首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An estimation of drag in front crawl swimming   总被引:3,自引:0,他引:3  
Propulsive arm forces of twelve elite male swimmers during a front crawl swimming-like activity were measured. The swimmers pushed off against grips which are attached to a 23 m tube at 0.8 m under the water surface. The tube was fixed to a force transducer. Since at constant speed, mean propulsive force equals mean drag force this method also provides the mean active drag on a moving swimmer. The mean propulsive force at a speed of v = 1.48 m s-1 appeared to be 53.2 +/- 5.8 N which is two to three times smaller than what is reported by other authors for active drag but which is in agreement with values reported for passive drag on a (towed) swimmer who is not moving. Discrepancies with indirect active drag measurements are discussed.  相似文献   

2.
The measurement of drag while swimming (i.e. active drag) is a controversial issue. Therefore, in a group of six elite swimmers two active drag measurement methods were compared to assess whether both measure the same retarding force during swimming. In method 1 push-off forces are measured directly using the system to measure active drag (MAD-system). In method 2 (the velocity perturbation method, VPM) drag is estimated from the difference in swimming speed when subjects swim twice at maximal effort (assuming equal power output and assuming a quadratic drag-speed relationship): once swimming free, and once swimming with a hydrodynamic body attached that created a known additional resistance. The average drag for the VPM tests (53.2 N) was statistically significant and different from the active drag for the MAD-test (66.9 N), paired Student's t-test: 2.484, 12 DF, p=0.029. A post hoc analysis was performed to assess whether the two methods measure a different phenomenon. Based on the drag speed curve obtained with the MAD-system, the VPM-data were re-examined. For diverging drag determinations the assumption of equal power output of the 'free' trial (swimming free) vs. the towing trial (swimming with hydrodynamic buoy) appeared to be violated. The regression of the relative difference in force (MAD vs. VPM) on the relative difference in power (swimming free vs. swimming with hydrodynamic body) was: %Deltadrag=1.898 x %Deltapower -4.498, r2=0.88. This suggests that the major part of the difference in active drag values is due to a non-equal power output in the 'free' relative towing trial during the VPM-test. The simulation of the violation of the equal power output assumption and the calculation of the effect of an other than quadratic drag-speed relationship corroborated the tentative conclusion that both methods measure essentially the same phenomenon and that active drag differences can be explained by a violation of test assumptions.  相似文献   

3.
Oxygen uptake was measured on four male subjects during sculling gondolas at constant speeds from approximately 1 to approximately 3 m.s-1. The number of scullers on board in the different trials was one, two or four. Tractional water resistance (drag, D, N) was also measured in the same range of speeds. Energy cost of locomotion per unit of distance (C, J.m-1), as calculated from the ratio of O2 uptake above resting to, increased with v according to a power function (C = 155.2.v1.67; r = 0.88). Also D could be described as a power function of the speed: D = 12.3.v2.21; r = 0.94). The overall efficiency of motion, as obtained from the ratio of D to C, increased with speed from 9.2% at 1.41 m.s-1 to 14.5% at 3.08 m.s-1. It is concluded that, in spite of this relatively low efficiency of motion, the gondola is a very economic means. Indeed, at low speeds (approximately 1 m.s-1), the absolute amount of energy for propelling a gondola is the same as that for waking on the level at the same speed for a subject of 70 kg body mass.  相似文献   

4.
5.
The metabolic cost of paddling at low speeds (v) was measured from oxygen uptake (VO2) and anaerobic glycolysis in an annular pool or calculated from submaximal VO2 measured at higher speeds when the kayaker was assisted in overcoming water resistance. Also calculated were the total drag (D) and the net mechanical efficiency (e). Each of the above variables was determined in male (n = 17) and female (n = 7) kayakers ranging in experience from beginners to elite. The VO2 increased with v to a peak of approximately 3.4 l.min-1 (80%-100% of peak VO2 during running) in men and of approximately 2.8 l.min-1 in women, while at higher speeds the additional energy was accounted for by anaerobic glycolysis. In all subjects the energy cost to paddle a given distance (C) increased according to a power function with increasing v. The C was lower for the elite male paddlers than for the unskilled group, while that for elite women was slightly less than that for the elite men. Also the rates of increase of C appeared to be inversely proportional to the subjects' skill. Total D for elite men increased from approximately 15 to 60 N over a range of speeds from 1 to 2.2 m.s-1 while those of unskilled men and skilled women for the same speed range were 10-20 N greater and slightly less, respectively. The e increased linearly, but at a different rate, with increases in v for the unskilled and the elite kayakers (males and females) being 4.2% and 6%, respectively, at v = 1.2 m.s-1.  相似文献   

6.
A method for measuring the maximal velocity of knee extension exercise is described using a very light lever arm. Instrumentation of the lever arm with a potentiometer and accelerometer also allows for the measurement of peak acceleration, time to peak acceleration, the average rate of development of acceleration (jerk) and peak torque. With this apparatus and surface electromyography, electromechanical delay (EMD) was also determined. This apparatus was tested using 17 female and 10 male subjects, and the measures obtained were related to the percentage of fast twitch fibres (% FT) and the relative area of fast twitch fibres (% FTA) in the vastus lateralis determined from duplicate muscle biopsy samples. Peak velocity of unloaded knee extension averaged 12.1 +/- 1.2 and 12.2 +/- 1.7 rad.s-1 for females and males, respectively, and were not significantly different. As well, peak acceleration, time to peak acceleration jerk and EMD values were not significantly different between the female and male subjects, but the mean peak torque for the female subjects (73.5 +/- 14.7 N.m) was significantly lower than that for the males (98.4 +/- 31.5 N.m). Peak acceleration was significantly correlated with %FT (r = 0.40, P = 0.04) for the total subject population. None of the other measures was significantly related to either %FT or %FTA for the male and female subjects or the combined population of subjects.  相似文献   

7.
The purpose of this study was to examine the effect of leg kick on the resistance force in front-crawl swimming. The active drag in front-crawl swimming with and without leg motion was evaluated using measured values of residual thrust (MRT method) and compared with the passive drag of the streamlined position (SP) for the same swimmers. Seven male competitive swimmers participated in this study, and the testing was conducted in a swimming flume. Each swimmer performed front-crawl under two conditions: using arms and legs (whole stroke: WS) and using arms only (arms-only stroke: AS). Active drag and passive drag were measured at swimming velocities of 1.1 and 1.3 m s−1 using load cells connected to the swimmer via wires. We calculated a drag coefficient to compare the resistances of the WS, AS and SP at each velocity. For both the WS and AS at both swimming velocities, active drag coefficient was found to be about 1.6–1.9 times larger than that in passive conditions. In contrast, although leg movement did not cause a difference in drag coefficient for front-crawl swimming, there was a large effect size (d = 1.43) at 1.3 m s−1. Therefore, although upper and lower limb movements increase resistance compared to the passive condition, the effect of leg kick on drag may depend on swimming velocity.  相似文献   

8.
The present study aimed to clarify whether swimming performance is affected by reflective markers being attached to the swimmer’s body, as is required for a kinematic analysis of swimming. Fourteen well-trained male swimmers (21.1 ± 1.7 yrs) performed maximal 50 m front crawl swimming with (W) and without (WO) 25 reflective markers attached to their skin and swimwear. This number represents the minimum required to estimate the body’s center of mass. Fifty meter swimming time, mid-pool swimming velocity, stroke rate, and stroke length were determined using video analysis. We found swimming time to be 3.9 ± 1.6% longer for W condition. Swimming velocity (3.3 ± 1.8%), stroke rate (1.2 ± 2.0%), and stroke length (2.1 ± 2.7%) were also significantly lower for W condition. To elucidate whether the observed reduction in performance was potentially owing to an additional drag force induced by the reflective markers, measured swimming velocity under W condition was compared to a predicted velocity that was calculated based on swimming velocity obtained under WO condition and an estimate of the additional drag force induced by the reflective markers. The mean prediction error and ICC (2,1) for this analysis of measured and predicted velocities was 0.014 m s−1 and 0.894, respectively. Reducing the drag force term led to a decrease in the degree of agreement between the velocities. Together, these results suggest that the reduction in swimming performance resulted, at least in part, from an additional drag force produced by the reflective markers.  相似文献   

9.
A dynamometer for measurement under static and dynamic conditions is presented. At different load levels, force, velocity, work and power can be measured in explosive leg extensions. Measurements on 53 subjects at different load levels (0-125.5 kg) were carried out. Peak power ranged from 2611 to 1746 W, force from 1351 to 1899 N, velocity from 1.61 to 0.89 m X s-1 and work from 329 to 605 J. Between trial correlation coefficients ranged from 0.72 to 0.95. The dynamometer is compared with others, and it is concluded that data obtained by this dynamometer have a greater practical validity.  相似文献   

10.
The domestic ferret (Mustela putorius furo) swims by alternate strokes of the forelimbs. This pectoral paddling is rare among semi-aquatic mammals. The energetic implications of swimming by pectoral paddling were examined by kinematic analysis and measurement of oxygen consumption. Ferrets maintained a constant stroke frequency, but increased swimming speed by increasing stroke amplitude. The ratio of swimming velocity to foot stroke velocity was low, indicating a low propulsive efficiency. Metabolic rate increased linearly with increasing speed. The cost of transport decreased with increasing swimming speed to a minimum of 3.59+/-0.28 J N(-1) m(-1) at U=0.44 m s(-1). The minimum cost of transport for the ferret was greater than values for semi-aquatic mammals using hind limb paddling, but lower than the minimum cost of transport for the closely related quadrupedally paddling mink. Differences in energetic performance may be due to the amount of muscle recruited for propulsion and the interrelationship hydrodynamic drag and interference between flow over the body surface and flow induced by propulsive appendages.  相似文献   

11.
The domestic ferret (Mustela putorius furo) swims by alternate strokes of the forelimbs. This pectoral paddling is rare among semi-aquatic mammals. The energetic implications of swimming by pectoral paddling were examined by kinematic analysis and measurement of oxygen consumption. Ferrets maintained a constant stroke frequency, but increased swimming speed by increasing stroke amplitude. The ratio of swimming velocity to foot stroke velocity was low, indicating a low propulsive efficiency. Metabolic rate increased linearly with increasing speed. The cost of transport decreased with increasing swimming speed to a minimum of 3.59+/-0.28 J N(-1) m(-1) at U=0.44 m s(-1). The minimum cost of transport for the ferret was greater than values for semi-aquatic mammals using hind limb paddling, but lower than the minimum cost of transport for the closely related quadrupedally paddling mink. Differences in energetic performance may be due to the amount of muscle recruited for propulsion and the interrelationship hydrodynamic drag and interference between flow over the body surface and flow induced by propulsive appendages.  相似文献   

12.
Experiments were undertaken in a recirculating flume to determine the relationships among water velocity, thallus area, drag, and the probability of thallus breakage or detachment in the foliose green alga Ulva lactuca L. In all specimens tested to breaking point, thalli detached from their bivalve substrates as a result of stipe breakage rather than in midthallus or by holdfast detachment. There was no relationship between thallus size and drag at which detachment occurred. Rather, the probability of detachment was normally distributed about a mean drag of 0. 70 N (95% confidence limits 0.55–0.85 N). Average breaking stress of stipes was 345 kN.m-2 (95% cl 250–485 kN.m-2). Similar results were obtained in field experiments where the horizontal force required to detach thalli was measured directly as 0.93 N (95% cl 0.69–1.15 N). Drag coefficients of plants were not constant with water velocity but increased up to 0.4 m.s-1, declining exponentially at velocities above this. Empirical relationships were established between coefficient of drag and Reynold's number and, hence, among drag, thallus area and water velocity. These relationships permitted estimation of mean water velocity at which plants of a given area would detach .  相似文献   

13.
The purpose of this investigation was to test whether the concept of critical power used in previous studies could be applied to the field of competitive swimming as critical swimming velocity (vcrit). The vcrit, defined as the swimming velocity over a very long period of time without exhaustion, was expressed as the slope of a straight line between swimming distance (dlim) at each speed (with six predetermined speeds) and the duration (tlim). Nine trained college swimmers underwent tests in a swimming flume to measure vcrit at those velocities until the onset of fatigue. A regression analysis of dlim on tlim calculated for each swimmer showed linear relationships (r2 greater than 0.998, P less than 0.01), and the slope coefficient signifying vcrit ranged from 1.062 to 1.262 m.s-1 with a mean of 1.166 (SD 0.052) m.s-1. Maximal oxygen consumption (VO2max), oxygen consumption (VO2) at anaerobic threshold, and the swimming also velocity at the onset of blood lactate accumulation (vOBLA) were also determined during the incremental swimming test. The vcrit showed significant positive correlations with VO2 at anaerobic threshold (r = 0.818, P less than 0.01), vOBLA (r = 0.949, P less than 0.01) and mean velocity of 400 m freestyle (r = 0.864, P less than 0.01). These data suggested that vcrit could be adopted as an index of endurance performance in competitive swimmers.  相似文献   

14.
Electrically evoked isokinetic plantar flexor torque in males   总被引:1,自引:0,他引:1  
The involuntary angle-specific isokinetic plantar flexor torques of seven male subjects aged 18-21 yr were measured using a Cybex II dynamometer (Lumex) modified by the addition of a strain-gauge load cell to improve the dynamic response of the instrument. Supramaximal electrical stimuli were used to evoke a maximal tetanic response from the triceps surae and ensure constant muscle activation at each angular velocity studied. Angle-specific torques were measured over a range (0.5-5.0 rad/s) of preset velocities, torque decreasing in a nonlinear manner with increasing angular velocity. The torque-velocity data was adequately described by an exponential equation of the form: V = a(e-1/b - e-Po/b) where V = velocity (rad/s), P = torque (N.m), Po = isometric torque (N.m), and a and b are constants. The mean intrasubject coefficient of variation of torque over the range of velocities studies was 7.9 +/- 1.88% (SD).  相似文献   

15.
By comparing the time of the same distance swum with and without an added resistance, under the assumption of an equal power output in both cases, the drag of 73 top swimmers was estimated. The active drag Fr(a.d.) at maximal swimming velocities varied considerably across strokes and individuals. In the females Fr(a.d.) ranged from 69.78 to 31.16 N in the front-crawl, from 83.04 to 37.78 N in dolphin, from 93.56 to 45.19 N in breaststroke, and from 65.51 to 37.79 N in back-stroke. In the males Fr(a.d.) ranged from 167.11 to 42.23 N in front-crawl, from 156.09 to 46.95 N in dolphin, from 176.87 to 55.61 N in breaststroke, and from 146.28 to 46.36 N in back-stroke. Also, the ratio of Fr(a.d.) to the passive drag Fr(a.d.) as determined for the analogical velocity in a tugging condition (in standard body position-front gliding) shows considerable individual variations. In the female swimmers variations in Fr(a.d.)/Fr(p.d.) ranged from 145.17 to 59.94% in front-crawl, from 192.39 to 85.57% in dolphin, from 298.03 to 124.50% in breaststroke, and from 162.87 to 85.61% in back-stroke. In the male swimmers variations in Fr(a.d.)/Fr(p.d.) ranged from 162.24 to 62.39% in front-crawl, from 191.70 to 70.38% in dolphin, from 295.57 to 102.83% in breaststroke, and from 198.82 to 74.48% in back-stroke. The main reason for such variations is found in the individual features of swimming technique and can be quantitatively estimated with the hydrodynamic force coefficient, which thus provides an adequate index of technique.  相似文献   

16.
The capacity to perform isometric and dynamic muscle contractions at different forces has been measured in two separate groups of subjects: 25 men and 25 women performed sustained isometric contractions of the knee-extensor muscles of their stronger leg to fatigue, at forces corresponding to 80%, 50% and 20% of the maximum voluntary force of contraction (MVC). The second experimental model involved a bilateral elbow-flexion weight lifting exercise. Eleven women and 12 men performed repetitions at loads corresponding to 90%, 80%, 70%, 60% and 50% of maximum load (1RM), at a rate of 10 X min-1 to the point of fatigue. Males were stronger (p less than 0.001) than females in both the static (675 +/- 120 N vs 458 +/- 80 N; mean +/- SD) and dynamic (409 +/- 90 N vs 190 +/- 33 N) contractions. Isometric endurance time of the males at a force corresponding to 20% of MVC was less than that of the females (180 +/- 51 s vs 252 +/- 56 s; p less than 0.001) but there was no difference between the sexes at 50% or 80% of MVC. Similarly, when the sexes were compared using dynamic elbow-flexion exercise, the female subjects were able to perform a greater number of repetitions than males at loads of 50% (p less than 0.005), 60% (p less than 0.001) and 70% (p less than 0.025) of 1RM, but there was no difference between the sexes at loads of 80% or 90% of 1RM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The relationships between ground reaction forces, electromyographic activity (EMG), elasticity and running velocity were investigated at five speeds from submaximal to supramaximal levels in 11 male and 8 female sprinters. Supramaximal running was performed by a towing system. Reaction forces were measured on a force platform. EMGs were recorded telemetrically with surface electrodes from the vastus lateralis and gastrocnemius muscles, and elasticity of the contact leg was evaluated with spring constant values measured by film analysis. Data showed increases in most of the parameters studied with increasing running speed. At supramaximal velocity (10.36 +/- 0.31 m X s-1; 108.4 +/- 3.8%) the relative increase in running velocity correlated significantly (P less than 0.01) with the relative increase in stride rate of all subjects. In male subjects the relative change in stride rate correlated with the relative change of IEMG in the eccentric phase (P less than 0.05) between maximal and supramaximal runs. Running with the towing system caused a decrease in elasticity during the impact phase but this was significant (P less than 0.05) only in the female sprinters. The average net resultant force in the eccentric and concentric phases correlated significantly (P less than 0.05-0.001) with running velocity and stride length in the maximal run. It is concluded that increased neural activation in supramaximal effort positively affects stride rate and that average net resultant force as a specific force indicator is primarily related to stride length and that the values in this indicator may explain the difference in running velocity between men and women.  相似文献   

18.
The aim of this study was to propose and validate a post-hoc correction method to obtain maximal power values taking into account inertia of the flywheel during sprints on friction-loaded cycle ergometers. This correction method was obtained from a basic postulate of linear deceleration-time evolution during the initial phase (until maximal power) of a sprint and included simple parameters as flywheel inertia, maximal velocity, time to reach maximal velocity and friction force. The validity of this model was tested by comparing measured and calculated maximal power values for 19 sprint bouts performed by five subjects against 0.6-1 N kg(-1) friction loads. Non-significant differences between measured and calculated maximal power (1151+/-169 vs. 1148+/-170 W) and a mean error index of 1.31+/-1.20% (ranging from 0.09% to 4.20%) showed the validity of this method. Furthermore, the differences between measured maximal power and power neglecting inertia (20.4+/-7.6%, ranging from 9.5% to 33.2%) emphasized the usefulness of power correcting in studies about anaerobic power which do not include inertia, and also the interest of this simple post-hoc method.  相似文献   

19.
The record history of running, swimming and ice-skating, over various distances, was analyzed. A mean period of about 66 years for the 18 male events and of about 50 years for the 14 female events was studied. Over a given distance the velocity (v) was related to the dates of the records minus 1900 (T) according to polynomial functions like: v = a0 + a1T + a2T2 + ..... + anTn. In 21 out of the 32 events equations of first or second degree fitted the experimental data. The mean correlation coefficient was 0.979 +/- 0.019 (+/- S.D.). The ratio between predicted (vlp) and actual value (vl) of the last records was 0.999 +/- 0.010. For T corresponding to v1 (Tl), the rate of record growth was slowing down in 5 events. Hence up to June 1981 a tendency towards an asymptotic v was not yet a general phenomenon. At Tl the range of the relative rate of increase of v (dvp/dT . vlp) was 0.9 . 10(-3) per year (800 m - female running) and 12.4 . 10(-3) per year (800 m - female swimming). dv/dT . vlp in swimming and skating was similar in both sexes but 4 times faster than in male running. Less marked differences were found for female running. A lowering of the cost of transport was probably the main reason of the fast growth of swimming and skating records. The numerical constants calculated from linear regression of v versus the time of the races over different distances did not seem to have a clear physiological meaning, as reported in the previous literature.  相似文献   

20.
Drag characteristics of competitive swimming children and adults   总被引:3,自引:0,他引:3  
The aims of this study were to compare drag in swimming children and adults, quantify technique using the technique drag index (TDI), and use the Froude number (Fr) to study whether children or adults reach hull speed at maximal velocity (vmax). Active and passive drag was measured by the perturbation method and a velocity decay method, respectively, including 9 children aged 11.7+/-0.8 and 13 adults aged 21.4+/-3.7. The children had significantly lower active (kAD) and passive drag factor (kPD) compared with the adults. TDI (kAD/kPD) could not detect any differences in swimming technique between the two groups, owing to the adults swimming maximally at a higher Fr, increasing the wave drag component, and masking the effect of better technique. The children were found not to reach hull speed at vmax, and their Fr were 0.37+/-0.01 vs. the adults 0.42+/-0.01, indicating adults' larger wave-making component of resistance at vmax compared with children. Fr is proposed as an evaluation tool for competitive swimmers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号