首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Akira Kusai  Tateo Yamanaka 《BBA》1973,292(3):621-633
A highly purified preparation of an NAD(P) reductase was obtained from Chlorobium thiosulfatophilum and some of its properties were studied. The enzyme possesses FAD as the prosthetic group, and reduces benzyl viologen, 2,6-dichloro-phenolindophenol and cytochromes c, including cytochrome c-555 (C. thiosulfato-philum), with NADPH or NADH as the electron donor. It reduces NADP+ or NAD+ photosynthetically with spinach chloroplasts in the presence of added spinach ferredoxin. It reduces the pyridine nucleotides with reduced benzyl viologen. The enzyme also shows a pyridine nucleotide transhydrogenase activity. In these reactions, the type of pyridine nucleotide (NADP or NAD) which functions more efficiently with the enzyme varies with the concentration of the nucleotide used; at concentrations lower than approx. 1.0 mM, NADPH (or NADP+) is better electron donor (or acceptor), while NADH (or NAD+) is a better electron donor (or acceptor) at concentrations higher than approx. 1.0 mM. Reduction of dyes or cytochromes c catalysed by the enzyme is strongly inhibited by NADP+, 2′-AMP and and atebrin.  相似文献   

2.
Pyridine nucleotide transhydrogenase is a metabolic enzyme transferring the reducing equivalent between two nucleotide acceptors such as NAD+ and NADP+ for balancing the intracellular redox potential. Soluble transhydrogenase (STH) of Azotobacter vinelandii was expressed in a recombinant Saccharomyces cerevisiae strain harboring the Pichia stipitis xylose reductase (XR) gene to study effects of redox potential change on cell growth and sugar metabolism including xylitol and ethanol formation. Remarkable changes were not observed by expression of the STH gene in batch cultures. However, expression of STH accelerated the formation of ethanol in glucose-limited fed-batch cultures, but reduced xylitol productivity to 71% compared with its counterpart strain expressing xylose reductase gene alone. The experimental results suggested that A. vinelandii STH directed the reaction toward the formation of NADH and NADP+ from NAD+ and NADPH, which concomitantly reduced the availability of NADPH for xylose conversion to xylitol catalyzed by NADPH-preferable xylose reductase in the recombinant S. cerevisiae.  相似文献   

3.
NAD+ kinase (ATP: NAD+ 2-phosphotransferase, EC2.7.1.23) isolated from chicken liver was immobilized on a silica-based support possessing aldehyde functional groups. The highest catalytic activity achieved was 16 U g−1 solid. The optimal pH for the catalytic activity of the immobilized NAD+ kinase was pH 7.1–7.3. The apparent optimum temperature for the immobilized enzyme was about 5°C higher than that of the soluble enzyme. There were no significant differences in the Km app values. The immobilization improved the conformational stability of the enzyme. In preliminary experiments, a 95% conversion of NAD+ to NADP+ was achieved with use of the immobilized NAD+ kinase, which preserved its starting activity practically unchanged up to 36 days.  相似文献   

4.
Leucine dehydrogenase ( -leucine: NAD+ oxidoreductase, deaminating, EC 1.4.1.9) was purified to homogeneity from the crude extract of an alkaliphilic halophile, Natronobacterium magadii MS-3, with a yield of 16%. The enzyme had a molecular mass of about 330 kDa and consisted of six subunits identical in molecular mass (55 kDa). The enzyme required a high concentration of salt for stability and activity. It retained the full activity after heating at 50 °C for 1 h and about 50% activity after being kept at 30 °C for 2 months in the presence of 2.5 M NaCl. The enzyme required NAD+ as a coenzyme and showed maximum activity in the presence of more than 3 M salt, as CsCl, RbCl, NaCl, or KCl. In addition to -leucine, -valine and -isoleucine were also good substrates in the oxidative deamination. In the reductive amination, 2-keto analogs of branched-chain amino acids were substrates. The Michaelis constants were 0.69 mM for -leucine, 0.48 mM for NAD+, 4.0 mM for 2-ketoisocaproate, 220 mM for ammonia, and 0.02 mM for NADH in the presence of 4 M NaCl. The Km for -leucine depended on the concentration of salt and increased with decreasing salt concentration. The N. magadii enzyme was unique in its halophilicity among leucine dehydrogenases studied so far.  相似文献   

5.
The structural gene (leudh) coding for leucine dehydrogenase from Bacillus sphaericus IFO 3525 was cloned into Escherichia coli cells and sequenced. The open reading frame coded for a protein of 39.8 kDa. The deduced amino acid sequence of the leucine dehydrogenase from B. sphaericus showed 76–79% identity with those of leucine dehydrogenases from other sources. About 16% of the amino acid residues of the deduced amino acid sequence were different from the sequence obtained by X-ray analysis of the B. sphaericus enzyme. The recombinant enzyme was purified to homogeneity with a 79% yield. The enzyme was a homooctamer (340 kDa) and showed the activity of 71.7 μmol·min−1·mg−1) of protein. The mutant enzymes, in which more than six amino acid residues were deleted from the C-terminal of the enzyme, showed no activity. The mutant enzyme with deletion of four amino acid residues from the C-terminal of the enzyme was a dimer and showed 4.5% of the activity of the native enzyme. The dimeric enzyme was more unstable than the native enzyme, and the Km values for -leucine and NAD+ increased. These results suggest that the Asn-Ile-Leu-Asn residues of the C-terminal region of the enzyme play an important role in the subunit interaction of the enzyme.  相似文献   

6.
A gene encoding a putative ATP-dependent DNA ligase from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1 was cloned and the biochemical characteristics of the resulting recombinant protein were examined. The gene (accession no. APE1094) from A. pernix encoding a 69-kDa protein showed a 39–61% identity with other ATP-dependent DNA ligases from the archaea. Normally DNA ligase is activated by NAD+ or ATP. There has been no report about the other activators for DNA ligase. The recombinant ligase was a monomeric protein and catalyzed strand joining on a singly nicked DNA substrate in the presence of ADP and a divalent cation (Mg2+, Mn2+, Ca2+ and Co2+) at high temperature. The optimum temperature and pH for nick-closing activity were above 70°C and 7.5°C, respectively. The ligase remained stable for 60 min of treatment at 100°C, and the half-life was about 25 min at 110°C. This is the first report of a novel hyperthermostable DNA ligase that can utilize ADP to activate the enzyme.  相似文献   

7.
Dithiothreitol in the presence of menadione or N,N,N′,N′-tetramethyl-p-phenylenediamine provides the reducing equivalents for oxidative phosphorylation and the ATP-dependent reduction of NAD+ in submitochondrial particles. With menadione the reaction is nearly as fast as with succinate and it is insensitive to antimycin, indicating electron entry between the first and second sites of oxidative phosphorylation. The phenylenediamine-mediated reduction of NAD+ is nearly as fast as succinate-linked reduction and is antimycin sensitive.  相似文献   

8.
E. Kohen  C. Kohen  B. Thorell 《BBA》1971,234(3):531-536
An optimized photon counting technique allows the microfluorimetric study of NAD+ (or NADP+) reduction-reoxidation transients in single living cells with a time resolution in the range of 1/50-1/100 sec. The transients resulting from the micro-electrophoretic addition of metabolites (e.g. Glc-6-P or Glc-1-P) can be analyzed in terms of early parameters (e.g. initial lag, rise half time or full rise time) and overall parameters (time of rise and half decay, amplitude, reoxidation time). Both the initial lag and rise half time are considerably longer with Glc-1-P than with Glc-6-P, possibly due to control at the phosphoglucomutase or compartmentation of glycolytic phosphate esters. While glycolytic NAD+ (or NADP+) reduction proceeds adequately in aerobic EL2 and EAT ascites cells (although ΔNADH/Δt is higher at anaerobiosis), it is critically dependent upon anaerobiosis in L and astrocytoma cells. Thus by rapid microfluorimetry it is possible to resolve the rising phase or other segments of the fluorescence transients into components each corresponding to a particular step in the sequence of intracellular events or control states.  相似文献   

9.
烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NAD+)作为氧化还原反应的重要辅酶,是能量代谢的核心。NAD+也是非氧化还原NAD+依赖性酶的共底物,包括沉默信息调节因子(Sirtuins)、聚ADP-核糖聚合酶(poly ADP-ribose polymerases, PARPs)、CD38/CD157胞外酶等。NAD+已成为细胞信号转导和细胞存活的关键调节剂。最近的研究表明,Sirtuins催化多种NAD+依赖性反应,包括去乙酰化、脱酰基化和ADP-核糖基化。Sirtuins催化活性取决于NAD+水平的高低。因此,Sirtuins是细胞代谢和氧化还原状态关键传感器。哺乳动物中已经鉴定并表征了7个Sirtuins家族成员(SIRT1-7),其参与炎症、细胞生长、生理节律、能量代谢、神经元功能、应激反应和健康衰老等多种生理过程。本文归纳了NAD+的生理浓度及状态、NAD+  相似文献   

10.
辅酶Ⅰ——烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)是一种在糖酵解、糖异生、三羧酸循环及呼吸链中发挥重要作用的辅酶,广泛参与DNA修复、组蛋白去乙酰化等生命过程。近年来研究表明NAD+合成的前体和中间化合物(具有维生素B3活性的烟酸、烟酰胺、烟酰胺核苷和烟酰胺单核苷酸)在预防糙皮病、延缓衰老,治疗神经和心血管多种疾病、调节胰岛素分泌、调控mRNA的表达等方面具有重要疗效。着重介绍了辅酶Ⅰ体内的合成代谢以及参与的调节衰老进程,以期为利用合成生物学技术在大肠杆菌中富集NAD+中间化合物提供理论依据和技术支撑。  相似文献   

11.
12.
Kinetic studies of oxidation reaction of (S)-1-phenyl-1,2-ethanediol (PED) catalyzed by a NAD+-dependent alcohol dehydrogenase from Candida parapsilosis CCTCC M203011 obtained from China Center for Type Culture Collection (CPADH) were observed for getting insight into the deracemization redox reaction. The data of initial velocity experiments in the absence of product, product (β-hydroxy-hypnone) inhibition experiments and dead-end (pyrazole) inhibition experiments strongly suggest that the reaction follows Theorell-Chance BiBi mechanism in which the coenzymes bind to the free form of the enzyme firstly. The kinetic parameters of this model were estimated by using non-linear regression analysis software.  相似文献   

13.
The role of the Ca2+ ion that is present in the structure of Burkholderia glumae lipase was investigated. Previously, we demonstrated that the denatured lipase could be refolded in vitro into an active enzyme in the absence of calcium. Thus, an essential role for the ion in catalytic activity or in protein folding can be excluded. Therefore, a possible role of the Ca2+ ion in stabilizing the enzyme was considered. Chelation of the Ca2+ ion by EDTA severely reduced the enzyme activity and increased its protease sensitivity, however, only at elevated temperatures. Furthermore, EDTA induced unfolding of the lipase in the presence of urea. From these results, it appeared that the Ca2+ ion in B. glumae lipase fulfils a structural role by stabilizing the enzyme under denaturing conditions. In contrast, calcium appears to play an additional role in the Pseudomonas aeruginosa lipase, since, unlike B. glumae lipase, in vitro refolding of this enzyme was strictly dependent on calcium. Besides the role of the Ca2+ ion, also the role of the disulfide bond in B. glumae lipase was studied. Incubation of the native enzyme with dithiothreitol reduced the enzyme activity and increased its protease sensitivity at elevated temperatures. Therefore, the disulfide bond, like calcium, appears to stabilize the enzyme under detrimental conditions.  相似文献   

14.
15.
The nicotinamide adenine dinucleotide dimers (NAD)2 obtained by electrochemical reduction of NAD+ are oxidized by adriamycin in anaerobic photocatalyzed reaction yielding NAD+ and 7-deoxyadriamyci-none. Under the same conditions NADH is not oxidized.  相似文献   

16.
The particulate fraction of Rhodopseudomonas viridis when supplied with succinate catalyses the reduction of NAD+ by light; this reaction is inhibited by uncouplers of oxidative phosphorylation but not by oligomycin. Formation of NADH takes place in the dark when ATP or PPi is supplied. Both light and dark reactions are inhibited by valinomycin and nigericin, when added together, but not by either separately. NADH formation in R. viridis appears to take place by an energy-dependent reversal of electron flow and energy may be conserved in the form of a membrane potential. The addition of ATP caused the oxidation of both C553 and C558 in chromatophores; carbonylcyanide p-trifluoromethoxyphenylhydrazone and oligomycin abolished this oxidation.

The NAD+ and NADH concentrations at equilibrium in the light-dependent reaction were determined and the oxidation-reduction potential of this couple calculated. From this value it was calculated that under these experimental conditions the energy requirement to form NADH from the succinate/fumarate couple at Eh = o V was 9.4 kcal.

Particles of R. viridis contained an active transhydrogenase, driven by either light or ATP, that was sensitive to uncouplers of oxidative phosphorylation; the light-driven reaction was insensitive to oligomycin and was inhibited by antimycin A and 2-heptyl-4-hydroxyquinone-N-oxide.

R. viridis did not grow aerobically but particles contained NADH oxidase activity that was cyanide sensitive. There was no spectroscopic evidence for cytochromes of the b-type in reduced-minus-oxidised spectra of particles or in pyridine haemochrome spectra of whole cells.  相似文献   


17.
Huub Haaker  Arie De Kok  Cees Veeger 《BBA》1974,357(3):344-357
1. In intact Azotobacter vinelandii the influence of oxygen on the levels of oxidized nicotinamide adenine dinucleotides and adenine nucleotides in relation to nitrogenase activity was investigated.

2. The hypothesis that a high (NADH + NADPH)/(NAD+ + NADP+) is the driving force for the transport of reducing equivalents to nitrogenase in intact A. vinelandii was found to be invalid. On the contrary, with a decreasing ratio of reduced to oxidized pyridine nucleotides, the nitrogenase activity of the whole cells increases.

3. By measuring oxidative phosphorylation and using 9-amino acridine as a fluorescent probe, it could be demonstrated that respiration-coupled transport of reducing equivalents to the nitrogenase requires a high energy level of the plasma membrane or possibly coupled to it, a high pH gradient over the cytoplasmic membrane. Furthermore nitrogen fixation is controlled by the presence of oxygen and the ATP/ADP ratio.  相似文献   


18.
3β-Hydroxysteroid dehydrogenase/steroid Δ5 → 4-isomerase (3β-HSD/isomerase) was expressed by baculovirus in Spodoptera fungiperda (Sf9) insect cells from cDNA sequences encoding human wild-type I (placental) and the human type I mutants - H261R, Y253F and Y253,254F. Western blots of SDS-polyacrylamide gels showed that the baculovirus-infected Sf9 cells expressed the immunoreactive wild-type, H261R, Y253F or Y253,254F protein that co-migrated with purified placental 3β-HSD/isomerase (monomeric Mr=42,000 Da). The wild-type, H261R and Y253F enzymes were each purified as a single, homogeneous protein from a suspension of the Sf9 cells (5.01). In kinetic studies with purified enzyme, the H261R mutant enzyme had no 3β-HSD activity, whereas the Km and Vmax values of the isomerase substrate were similar to the values obtained with the wild-type and native enzymes. The Vmax (88 nmol/min/mg) for the conversion of 5-androstene-3,17-dione to androstenedione by the Y253F isomerase activity was 7.0-fold less than the mean Vmax (620 nmol/min/mg) measured for the isomerase activity of the wild-type and native placental enzymes. In microsomal preparations, isomerase activity was completely abolished in the Y253,254F mutant enzyme, but Y253,254F had 45% of the 3β-HSD activity of the wild-type enzyme. In contrast, the purified Y253F, wild-type and native enzymes had similar Vmax values for substrate oxidation by the 3β-HSD activity. The 3β-HSD activities of the Y253F, Y253,254F and wild-type enzymes reduced NAD+ with similar kinetic values. Although NADH activated the isomerase activities of the H261R and wild-type enzymes with similar kinetics, the activation of the isomerase activity of H261R by NAD+ was dramatically decreased. Based on these kinetic measurements, His261 appears to be a critical amino acid residue for the 3β-HSD activity, and Tyr253 or Tyr254 participates in the isomerase activity of human type I (placental) enzyme.  相似文献   

19.
The substrate specificity of the recently discovered enzyme, opine dehydrogenase (ODH) fromArthrobacter sp. strain 1C for amino donors in the reaction that forms secondary amines using pyruvate as a fixed amino acceptor is examined. The enzyme was active toward short-chain aliphatic (S)-amino acids and those substituted with acyloxy, phosphonooxy, and halogen groups. The enzyme was named N-[1-(R)-(car☐yl)ethyl]-(S)-norvaline: NAD+ oxidoreductase (L-norvaline forming). Other substrates for the enzyme were 3-aminobutyric acid and (S)-phenylalaninol. Optically pure opine-type secondary amine car☐ylic acids were synthesized from amino acids and their analogs such as (S)-methionine, (S)-isoleucine, (S)-leucine, (S)-valine, (S)-phenylalanine, (S)-alanine, (S)-threonine, (S)-serine, and (S)-phenylalaninol, and -keto acids such as glyoxylate, pyruvate, and 2-oxobutyrate using the enzyme, with regeneration of NADH by formate dehydrogenase (FDH) fromMoraxella sp. C-1. The absolute configuration of the nascent asymmetric center of the opines was of the (R) stereochemistry with > 99.9% e.e. One-pot synthesis of N-[1-(R)-(car☐yl)ethyl]-(S)-phenylalanine from phenylpyruvate and pyruvate by using ODH, FDH, and phenylalanine dehydrogenase (PheDH) fromBacillus sphaericus, is also described.  相似文献   

20.
m7G帽子具有保护RNA不被降解以及招募相关蛋白参与内含子剪切、poly(A)加尾、出核和翻译等功能。一直以来,它被认为是真核生物mRNA所特有的修饰类型。然而近年来,在包括原核生物在内的多个物种中均检测到一种新的RNA 5’端修饰,即核酸代谢物烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)帽子。目前NAD+修饰RNA(NAD-RNA)的生物学功能研究仍处于起始阶段。本文概述了NAD-RNA的发现及其检测和鉴定技术的发展;探讨了NAD+帽子对RNA的调控功能,以及NAD-RNA脱帽和加帽的影响因素;并进一步推测NAD-RNA在生物的生长、发育和环境响应中发挥的潜在功能。最后,展望了未来NAD-RNA的研究方向和主题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号