients homozygous for MUC1 large tandem repeat alleles. No significant associations were found for Tn and sialyl-Tn antigens. This novel association was reinforced by the gastric carcinoma cell line model experiments, where de novo expression of T antigen was detected in clones transfected with larger VNTR regions. Our results indicate that polymorphism in the MUC1 tandem repeat influences the expression of TACAs in gastric cancer cells and may therefore allow the identification of subgroups of patients that develop more aggressive tumors expressing T antigen.  相似文献   

15.
Recently, we have reported that in normal gastric epithelium, the expression of gastric apomucins MUC5AC and MUC6 is associated with the specific expression of type 1 and type 2 Lewis antigens, and FUT2 and FUT1 fucosyltransferases, respectively. Until now, there are no data demonstrating the direct implication of specific glycosyltransferases in the specific patterns of apomucin glycosylation.HT29/M3 colon cancer cell line express MUC1, MUC5AC, type 1 Lewis antigens and FUT2 but not type 2 structures and FUT1, as it occurs in the epithelial cells of the gastric superficial epithelium. These cells were transfected with the cDNA of human FUT1, the -1,2-fucosyltransferase responsible for the synthesis of type 2 Lewis antigens, to assess the implication of FUT1 in the glycosylation of MUC1 and MUC5AC.The M3-FUT1 clones obtained express high levels of type 2 Lewis antigens: H type 2 and Ley antigens. Immunoprecipitation of MUC1 and MUC5AC apomucins gives the direct evidence that FUT1 catalyses the addition of -1,2-fucose to these apomucins, supporting the hypothesis that the pattern of apomucin glycosylation is not only instructed by the mucin primary sequence but also by the set of glycosyltransferases expressed in each specific cell type.  相似文献   

16.
The membrane-bound mucin-like protein MUC1 with a specified number of tandem repeats has been expressed by transfection of the cDNAs in both the epithelial cell lines MDCK and LLC-PK1, and human lymphoblastoid cell lines T2 and C1R. The structure and glycosylation states of the MUC1 in these four lines were compared with that of the endogenous MUC1 found in the human pancreatic (HPAF) and breast (BT-20) tumor cell lines using flow cytometry and Western blot analysis with anti-MUC1 antibodies, which are either sensitive or insensitive to the glycosylation state of the tandem repeat, and pretreatment of cells with phenyl--galactosaminide, an inhibitor of mucin sialylation. A similar analysis of MUC1 expression in transfected normal and O-glycosylation defective CHO cells reveals that the addition of galactose to the core oligosaccharide structure is apparently responsible for the anomalous difference in Mr between the mature and propeptide forms of the MUC1. Both the tumor cells and the transfected lymphoblastoid cells consistently express significant steady state levels of both the heavily glycosylated mature forms and the poorly glycosylated propeptide forms of the MUC1, whereas MUC1 is found predominantly as the mature extensively glycosylated species in the transfected epithelial cells. Immunofluoresence microscopy of cross sections of the polarized epithelial cells grown on culture filter inserts reveals that the MUC1 is clearly present at the apical surface of the cells, consistent with its expression in normal tissues. Thus, the successful expression of the MUC1 by transfection of either lymphoblastoid cells or epithelial cells yields model systems both for studying the natural structure/function relationships of the protein domains within the MUC1 molecule and for further elucidating the previously reported MHC-independent T-cell recognition of the MUC1.  相似文献   

17.
 Antibodies reactive with peptide epitopes on the core protein of MUC1 epithelial mucin have been demonstrated in some patients with adenocarcinomas. Because these epitopes can be exposed on MUC1 in the serum of healthy women, we measured concentrations of MUC1-reactive antibodies in the serum of healthy pregnant and non-pregnant women, and in patients with benign and malignant ovarian tumours. Antibodies were measured in an enzyme-linked immunosorbent assay utilising a synthetic peptide corresponding to a 105-amino-acid segment of the MUC1 tandem repeat region (5.25 repeats). MUC1-reactive antibodies were always of an IgM isotype and concentrations were highest in young healthy women and declined progressively with age (P = 0.0006) concomitantly with increasing serum MUC1 levels (P = 0.003). Regardless of age, antibody levels were lower in cancer patients than in healthy women (P<0.0001), but MUC1 levels were much higher in cancer patients (P<0.0001). Although high antibody levels were associated with greater survival in ovarian cancer (P = 0.015), multivariate regression analysis showed that this was not a significant independent prognostic indicator after consideration of the International Federation of Gynaecology and Obstetrics (FIGO) stage, histological type, serum MUC1 levels and age. Serial measurement of MUC1 and MUC1 antibodies during treatment in 18 patients with ovarian cancer and throughout pregnancy in 10 women showed a negative correlation between alterations in MUC1 and MUC1 antibodies. These results show that MUC1-peptide-reactive antibodies are present in the serum of healthy women and women with cancer and that they probably form immune complexes with MUC1, but provide no evidence for an augmentation of the humoral immune response to MUC1 in ovarian cancer Received: 8 January 1998 / Accepted: 26 February 1998  相似文献   

18.
The epithelial mucin MUC1 is a high molecular weight membrane glycoprotein frequently overexpressed and aberrantly glycosylated in adenocarcinoma. Mucins normally contain high amounts of O-linked carbohydrate structures that may influence immune reactions to this antigen. During malignant transformation, certain glyco-epitopes of MUC1, such as Tn-antigen, TF-antigen and their sialylated forms become exposed. The role of these glycan structures in tumor biology is unknown, but their presence is known to correlate with poor prognosis in several adenocarcinomas. We analyzed the potency of MUC1 containing Tn-antigens (MUC1-Tn) to target C-type lectins that function as carbohydrate recognition and uptake molecules on dendritic cells (DC). We identified the macrophage galactose type C-type lectin (MGL), expressed by both DC and macrophages, as the receptor for recognition and binding of MUC1-Tn. To validate the occurrence of MGL–MUC1 interactions in situ, we studied the binding of MGL to MUC1 in primary colon carcinoma tissue. Isolation of MUC1 out of colon carcinoma tissue showed strong binding activity to MGL. Interestingly, MGL binding to MUC1 was highly correlated to binding by the lectin Helix pomatia agglutinin (HPA), which is associated with poor prognosis in colorectal cancer. The detection of MGL positive cells in situ at the tumor site together with the modified glycosylation status of MUC1 to target MGL on DC suggests that MGL positive antigen presenting cells may play a role in tumor progression.  相似文献   

19.
MUC1 is abundantly expressed at the surface of epithelial cells in many tissues and their carcinomas. In humans, genetic polymorphism and differential splicing produce isoforms that may contribute to MUC1 participation in protection of the cell surface, modulation of cell-cell interactions, signaling, and metastasis. Biosynthetic and processing studies in tumor-derived cell lines indicate that cell surface MUC1 consists of a non-covalently associated heterodimer of separate cytoplasmic tail and extracellular domains. This heterodimer results from a single precursor proteolytically cleaved intracellularly. To determine whether similar processing of this isoform occurs in normal epithelial cells, we have examined cell-associated MUC1 and MUC1 released into medium by normal human uterine, mammary, and prostate epithelial cells. Cell-associated MUC1/REP was extracted as an SDS labile complex which was resistant to dissociation by boiling, urea, sulfhydryl reduction, peroxide, high salt, or low pH and was present in all normal cells examined. Addition of various proteolytic inhibitors during extraction had no effect on the proportion of this complex detected. MUC1 released into the medium was not associated with a particulate fraction (100,000g insoluble) and lacked the cytoplasmic tail. MUC1/REP and the MUC1 isoform lacking the transmembrane/cytoplasmic tail region, MUC1/SEC, mRNA were detected in all normal cells examined indicating that both shed and secreted MUC1 are likely to contribute to soluble forms found in culture media.  相似文献   

20.

Background

CD7 expression is found on ~ 30% of acute myeloblastic leukemias (AML). The leukemic progenitor cell line KG1a (CD7 +) constitutively expresses GM-CSF while the parental KG1 (CD7-) cell line does not. This study focuses on the molecular basis of CD7 mediated GM-CSF regulation.

Methods

KG1a cells were treated with recombinant SECTM1-Fc protein, the PI3K kinase inhibitors wortmannin, LY292004, or PI4K activator spermine. Stable KG1-CD7 +, KG1a-shCD7, KG1a-shETS1 as well as KG1a-GFP, KG1a-PKCβII-GFP cell lines were generated and the levels of CD7, GM-CSF and ETS-1 mRNA and protein were compared by real-time-PCR, western blotting, flow cytometry and ELISA.

Results

SECTM1 is expressed in Human Bone Marrow Endothelial Cells (HBMEC) and its expression can be upregulated by both IFN-γ. KG1a cells demonstrated high expression levels of CD7 and ETS-1 allowing a constitutative signaling through the PI3K/Atk pathway to promote GM-CSF expression, while KG1 cells with low expression of CD7 and ETS-1 showed low GM-CSF expression. On KG1a cells GM-CSF expression could be negatively regulated by PI3K inhibitors or by recombinant SECTM1-Fc. Overexpression of CD7 in KG1 cells was insufficient to promote GM-CSF expression, while silencing of CD7 or ETS-1 resulted in reduced GM-CSF expression levels. Differentiation capable KG1a cells overexpressing PKCβII illustrated complete loss of CD7, but maintained normal levels of both ETS-1 and GM-CSF expression.

Conclusion

These findings add an additional layer to the previously described autocrine/paracrine signaling between leukemic progenitor cells and the bone marrow microenvironment and highlight a role for SECTM1 in both normal and malignant hematopoiesis.

General Significance

This work shows that SECTM1 secreted from bone marrow stromal cells may interact with CD7 to influence GM-CSF expression in leukemic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号