首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-(1-pyrene)maleimide: a fluorescent cross-linking reagent.   总被引:1,自引:0,他引:1  
C W Wu  L R Yarbrough 《Biochemistry》1976,15(13):2863-2868
N-(1-Pyrene)maleimide is nonfluorescent in aqueous solution but forms strongly fluorescent adducts with sulfhydryl groups of organic compounds or proteins. The conjugation reactions of N-(1-pyrene)maleimide are relatively fast and can be monitored by the increase in fluorescence intensity of the pyrene chromophore. In cases where primary amino groups are also present in the system, we have observed a red shift of the emission spectra of the fluorescent adducts subsequent to the initial conjugation, as characterized by the disappearance of three emission peaks at 376, 396, and 416 nm, and the appearance of two new peaks at 386 and 405 nm. Model studies with N-(1-pyrene)maleimide adducts of L-cysteine and cysteamine indicate that the spectral shift is the result of an intramolecular aminolysis of the succinimido ring in the adducts. Evidence from both chemical analysis and nuclear magnetic resonance studies of the addition products supports this reaction scheme. N-(1-Pyrene)maleimide adducts of N-acetyl-L-cysteine and beta-mercaptoethanol, which have no free amino group, do not exhibit a spectral shift. Among several protein conjugates only the N-(1-pyrene)maleimide adduct of bovine serum albumin (PM-BSA) shows the spectral shift resembling that of PM-cysteine. N-(1-Pyrene)maleimide reacts with the sulfhydryl group of the single cysteine residue at position 34 in BSA. The finding that the alpha-amino group of the N-terminus in PM-BSA is blocked after the spectral shift is completed strongly suggests that N-(1-pyrene)maleimide cross-links the N-terminus and the cysteine residue in BSA. The relative proximity of the sulfhydryl and amino groups is very critical in the cross-linking as demonstrated by the observation that the spectral shift observed with PM-BSA can be prevented by addition of denaturing reagents such as 1% sodium dodecyl sulfate immediately after labeling, and by the failure of PM-glutathione to undergo the intramolecular aminolysis. Since the intramolecular rearrangement of PM adducts is associated with characteristic fluorescence changes, N-(1-pyrene)maleimide can serve as a fluorescent cross-linking reagent which provides information about the spatial proximity of sulfhydryl and amino groups in proteins.  相似文献   

2.
An amino acid possessing a maleimide side chain was developed and synthesized in good yield. With a propensity to undergo the Michael addition reaction, the creation of a maleimide amino acid derivative was targeted for use as a highly functional tool for enabling peptide conjugation and structural modifications. After addressing the inherent potential side reactions of maleimides during solid phase peptide synthesis, the ability to incorporate the maleimide amino acid in an RGDS peptide sequence was demonstrated. 1H NMR and mass spectroscopic techniques enabled thorough characterization of the peptide sequence, confirming the presence of the maleimide functionality. Once characterized, the ability to use the maleimide moiety as a peptide modification tool was investigated. Specifically, it was shown that the maleimide functional group could be exploited, given the proper reaction conditions, to anchor a peptide to a surface and create a cyclic conformation from a linear sequence. Furthermore, bioactivity of the peptide containing maleimide amino acid was evaluated by studying cellular interactions with surfaces functionalized with an integrin binding sequence.  相似文献   

3.
Kim K  Han JS  Kim HA  Lee M 《Biotechnology letters》2008,30(8):1331-1337
High mobility group box 1 (HMGB1) is an abundant nuclear protein that binds to double-stranded DNA. HMGB1 is composed of high mobility (HMG) box A, box B, and C-terminal acidic regions. In this study, a recombinant TAT linked HMGB1 box A (rTAT-HMGB1A) peptide was expressed, purified, and characterized as a carrier of nucleic acids. The HMGB1A cDNA was amplified by PCR, and cloned into the pET21a expression vector with the TAT domain located at the N-terminus. The rTAT-HMGB1A peptide was overexpressed and purified using Nickel affinity chromatography. A recombinant HMGB1A (rHMGB1A) peptide without the TAT domain was also overexpressed and purified as a control. In gel retardation assays, both the rHMGB1A and rTAT-HMGB1A peptides formed complexes with DNA equally well. However, transfection assays showed that the rTAT-HMGB1A peptide had a higher gene transfer efficiency than rHMGB1A. Finally, rTAT-HMGB1A had no cytotoxicity to HEK 293 cells suggesting that rTAT-HMGB1A may be useful as a non-toxic gene delivery carrier.  相似文献   

4.
Small model peptides containing N-terminal methionine are reported to form sulfur-centered-free radicals that are stabilized by the terminal N atom. To test whether a similar chemistry would apply to a disease-relevant longer peptide, Alzheimer's disease (AD)-associated amyloid beta-peptide 1-42 was employed. Methionine at residue 35 of this 42-mer has been shown to be a key amino acid residue involved in amyloid beta-peptide 1-42 [A beta1-42]-mediated toxicity and therefore, the pathogenesis of AD. Previous studies have shown that mutation of the methionine residue to norleucine abrogates the oxidative stress and neurotoxic properties of A beta(1-42). In the current study, we examined if the position of methionine at residue 35 is a criterion for toxicity. In doing so, we tested the effects of moving methionine to the N-terminus of the peptide in a synthetic peptide, A beta(1-42)D1M, in which methionine was substituted for aspartic acid at the N-terminus of the peptide and all subsequent residues from D1 to L34 were shifted one position towards the carboxy-terminus. A beta(1-42)D1M exhibited oxidative stress and neurotoxicity properties similar to those of the native peptide, A beta(1-42), all of which are inhibited by the free radical scavenger Vitamin E, suggesting that reactive oxygen species may play a role in the A beta-mediated toxicity. Additionally, substitution of methionine at the N-terminus by norleucine, A beta(1-42)D1Nle, completely abrogated the oxidative stress and neurotoxicity associated with the A beta(1-42)D1M peptide. The results of this study validate the chemistry reported for short peptides with N-terminal methionines in a disease-relevant peptide.  相似文献   

5.
We have cloned and expressed microplasminogen (mPlg), consisting of the N-terminal undecapeptide of human glu-Plg spliced to its proenzyme domain. This truncated (approximately 28 kDa) proenzyme retained the distinctive catalytic activities of the larger parent. Replacement of M residues followed by M shuffling permitted subsequent scission by site-directed chemical proteolysis (in CNBr/formic acid) without impairing any of the protein's characteristic properties. Activation of chymotrypsinogen-related zymogens occurs by limited proteolysis; the newly liberated, highly conserved N-terminus (VVGG) forms a salt bridge with an aspartyl residue immediately upstream of the active site serine. The role of both of these elements in mPlg activation was probed using protein engineering and site-directed proteolysis to alter the length and amino acid composition of the N-terminus, and to replace the aspartate. All modifications affected both Km and Kcat. The results identify some structural parameters of the N-terminus required for proenzyme activation.  相似文献   

6.
The efficient radiosynthesis of biomolecules utilizing minute quantities of maleimide substrate is important for availability of novel peptide molecular imaging agents. We evaluated both 3-18F-fluoropropane-1-thiol and 2-(2-(2-(2-18F-fluoroethoxy)ethoxy)ethoxy)ethane-1-thiol (18F-fluoro-PEG4 thiol) as prosthetic groups for radiolabeling under physiological conditions. The precursor employed a benzoate for protection of the thiol and an arylsulfonate leaving group. The radiofluorination was fully automated on an Eckert & Ziegler synthesis system using standard Kryptofix222/K2CO3 conditions. In order to minimize the amount of biological molecule required for subsequent conjugation, the intermediates, S-(3-18F-fluoropropyl) benzothioate and 18F-fluoro-PEG4 benzothioate, were purified by HPLC. The intermediates were isolated from the HPLC in yields of 37–47% and 28–35%, respectively, and retrieved from eluate using solid phase extraction. Treatment of the benzothioates with sodium methoxide followed by acetic acid provided the free thiols. The desired maleimide substrate in acetonitrile or phosphate buffer was then added and incubated at room temperature for 15 min. The final radiolabeled bioconjugate was purified on a separate HPLC or NAP-5 column. Maleimides utilized for the coupling reaction included phenyl maleimide, an Evans Blue maleimide derivative, a dimeric RGDfK maleimide (E[c(RGDfK)]2), two aptamer maleimides, and PSMA maleimide derivative. Isolated radiochemical yields (non-decay corrected) of maleimide addition products based on starting 18F-fluoride ranged from 6 to 22% in a synthesis time of about 90 min.18F-thiol prosthetic groups were further tested in vivo by conjugation to E[c(RGDfK)]2 maleimide in a U87MG xenograft model. PET studies demonstrated similar tumor accumulation of both prosthetic groups. 18F-fluoro-PEG4-S-E[c(RGDfK)]2 displayed a somewhat favorable pharmacokinetics compared to 18F-fluoropropyl-S-E[c(RGDfK)]2. Bone uptake was low for both indicating in vivo stability.  相似文献   

7.
The structure of porcine pepsinogen at pH 6.1 has been refined to an R-factor of 0.173 for data extending to 1.65 A. The final model contains 180 solvent molecules and lacks density for residues 157-161. The structure of this aspartic proteinase zymogen possesses many of the characteristics of pepsin, the mature enzyme. The secondary structure of the zymogen consists predominantly of beta-sheet, with an approximate 2-fold axis of symmetry. The activation peptide packs into the active site cleft, and the N-terminus (1P-9P) occupies the position of the mature N-terminus (1-9). Thus changes upon activation include excision of the activation peptide and proper relocation of the mature N-terminus. The activation peptide or residues of the displaced mature N-terminus make specific interactions with the substrate binding subsites. The active site of pepsinogen is intact; thus the lack of activity of pepsinogen is not due to a deformation of the active site. Nine ion pairs in pepsinogen may be important in the advent of activation and involve the activation peptide or regions of the mature N-terminus which are relocated in the mature enzyme. The activation peptide-pepsin junction, 44P-1, is characterized by high thermal parameters and weak density, indicating a flexible structure which would be accessible to cleavage. Pepsinogen is an appropriate model for the structures of other zymogens in the aspartic proteinase family.  相似文献   

8.
Nora B. Caberoy 《FEBS letters》2009,583(18):3057-3062
Tubby-like proteins (Tulps) with no signal peptide have been characterized as cytoplasmic proteins with various intracellular functions, including binding to phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. PI(4,5)P2 has been implicated in unconventional secretion of fibroblast growth factor-2 without a signal peptide. Here, we show that all Tulps are expressed intracellularly and extracellularly. Tubby secretion is partially dependent on its PI(4,5)P2-binding activity with an essential secretory signal in the N-terminus. Pathogenic mutation in Tubby mice has no impact on tubby extracellular trafficking. Moreover, unconventional secretion of tubby and Tulp1 is independent of endoplasmic reticulum-Golgi pathway. These data implicate that Tulps may function extracellularly as well.  相似文献   

9.
The [Tyr40] preprorenin (40-50) peptide methyl ester, an undecapeptide related to the human renin prosegment, has been synthesized using a stepwise strategy with hydrogenolisable protections on the side chains. The final deprotection was very difficult as observed by 1H NMR and reversed phase HPLC. 2D 1H NMR spectroscopy of the purified peptide allowed the assignment of all protons.  相似文献   

10.
M Mutter  H Mutter  R Uhmann  E Bayer 《Biopolymers》1976,15(5):917-927
The conformation of polyethylene glycol-bound peptides, synthesized by the liquid-phase method, was investigated. This marcromolecular C-terminal protecting group is transparent in the visible and the ultraviolet range to 190 nm and solubilizes peptides in many different solvents. The CD spectra of the polymer-bound myoglobin sequence 66–73 and of the biologically active undecapeptide “substance P” were measured in each step of the synthesis. In both examples the formation of a secondary structure during the growth of the peptide chain was found. In the hydrophobic octapeptide containing the myoglobin sequence 66–73, the influence of either the blocked or the free N-terminal amino group on the conformation was observed. The blocked octapeptide in trifluoroethanol showed a higher degree of α-helix contribution than in its free state. The conformation of the polyethylene glycol-bound nona- and decaalanine in trifluoroethanol and water was determined. The peptide with a free amino end group has β-conformation in trifluoroethanol as well as in water. The corresponding N-Boc-protected derivatives show helical structure. The amino end group has a decisive influence on the formation of β-structure. The method of CD investigation of polymer-bound peptide sequences during the peptide synthesis in solution enables one to determine the influence of protecting groups and the chain end of a peptide on its conformation. It is also possible to study the relationship between the secondary structure, the chain length, and the kinetic of the coupling reaction in different solvents. Since the crystallization method for the liquid-phase peptide synthesis allows one to synthesize peptides in very short time, a new method of studying peptide conformations is opened.  相似文献   

11.
A heterobifunctional crosslinking agent N-[beta-(4-diazophenyl)ethyl]maleimide (DPEM) was newly synthesized and characterized to possess the maleimide group with a stability greater than that previously reported for N-(4-diazophenyl)maleimide. Using the peptide hormone neurotensin (NT) as a model hapten, DPEM was used in the conjugation reaction with bovine serum albumin (BSA) and with beta-D-galactosidase (beta-Gal) in developing an enzyme immunoassay (EIA) for NT. The NT-DPEM-BSA conjugate elicited anti-NT antibodies in rabbits and the NT-beta-Gal conjugate behaved as an enzyme marker of NT in the EIA. The EIA developed double antibody was reproducible and sensitive in detecting NT at concentrations as low as 30 fmol per tube. The specificity of anti-NT serum seems to be primarily toward the carboxy-terminal region of NT, showing cross-reactions with such NT fragments as NT2-13, NT8-13, and NT1-8 for 120, 22, and less than 0.1%, respectively. The utility of this assay was also demonstrated by measuring the NT immunoreactivity in several rat organs. DPEM could be useful for developing EIAs for other peptide hormones (even those which contain neither a free amino group nor a free carboxyl group), using the imidazole, phenolic, or indole group(s) of amino acids as a binding site for carrier proteins.  相似文献   

12.
In order to elucidate the structure-antibiotic activity relationships of the peptides, the three-dimensional structures of two hybrid peptides, CA(1-8) - MA(1-12) and CA(1-8) - ME(1-12) in trifluoroethanol-containing aqueous solution were investigated by NMR spectroscopy. Both CA(1-8) - MA(1-12) and CA(1-8) - ME(1-12) have strong antibacterial activity but only CA(1-8) - ME(1-12) has hemolytic activity against human erythrocytes. CA(1-8) - MA(1-12) has a hydrophobic 310-helix of only two turns combined with one short helix in the N-terminus with a flexible hinge section in between. CA(1-8) - MA(1-12) has a severely bent structure in the middle of the peptide. These structural features as well as the low hydrophobicity of CA(1-8) - MA(1-12) seem to be crucial for the selective lysis against the membrane of prokaryotic cells. CA(1-8) - ME(1-12) has an alpha-helical structure of about three turns in the melittin domain and a flexible structure with one turn in the cecropin domain connected with a flexible hinge section in between, and these might be the structural features required for membrane disruption against prokaryotic and eukaryotic cells. The central hinge region (Gly9-Ile10-Gly11) in an amphipathic antibacterial peptide is considered to play an important role in providing the conformational flexibility required for ion channel formation of the C-terminal hydrophobic alpha-helix on cell membrane.  相似文献   

13.
Hippocampal cholinergic neurostimulating peptide (HCNP) stimulates cholinergic activity of cultured medial septal nuclei explants. It consists of eleven amino acids that are located at the N-terminal region of its precursor protein. This report concerns the demonstration and characterization of an HCNP processing enzyme that cleaves the bioactive undecapeptide from the precursor. The enzyme was purified from the hippocampus of young Wistar rats. A synthetic deacetylated peptide (peptide1–26) consisting of the N-terminal 26 amino acids of the HCNP precursor protein served as substrate. The product of the enzyme reaction was identified and quantitated by HPLC using deacetylated HCNP as standard. The amount of undecapeptide generated was directly proportional to the time of incubation of the enzyme reaction mixture. From molecular sieving chromatography it was estimated that the molecular mass of the enzyme is close to 68 kDa. The HCNP processing enzyme has a pH optimum of 6.0 and a Km of 0.50 mM for peptide1–26. Preincubation at 56°C causes rapid inactivation of the HCNP processing activity. Enzyme activity is enhanced by EDTA and 1,4-dithiothreitol, and inhibited by antipain, chymostatin and E-64. These findings suggest that the enzyme probably has a thiol group in its active site. This novel enzyme of the hippocampus may represent a valuable tool for further studies on the general protein metabolism in the central nervous system, as well as for elucidating the neurochemical aspects of neurodegenerative disorders.  相似文献   

14.
Production of antimicrobial peptides in plants constitutes an approach for obtaining them in high amounts. However, their heterologous expression in a practical and efficient manner demands some structural requirements such as a minimum size, the incorporation of retention signals to assure their accumulation in specific tissues, and the presence of protease cleavage amino acids and of target sequences to facilitate peptide detection. Since any sequence modification may influence the biological activity, peptides that will be obtained from the expression must be screened prior to the synthesis of the genes for plant transformation. We report herein a strategy for the modification of the antimicrobial undecapeptide BP100 that allowed the identification of analogues that can be expressed in plants and exhibit optimum biological properties. We prepared 40 analogues obtained by incorporating repeated units of the antimicrobial undecapeptide, fragments of natural peptides, one or two AGPA hinges, a Gly or Ser residue at the N-terminus, and a KDEL fragment and/or the epitope tag54 at the C-terminus. Their antimicrobial, hemolytic and phytotoxic activities, and protease susceptibility were evaluated. Best sequences contained a magainin fragment linked to the antimicrobial undecapeptide through an AGPA hinge. Moreover, since the presence of a KDEL unit or of tag54 did not influence significantly the biological activity, these moieties can be introduced when designing compounds to be retained in the endoplasmic reticulum and detected using a complementary epitope. These findings may contribute to the design of peptides to be expressed in plants.  相似文献   

15.
The maternally transmitted Ag is a cell surface product of three gene products: 1) H-2M3a (formerly Hmta), a class I MHC heavy chain; 2) beta 2-microglobulin; and 3) maternally transmitted factor (Mtf), the N-terminus of the mitochondrially encoded ND1 subunit of the reduced form of nicotinamide-adenine dinucleotide dehydrogenase. This class I molecule has been shown to be an N-formyl peptide receptor. Although the N-formyl moiety is necessary for binding to M3a, it is not sufficient. We proposed that the R group of the amino acid in position 1 plays a pivotal role in peptide binding to M3a. To test this hypothesis, analogues differing in size and stereospecificity of the R group were synthesized. Substitutions with other hydrophobic amino acids such as N-formyl phenylalanine and N-formyl valine had no significant effect on the ability of these Mtf alpha analogues to sensitize target cells (M3a, Mtf beta) to M3a, Mtf alpha-specific CTL. In contrast, the nonsubstituted, N-formylated, and N-acetylated glycyl analogues of Mtf beta bound equivalently to M3a in a peptide competition assay. Moreover, the alanine analogue bound in an N-formyl-dependent manner. To determine the limitations of the putative N-formyl pocket, peptide analogues were constructed incorporating D-isomer amino acids. When formylated D-alanine or D-methionine replaced the native methionine, these peptide derivatives did not show significant binding to M3a. Therefore, the presence of a space-filling R group (greater than hydrogen) is necessary for an antigenic peptide to bind M3a in an N-formyl-dependent manner. Additionally, the ability of M3a to discriminate between the optical forms of methionine and alanine demonstrates that this N-formyl pocket is stereospecific in its ability to bind peptide. Thus, we have defined three requirements for peptide binding to M3a: an N-formyl moiety at the amino terminus of the peptide, a space-filling R group at position 1 to maintain this N-formyl specificity, and the correct stereoisomer of the first amino acid.  相似文献   

16.
Thiol-activated cytolysins share a conserved hydrophobic, Trp-rich undecapeptide that is suggested to be involved in membrane binding and intercalation. The neutralizing monoclonal antibody PLY-5 recognizes all members of this toxin family and peptide mapping assigned its epitope to the undecapeptide motif. This antibody inhibited binding of the toxins to host cell membranes and the epitope was no longer available for binding when a preformed toxin/membrane complex was tested. These results confirm the model of cytolysin binding suggested by structural data.  相似文献   

17.
The enzyme CoA transferase (succinyl-CoA:3-ketoacid coenzyme A transferase [3-oxoacid CoA transferase], EC 2.8.3.5) is essential for the metabolism of ketone bodies in the mammalian mitochondrion. It is known that its catalytic mechanism involves the transient thioesterification of an active-site glutamate residue by CoA. As a means of identifying this glutamate within the sequence, we have made use of a fortuitous autolytic fragmentation that occurs at the active site when the enzyme-CoA covalent intermediate is heated. The presence of protease inhibitors has no effect on the extent of cleavage detectable by SDS-PAGE, supporting the view that this fragmentation is indeed autolytic. This fragmentation can be carried out on intact CoA transferase, as well as on a proteolytically nicked but active form of the enzyme. Because the resulting C-terminal fragment is blocked at its N-terminus by a pyroglutamate moiety, it is not amenable to direct sequencing by the Edman degradation method. As an alternative, we have studied a peptide (peptide D) generated specifically by autolysis of the nicked enzyme and predicted to have an N-terminus corresponding to the site of proteolysis and a C-terminus determined by the site of autolysis. This peptide was purified by reversed-phase HPLC and subsequently characterized by electrospray mass spectrometry. We have obtained a mass value for peptide D, from which it can be deduced that glutamate 344, known to be conserved in all sequenced CoA transferases, is the catalytically active amino acid. This information should prove useful to future mutagenesis work aimed at better understanding the active-site structure and catalytic mechanism of CoA transferase.  相似文献   

18.
The ferric form of the haem undecapeptide, derived from horse cytochrome c by peptic digestion, undergoes at least three pH-induced transitions with pK values of 3.4, 5.8 and 7.6. Temperature-jump experiments suggest that the first of these is due to the binding of a deprotonated imidazole group to the feric iron while the second and third arise from the binding of the two available amino groups present (the alpha-NH2 of valine and the epsilon-NH2 of lysine). Molecular models indicate that steric retraints on the peptide dictate that these amino groups may only coordinate to iron atoms via intermolecular bonds, thus leading to the polymerization of the peptide. Cyanide binding studies are in agreement with these conclusions and also yield a value of 3.6 X 10(6) M-1 s-1 for the intrinsic combination constant of CN- anion with the haem. A model is proposed which describes the pH-dependent properties of the ferric undecapeptide.  相似文献   

19.
Although peptide-based molecules are known to have therapeutic potential, the generation of phage focused libraries to optimize peptides is effort-consuming. A chemical method is developed to extend a maleimide-conjugated peptide with a cysteine-containing random-peptide phage display library. As a proof of concept, a 15-mer epidermal growth factor receptor (EGFR)-binding peptide was synthesized with a maleimide group at its C-terminus and then conjugated to the cysteine-containing library. After panning and screening, several extended peptides were discovered and tested to have a higher affinity to EGFR. This strategy can have broad utility to optimize pharmacophores of any modalities (peptides, unnatural peptides, drug conjugates) capable of bearing a maleimide group  相似文献   

20.
Luo Z  Fan X  Zhou N  Hiraoka M  Luo J  Kaji H  Huang Z 《Biochemistry》2000,39(44):13545-13550
The viral macrophage inflammatory protein II (vMIP-II) shows a broad spectrum interaction with both CC and CXC chemokine receptors including CCR5 and CXCR4, two principal coreceptors for the cellular entry of human immunodeficiency virus type 1 (HIV-1). Recently, we have shown that a synthetic peptide derived from the N-terminus of vMIP-II, designated as V1, is a potent antagonist of CXCR4 but not CCR5 [Zhou, N., et al. (2000) Biochemistry 39, 3782-3787]. In this study, we synthesized a series of new peptides derived from other regions of vMIP-II and characterized their binding activities with both CXCR4 and CCR5. The results provided further support for the notion that the N-terminus of vMIP-II is the major determinant for CXCR4 recognition and that vMIP-II probably interacts with other chemokine receptors such as CCR5 with different sequence and conformational determinants. To understand the structure-function relationship of V1 peptide, its solution conformation was studied using circular dichroism spectroscopy, which showed a random conformation similar to that of the corresponding N-terminus in native vMIP-II. In addition, we synthesized a series of mutant analogues of V1 containing alanine, glycine, or phenylalanine substitution at various positions. Residues Val-1, Arg-7, and Lys-9 of V1 peptide were found to be critical for receptor interaction, because single alanine replacement at these positions dramatically decreased peptide binding to CXCR4. In contrast, alanine or phenylalanine substitution at Cys-11 led to significant enhancement in peptide affinity for CXCR4. Finally, we showed that V1 peptide inhibits HIV-1 replication in CXCR4(+) T-cell lines. These studies provide new insights into the structure-function relationship of V1 peptide and demonstrate that this peptide may be a lead for the development of therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号