首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specificity of glycogen synthase (casein) kinase-1 (CK-1) for different divalent metal ions was explored in this study. Of nine metal ions (Mg2+, Mn2+, Zn2+, Cu2+, Ca2+, Ba2+, Ni2+, Co2+, Fe2+) tested, only Mg2+ supported significant kinase activity. Several of the other metals, however, inhibited the Mg2+-stimulated kinase activity. Half-maximal inhibitions by Mn2+, Zn2+, Co2+, Fe2+, and Ni2+ were observed at 55, 65, 110, 125, and 284 microM, respectively. Kinetic analyses indicate that the metal ions are acting as competitive inhibitors of CK-1 with respect to the protein substrate (casein) and as noncompetitive inhibitors with respect to the nucleotide substrate (ATP). The inhibition of CK-1 by the different metal ions can be reversed by EGTA.  相似文献   

2.
金属离子对黑米花青苷色素吸收光谱的影响   总被引:4,自引:1,他引:4  
以黑糯B糙米皮为实验材料 ,用 1 .5mol/L盐酸— 95 %乙醇 (V/V :1 5 / 85 )溶液提取黑米花青苷色素(BRAP) ,采用紫外可见分光光度法研究了 1 1种金属离子以及 (NH4 ) 1+ 离子对BRAP的作用。结果表明 ,未加离子条件下色素溶液可见光区λmax5 35nm ,紫外光区λmax2 80nm ,加入Al3 + 、Fe3 + 、Fe2 + 、Cu2 + 、Mn2 + 、Zn2 + 、Sn2 + 对其吸收光谱有显性影响。其中Al3 + 、Fe3 + 使 5 35nm特征吸收峰发生蓝移 ,Sn2 + 使其发生明显红移 ;Al3 + ,Fe2 + ,Mn2 + ,Zn2 +在 5 35nm附近有增加ABS值作用 ,Fe3 + 有减小ABS值作用 ;延长作用时间 ,Cu2 + 对BRAP吸收光谱的影响表现为λmax5 35nm发生蓝移 ,ABS值减小  相似文献   

3.
It was shown that IgGs purified from the sera of healthy Wistar rats contain several different bound Me2+ ions and oxidize 3,3'-diaminobenzidine through a H2O2-dependent peroxidase and H2O2-independent oxidoreductase activity. IgGs have lost these activities after removing the internal metal ions by dialysis against EDTA. External Cu2+ or Fe2+ activated significantly both activities of non-dialysed IgGs containing different internal metals (Fe > or = Pb > or = Zn > or = Cu > or = Al > or = Ca > or = Ni > or = Mn > Co > or = Mg) showing pronounced biphasic dependencies corresponding to approximately 0.1-2 and approximately 2-5 mM of Me2+, while the curves for Mn2+ were nearly linear. Cu2+ alone significantly stimulated both the peroxidase and oxidoreductase activities of dialysed IgGs only at high concentration (> or = 2 mM), while Mn2+ weakly activated peroxidase activity at concentration >3 mM but was active in the oxidoreductase oxidation at a low concentration (<1 mM). Fe2+-dependent peroxidase activity of dialysed IgGs was observed at 0.1-5 mM, but Fe2+ was completely inactive in the oxidoreductase reaction. Mg2+, Ca2+, Zn2+, Al2+ and especially Co2+ and Ni2+ were not able to activate dialysed IgGs, but slightly activated non-dialysed IgGs. The use of the combinations of Cu2+ + Mn2+, Cu2+ + Zn2+, Fe2+ + Mn2+, Fe2+ + Zn2+ led to a conversion of the biphasic curves to hyperbolic ones and in parallel to a significant increase in the activity as compared with Cu2+, Fe2+ or Mn2+ ions taken separately; the rates of the oxidation reactions, catalysed by non-dialysed and dialysed IgGs, became comparable. Mg2+, Co2+ and Ni2+ markedly activated the Cu2+-dependent oxidation reactions catalysed by dialysed IgGs, while Ca2+ inhibited these reactions. A possible role of the second metal in the oxidation reactions is discussed.  相似文献   

4.
金属离子对地衣芽孢杆菌合成多聚γ-谷氨酸的影响   总被引:7,自引:0,他引:7  
杨革  陈坚  曲音波  伦世仪   《生物工程学报》2001,17(6):706-709
多聚γ 谷氨酸 [γ Poly(glutamicacid) ,γ PGA]是由某些杆菌 (Bacillus)合成的一种细胞外水溶性高分子氨基酸聚合物 ,是由L 谷氨酸、D 谷氨酸两种构型的单体通过γ 酰胺键聚合形成的[1 ] 。γ PGA具有极佳的成膜性、成纤维性 ,阻氧性、可塑性、粘结性、保湿性和可生物降解等许多独特的理化和生物学特性[2 ,3] 。因此 ,γ PGA可以被广泛用于医药制造 ,食品加工 ,蔬菜、水果、海产品防冻、保鲜 ,化妆品工业 ,烟草、皮革制造工业和植物种子保护等许多领域 ,是一种有极大开发价值和前景的多功能新型生物制…  相似文献   

5.
Quercetin 2,3-dioxygenase from Bacillus subtilis (QueD) converts the flavonol quercetin and molecular oxygen to 2-protocatechuoylphloroglucinolcarboxylic acid and carbon monoxide. QueD, the only known quercetin 2,3-dioxygenase from a prokaryotic organism, has been described as an Fe2+-dependent bicupin dioxygenase. Metal-substituted QueDs were generated by expressing the enzyme in Escherichia coli grown on minimal media in the presence of a number of divalent metals. The addition of Mn2+, Co2+, and Cu2+ generated active enzymes, but the addition of Zn2+, Fe2+, and Cd2+ did not increase quercetinase activity to any significant level over a control in which no divalent ions were added to the media. The Mn2+- and Co2+-containing QueDs were purified, characterized by metal analysis and EPR spectroscopy, and studied by steady-state kinetics. Mn2+ was found to be incorporated nearly stoichiometrically to the two cupin motifs. The hyperfine coupling constant of the g = 2 signal in the EPR spectra of the Mn2+-containing enzyme showed that the two Mn2+ ions are ligated in an octahedral coordination. The turnover number of this enzyme was found to be in the order of 25 s(-1), nearly 40-fold higher than that of the Fe2+-containing enzyme and similar in magnitude to that of the Cu2+-containing quercertin 2,3-dioxygenase from Aspergillus japonicus. In addition, kinetic and spectroscopic data suggest that the catalytic mechanism of QueD is different from that of the Aspergillus quercetinases but similar to that proposed for the extradiol catechol dioxygenases. This study provides evidence that Mn2+ might be the preferred cofactor for this enzyme and identifies QueD as a new member of the manganese dioxygenase family.  相似文献   

6.
Binding of manganese in human and rat plasma   总被引:5,自引:0,他引:5  
Albumin, transferrin and 'transmanganin' have all been proposed as the major Mn-binding ligand in plasma. The present investigations were initiated in order to resolve these discrepancies. Compared to other metals tested (109 Cd2+, 65Zn2+, 59Fe3+), 54Mn2+ bound poorly to purified albumin. The addition of exogenous albumin to plasma did not result in an increased 54Mn radioactivity associated with this protein. Also, incubation of 65Zn-albumin in the presence of excess Mn2+ (1 mM) did not result in the displacement of Zn from albumin or Mn binding. In contrast to these results, 54Mn was bound to purified transferrin, not as readily as Fe3+, but better than Zn2+ or Cd2+. Saturation of transferrin with Fe3+ (1.6 micrograms Fe/mg) prevented the binding of 54Mn indicating that Mn probably binds to Fe-binding sites on the protein. Polyacrylamide gel electrophoresis further demonstrated the association of 54Mn with transferrin rather than with albumin in both human and rat plasma. The amount of 54Mn radioactivity recovered with transferrin increased as incubation time was increased, probably due to oxidation of Mn2+ to Mn3+. Mn binding to transferrin reached a maximum within 5 and 12 h of incubation. About 50% of 54Mn migrated with transferrin, whereas only 5% was associated with albumin. A significant portion (20-55%) of the 54Mn radioactivity migrated with electrophoretically slow plasma components whose identity was not determined. Possibilities include alpha 2-macroglobulin, heavy gamma-globulins and/or heavy lipoproteins.  相似文献   

7.
Ryu J  Girigoswami K  Ha C  Ku SH  Park CB 《Biochemistry》2008,47(19):5328-5335
Recently discovered evidences suggest that precipitation of Alzheimer's beta-amyloid (Abeta) peptide and the toxicity in Alzheimer's disease (AD) are caused by abnormal interactions with neocortical metal ions, especially Zn2+, Cu2+, and Fe3+. While many studies had focused on the role of a "single" metal ion and its interaction with Abeta peptides, such studies involving "multiple" metal ions have hardly been explored. Here, to explore the nature of codeposition of different metals, two or more metal ions along with Abeta were incubated over a solid template prepared by immobilizing Abeta42 oligomers. The influence of Zn2+,Cu2+, and Fe3+ on Abeta aggregation was investigated by two approaches: co-incubation and sequential addition. Our results using ex situ AFM, ThT-induced fluorescence, and FTIR spectroscopy indicated that the co-incubation of Cu2+, Zn2+, and Fe3+ significantly altered the morphology of aggregates. A concentration dependence study with mixed metal ions suggested that Zn2+ was required at much lower concentrations than Cu2+ to yield nonfibrillar amorphous Abeta deposits. In addition, sequential addition of Zn2+ or Cu2+ on fibrillar aggregates formed by Fe3+ demonstrated that Zn2+ and Cu2+ could possibly change the conformation of the aggregates induced by Fe3+. Our findings elucidate the coexistence of multiple metal ions through their interactions with Abeta peptides or its aggregates.  相似文献   

8.
The characteristics of hydroperoxide activation of 5-lipoxygenase were examined in the high speed supernatant fraction prepared from rat polymorphonuclear leukocytes. Stimulation of 5-lipoxygenase activity by the 5-hydroperoxyeicosatetraenoic acid (5-HPETE) reaction product was strongly dependent on the presence of thiol compounds. Various reducing agents such as mercaptoethanol and glutathione (0.5-2 mM) inhibited the reaction and increased the concentrations of 5-HPETE (1-10 microM) necessary to achieve maximal arachidonic acid oxidation. The requirement for 5-HPETE was not specific and could be replaced by H2O2 (10 microM) but not by the 5-hydroxyeicosatetraenoic acid (5-HETE) analogue. Furthermore, gel filtration chromatography of the soluble extract from leukocytes resolved different fractions which can increase the hydroperoxide dependence or fully replace the stimulation by 5-HPETE. Maximal activity of the 5-HPETE-stimulated reaction required Ca2+ ions (0.2-1 mM) and ATP with the elimination of the HPETE requirement at high ATP concentrations (2-4 mM). In addition, NADPH (1-2 mM), FAD (1 mM), Fe2+ ions (20-100 microM) and chelated Fe3+ (0.1 mM-EDTA/0.1 mM-FeCl3) all markedly increased product formation by 5-lipoxygenase whereas NADH (1 mM) was inhibitory and Fe3+ (20-100 microM) alone had no effect on the reaction. The stimulation by Fe2+ ions and NADPH was also observed under various conditions which increase the hydroperoxide dependence such as pretreatment of the enzyme preparation with glutathione peroxidase or chemical reduction with 0.015% NaBH4. These results provide evidence for an hydroperoxide activation of 5-lipoxygenase which is not product-specific and is modulated by thiol levels and several soluble components of the leukocytes. They also indicate that stimulation of 5-lipoxygenase activity can contribute to increase lipid peroxidation in iron and nucleotide-promoted reactions.  相似文献   

9.
The three isozymes of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli were overproduced, purified, and characterized with respect to their requirement for metal cofactor. The isolated isozymes contained 0.2-0.3 mol of iron/mol of enzyme monomer, variable amounts of zinc, and traces of copper. Enzymatic activity of the native enzymes was stimulated 3-4-fold by the addition of Fe2+ ions to the reaction mixture and was eliminated by treatment of the enzymes with EDTA. The chelated enzymes were reactivated by a variety of divalent metal ions, including Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+, and Zn2+. The specific activities of the reactivated enzymes varied widely with the different metals as follows: Mn2+ greater than Cd2+, Fe2+ greater than Co2+ greater than Ni2+, Cu2+, Zn2+ much greater than Ca2+. Steady state kinetic analysis of the Mn2+, Fe2+, Co2+, and Zn2+ forms of the phenylalanine-sensitive isozyme (DAHPS(Phe)) revealed that metal variation significantly affected the apparent affinity for the substrate, erythrose 4-phosphate, but not for the second substrate, phosphoenolpyruvate, or for the feedback inhibitor, L-phenylalanine. The tetrameric DAHPS(Phe) exhibited positive homotropic cooperativity with respect to erythrose 4-phosphate, phophoenolpyruvate, and phenylalanine in the presence of all metals tested.  相似文献   

10.
In the presence of copper significant induction of citric acid overflow was observed, while concomitantly lower levels of total lipids were detected in the cells. Its effect was more obvious in a medium with magnesium as sole divalent metal ions, while in a medium with magnesium and manganese the addition of copper had a less pronounced effect. Since the malic enzyme was recognised as a supplier of reducing power in the form of reduced nicotinamide adenine dinucleotide phosphate for lipid biosynthesis, its kinetic parameters with regard to different concentrations of metal ions were investigated. Some inhibition was found with Fe(2+) and Zn(2+), while Cu(2+) ions in a concentration of 0.1 mM completely abolished malic enzyme activity. The same metal ions proportionally reduced the levels of total lipids in Aspergillus niger cells. A strong competitive inhibition of the enzyme by Cu(2+) was observed. It seemed that copper competes with Mg(2+) and Mn(2+) for the same binding site on the protein.  相似文献   

11.
研究了金属离子Mn2 +、Fe2 +、Zn2 +对枯草芽孢杆菌 (Bacillussubtilis)转酮酶 (EC 2 .2 .1 .1 )缺失突变株FBL0 4 531D 核糖合成的影响。发现Mn2 +对该突变株合成D 核糖和形成芽孢具有非常显著的影响。  相似文献   

12.
T R Cassity  B J Kolodziej 《Microbios》1984,41(160):117-125
A study was undertaken to determine if the capsule produced by Bacillus megaterium ATCC 19213 was capable of binding metallic ions. For non-toxic metallic ions, this was accomplished by determining the relative concentrations of Fe2+, Ca2+, Zn2+, Mg2+, and Mn2+ removed from a chemically defined medium by the normally capsulated parent strain and two mutants with much smaller capsules. For toxic metals, the rates of respiration of the parent strain and a small capsule mutant in the presence of Cu2+, Hg2+, and Ag1+ were compared. It was found that the parent strain accumulated more Ca2+, Mg2+, and Mn2+. Accumulation of Fe2+ and Zn2+ was similar for the parent strain and the small capsule mutants. Respiration of the parent strain was less inhibited by Cu2+, Hg2+, and Ag1+, indicating that these metals are also bound to the capsule.  相似文献   

13.
When rat liver microsomes were incubated with NADPH, the major products were hydroperoxides which increased with time indicating that endogenous iron content is able to promote lipid peroxidation. The addition of either 5 microM Fe2+ or Fe3+ ions strongly enhanced the hydroperoxide formation rate. However, due to the hydroperoxide breakdown, hydroperoxide concentration decreased with time in this case. Higher ferrous or ferric iron concentration did not change the situation much, in that both hydroperoxide breakdown and formation were similar to those when NADPH only was present in the incubation medium. After lipid peroxidation, analysis of fatty acids indicated that the highest amount of peroxidized PUFA occurred in the presence of 5 microM of either Fe2+ or Fe3+. This analysis also showed that after 8 min incubation with low iron concentration, PUFA depletion was about 77% of that observed after 20 min, whereas without any iron addition or in the presence of 30 microM of either Fe3+, PUFA decrease was only about 37% of that observed after 20 min. As far as the optimum Fe2+/Fe3+ ratio required to promote the initiation of microsomal lipid peroxidation in rat liver is concerned, the highest hydroperoxide formation was observed with a ratio ranging from 0.5 to 2. These results indicate that microsomal lipid peroxidation induced by endogenous iron is speeded up by the addition of low concentrations of either Fe2+ or Fe3+ ions, probably because free radicals generated by hydroperoxide breakdown catalyze the propagation process. In experimental conditions unfavourable to hydroperoxide breakdown the principal process is that of the initiation of lipid peroxidation.  相似文献   

14.
The effects of monovalent (Li+, Cs+) divalent (Cu2+, Ca2+, Sr2+, Ba2+, Zn2+, Cd2+, Hg2+, Pb2+, Mn2+, Fe2+, Co2+, Ni2+) and trivalent (Cr3+, Fe3+, Al3+) metals ions on hexokinase activity in rat brain cytosol were compared at 500 microM. The rank order of their potency as inhibitors of brain hexokinase was: Cr3+ (IC50 = 1.3 microM) greater than Hg2+ = Al3+ greater than Cu2+ greater than Pb2+ (IC50 = 80 microM) greater than Fe3+ (IC50 = 250 microM) greater than Cd2+ (IC50 = 540 microM) greater than Zn2+ (IC50 = 560 microM). However, at 500 microM Co2+ slightly stimulated brain hexokinase whereas the other metal ions were without effect. That inhibition of brain glucose metabolism may be an important mechanism in the neurotoxicity of metals is suggested.  相似文献   

15.
C A Grosshans  T R Cech 《Biochemistry》1989,28(17):6888-6894
A shortened form of the self-splicing intervening sequence RNA of Tetrahymena thermophila acts as an enzyme, catalyzing sequence-specific cleavage of RNA substrates. We have now examined the metal ion requirements of this reaction. Mg2+ and Mn2+ are the only metal ions that by themselves give RNA enzyme activity. Atomic absorption spectroscopy indicates that Zn, Cu, Co, and Fe are not present in amounts equimolar to the RNA enzyme and when added to reaction mixtures do not facilitate cleavage. Thus, these ions can be eliminated as cofactors for the reaction. While Ca2+ has no activity by itself, it alleviates a portion of the Mg2+ requirement; 1 mM Ca2+ reduces the Mg2+ optimum from 2 to 1 mM. These results, combined with studies of the reactivity of mixtures of metal ions, lead us to postulate that two classes of metal ion binding sites are required for catalysis. Class 1 sites have more activity with Mn2+ than with Mg2+, with the other divalent ions and Na+ and K+ having no activity. It is not known if ions located at class 1 sites have specific structural roles or are directly involved in active-site chemistry. Class 2 sites, which are presumably structural, have an order of preference Mg2+ greater than or equal to Ca2+ greater than Mn2+ and Ca2+ greater than Sr2+ greater than Ba2+, with Zn2+, Cu2+, Co2+, Na+, and K+ giving no detectable activity over the concentration range tested.  相似文献   

16.
寇江涛 《生态学杂志》2020,39(3):855-864
为了探讨外源2,4-表油菜素内酯(2,4-epibrassinolide,EBR)诱导燕麦(Avena sativa L.)幼苗抗盐性的效果及其生理调节机制,以"青引2号"和"加燕2号"燕麦为材料,研究NaCl胁迫下施用外源EBR对燕麦幼苗无机离子吸收、运输和分配的影响。结果表明:100mmol·L-1NaCl胁迫下,"青引2号"和"加燕2号"燕麦幼苗叶片和根系中的Na+、Cl-含量均显著升高,对阳离子的吸收产生了拮抗作用,导致燕麦幼苗叶片和根系中的K+、Ca2+、Mg2+、Mn2+、Fe2+、Zn2+、Cu2+含量显著降低,离子稳态平衡被打破; 100 mmol·L-1NaCl胁迫下,施用0.01μmol·L-1外源EBR后,"青引2号"和"加燕2号"燕麦幼苗叶片和根系中的Na+和Cl-含量显著降低,促进了燕麦幼苗根系对K+、Ca2+、Mg2+、Fe2+、Mn2+、Cu2+和Zn2+的吸收,叶片和根系中K+/Na+、Cl-/Na+、Ca2+/Na+、Mg2+/Na+、Fe2+/Na+、Mn2+/Na+、Cu2+/Na+和Zn2+/Na+显著升高,并且有效调控燕麦幼苗体内无机离子的运输...  相似文献   

17.
金属离子对粪产碱杆菌C16的脱氮和亚硝酸盐积累的影响   总被引:2,自引:0,他引:2  
王瑶  刘玉香  安华  张浩 《微生物学通报》2014,41(11):2254-2263
【目的】研究不同金属离子对异养氨氧化细菌C16的生长和脱氮性能影响,探讨适于C16生长和脱氮的金属离子及其浓度。【方法】实验选用Mg2+、Mn2+、Fe2+、Cu2+、Zn2+5种金属离子,对C16的生长﹑脱氮性能﹑亚硝酸盐氮积累以及相关酶活性进行研究。【结果】Mg2+明显促进C16的生长和NH4+-N氧化速率;较高浓度Mn2+使得C16无法生长;原培养基中缺少Fe2+会抑制C16的生长和NH4+-N氧化速率;在原培养基中加入0.1 mmol/L的Cu2+对C16的生长和脱氮具有一定的促进作用,Cu2+使得培养基中基本无NO2--N和NH2OH的积累;不同浓度的Zn2+对C16的生长和氨氮去除有抑制作用。酶活实验结果显示,0.1 mmol/L Mg2+促进了羟胺氧化还原酶(HAO)的活性;0.1 mmol/L Cu2+促进了硝酸盐还原酶(Nar)和亚硝酸盐还原酶(Nir)的活性。【结论】Mg2+是C16生长和脱氮过程中的一种重要金属离子;加入Cu2+可避免过量亚硝酸盐积累。  相似文献   

18.
The influence of Mn2+, Fe3+, Co2+, and Zn2+ ions on the extent of trypsinogen activation has been determined for several ion concentrations at pH 7.4 and 36.4 degrees C. For the Mn2+ ion also the autocatalytic rate constants have been detected. The effect of Ca2+ has been reinvestigated for comparison purposes. The apparent dissociation constants of KMn2+ = 0.01 (M) and KCa2+ = 0.02 (M) have been found for the given metal ion-trypsinogen complexes. For Co2+ ion, however, only a slight effect and for Fe3+ and Zn2+ ions no significant effect could be detected on trypsinogen activation. The investigated ions are of empty, open, and completed d subshells of electrons and they are different also in their ionic size. The differences in effects of the ions are discussed on the basis of these factors.  相似文献   

19.
The effect of some inhibitors and bivalent metal cations (Mn2+, Ca2+, Fe2+, Zn2+, Mg2+, Co2+ and Cu2+) on the proteolytic activity of two Bacillus mesentericus strains (strain 8 and strain 64 M-variant) was comparatively studied. The both enzymes were shown to be serine proteinases, but the proteinase of strain 64 was also a metal-dependent enzyme. Metal ions exerted no essential effect on the proteinase of strain 8. Ca2+ and Mg2+ ions stimulated the proteinase activity of strain 64 whereas Fe2+ and Zn2+ ions inhibited it in the case of three substrates. Therefore, the two proteinases are different.  相似文献   

20.
【背景】矿区废渣堆重金属污染严重,废渣堆分布着一些耐重金属的微生物。【目标】探究重金属胁迫对真菌生长及发酵液pH的影响。【方法】从金川矿区废渣堆采集土样,分离培养具有产酸能力的真菌,采用形态学与分子生物学技术鉴定这些菌株,并测定其产酸能力及其对Pb~(2+)、Cd~(2+)和Zn~(2+)的耐受性。【结果】形态学及18S rRNA基因序列分析获得黑曲霉ZJ-I (Aspergillus niger ZJ-I)和产黄青霉ZJ-V (Penicilium chrysogenum ZJ-V)两个产酸菌株。未加重金属培养时,与不接种真菌对照相比,上述2个菌株的发酵液pH分别下降0.58和0.69;添加重金属处理后,随着重金属浓度的增加,pH变化幅度变小,不同浓度Pb~(2+)使A.nigerZJ-I发酵液pH值分别下降0.53、0.39、0.34和0.39,使P. chrysogenum ZJ-V发酵液pH值分别下降0.21、0.23、0.14和0.09;不同浓度Cd~(2+)使A. niger ZJ-I发酵液pH值分别下降0.75、0.43、0.39和0.32,使P. chrysogenum ZJ-V发酵液pH值分别下降0.62、0.46、0.38和0.49;不同浓度Zn~(2+)可使A.nigerZJ-I发酵液pH分别下降0.87、0.61、0.57和0.43,使P. chrysogenum ZJ-V发酵液pH分别下降1.1、0.34、0.44和0.49;低浓度的Zn~(2+)对菌株A.niger ZJ-I和P. chrysogenum ZJ-V产酸都有促进作用,低浓度的Cd~(2+)对A. niger ZJ-I产酸有促进作用。当Cd~(2+)、Zn~(2+)与Pb~(2+)的浓度分别超过200、400、2 000 mg/L时,3种不同浓度的重金属对菌株A. niger ZJ-I的抑制率达到80%以上,抑制效果显著;当Cd~(2+)、Zn~(2+)与Pb~(2+)浓度分别超过200、1 000、2 000 mg/L时,3种不同浓度的重金属对菌株P.chrysogenumZJ-V抑制率达到80%以上,抑制效果显著。【结论】两株真菌均具有产酸能力和一定的重金属耐受性,菌株P. chrysogenum ZJ-V发酵液产酸性能与重金属耐受能力都要优于ZJ-I,菌株ZJ-V具备潜在的淋洗重金属污染土壤的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号