首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of aphid, Aphis gossypii, feeding on photosynthesis and transpiration in cotton plants was investigated under greenhouse conditions. Four population densities of 0, 5, 10, and 25 aphids were used to infest individual cotton leaves. Gas exchange rates were determined for single attached cotton leaves after 9, 18, and 27 days of aphid infestation. Aphid feeding changed photosynthetic rates and transpiration rates. These changes were proportional to the number of aphids and the length of infestation period. Photosynthetic rates were significantly reduced in infested leaves with 25 aphids over 18 days, whereas significant reduction in photosynthetic rates was recorded within 27 days in infested leaves with 5, 10, and 25 aphids in comparison to their respective control. Initial population of 10 aphids increased significantly the transpiration rate of infested leaves over 9 and 27 days. Leaves of plants with 25 aphids had significantly greater transpiration rate than the control at all times.  相似文献   

2.
Cotton aphid (Aphis gossypii G.) populations seemed to fluctuate over the past years in cotton (Gossypium hirsutum L.) perhaps as a result of excessive use of insecticides for controlling more problematic pests. Contradictory plant responses have been observed depending upon the aphid/plant system, and it is unclear if cotton aphids, abiotic stress or both are responsible for cotton yield reduction in aphid-infested fields. Our objectives were to investigate the diurnal changes in the physiology of cotton leaves following aphid herbivory, and the diurnal pattern of aphid feeding. The experiment was conducted in a growth chamber using the cotton cultivar ‘Stoneville 474’. Leaves of the same age and size were infested with wingless adults plus nymphs. Cotton aphids were allowed to increase in numbers without restriction for 9 days, after which the amounts of carbohydrates in aphid-honeydew, and the number of honeydew droplets excreted per aphid were measured. Photosynthetic rates, dark respiration rates and foliar non-structural carbohydrates were measured. The amount of individual carbohydrates found in the honeydew was significantly different with time. The total amount of carbohydrates excreted per aphid within a 24-h period averaged 2.5 μg. The number of honeydew droplets excreted per aphid varied significantly from time to time period. Cotton aphids did not significantly alter photosynthesis or respiration rates or non-structural carbohydrates on leaves. Aphid populations of approximately 300 per leaf on the 9th day of infestation did not appear to significantly alter the physiology of cotton leaves.  相似文献   

3.
The oviposition response of predacious hoverflies (Diptera: Syrphidae) to Brevicoryne brassicae L. and Myzus persicae (Sulzer) (Homoptera: Aphididae) in commercial broccoli, Brassica oleracea var. italica L., Plenck (Brassicaceae), fields was investigated at two sites over the course of a growing season. The hoverfly oviposition responses to these aphid species on different parts of the broccoli plant canopy were also examined. There were no hoverfly eggs on broccoli plants without aphids, egg numbers were very low on plants with fewer than 50 aphids, and no peak in oviposition relative to aphid numbers was observed. Within individual plants that were colonized by aphids, there was some oviposition on individual leaves without aphids, and no hoverfly eggs were seen on leaves that had more than 400 aphids. Leaves in the broccoli plant canopy, and the datasets associated with them, were divided into three sections vertically, ‘upper’, ‘middle’, and ‘lower’. Brevicoryne brassicae was more abundant in the upper and middle canopy sections, while M. persicae was found mostly in the lower section. The rate of hoverfly oviposition per aphid was higher in the upper section than in the two other sections. Modeling of the oviposition response using logistic regression showed that the presence of hoverfly eggs was positively correlated with numbers of each aphid species and sampling date.  相似文献   

4.
Trehalose is a disaccharide sugar that is now considered to be widely distributed among higher plants. Trehalose has been attributed a number of roles, including control of basic plant processes, such as photosynthesis, and conferring tolerance to abiotic stresses, such as desiccation and high salinity. Trehalose is also a common storage sugar used by insects. In this study, we used laboratory investigations to examine various aspects of trehalose dynamics in an aphid–host plant system (Arabidopsis and the peach potato aphid, Myzus persicae). Trehalose concentrations were measured by [1-H]-NMR. Myzus persicae reared on Arabidopsis, but not on black mustard or spring cabbage, contained considerable quantities of trehalose (5 % w/w dry matter). In Arabidopsis foliage, feeding by aphids induced a density-dependent accumulation of trehalose up to 5 mg g?1 dry weight. Leaves that were not challenged directly by aphids also exhibited increased trehalose concentrations, indicating that this accumulation was systemic. Trehalose was measured at high concentrations in the phloem sap of plants challenged by aphids, suggesting that aphid feeding induced the plant to produce significant quantities of trehalose, which moved through the plant and into the aphids via the phloem sap. Trehalose was also excreted in the aphid honeydew. Further work is required to clarify whether this trehalose accumulation in Arabidopsis has a direct role or a signalling function in plant tolerance of, or resistance to, aphid feeding, and if a similar accumulation of this sugar occurs when other species or genotypes of aphids are reared on this host plant.  相似文献   

5.
6.
When turnip plants with 3–7 leaves were inoculated with cabbage black ringspot virus (CBRSV) on the 3rd rough-leaf, symptoms only appeared on leaves that had been less than 15 mm long at the time of inoculation, although infection decreased the area and both fresh and dry weight of all leaves. Leaves were ‘aged’ by their appearance and placed in Leaf Age Categories (LACs). Leaves with symptoms senesced (‘aged’) prematurely. CBRSV-infection of cv. Green Top White did not change the distribution of populations of Myzus persicae between LACs, but increased the proportion of the plant suitable for colonisation. All suitable LACs were quickly colonised by adult apterae and nymphs. On CBRSV-infected plants the nymphal period was shorter, F1 adults deposited larvae more frequently and the live body weight and tibial length of the F2 generation was greater, than on healthy plants. The distribution of Brevicoryne brassicae populations on cv. Green Top White differed from that of M. persicae but was also unchanged by CBRSV-infection. On healthy plants the largest colonies were on mature leaves, so that on virus-infected plants premature senescence shortened the life of the colony. On CBRSV-infected plants the nymphal period was prolonged and the live weight of F1 and F2 adult apterae was less than on healthy plants. The differences between the biology of M. persicae and B. brassicae on CBRSV-infected cv. Green Top White were associated with the accelerated senescence of CBRSV-infected leaves. The possibility that CBRSV-infection might reduce the resistance of turnips to aphid infestation was tested. M. persicae and B. brassicae were cultured on two favourable and two less favourable cultivars. No improvement in population growth rate was found when the less favourable host cultivars were infected with CBRSV, but both aphid species weighed less and/or had smaller nymphal populations on cultivars showing the severest symptoms. These results are discussed in relation to the evolution of non-persistent virus transmission by aphids.  相似文献   

7.
Abstract: The relationship between abundance of rose‐grain aphid Metopolophium dirhodum (Walker) and leaf chlorophyll content of spring wheat, spring oats and winter barley was investigated. Within production stands of each crop 18–25 plots were established, located at places with different plant quality where aphids were counted on particular leaves of 50–100 tillers, and the leaf chlorophyll content and area were determined. In all stands aphid numbers × tiller?1 increased exponentially with chlorophyll content (r2 = 0.783–0.933). This parallel variation may be explained by increased nitrogen content and assimilate production of vigorous chlorophyll‐rich plants. The aphid numbers on leaves of particular order (within‐plant distribution) were also correlated with leaf chlorophyll content (r2 = 0.373–0.827). However, in oats and barley the analysis of variance of residuals of log aphids × leaf?1 versus leaf chlorophyll regression revealed a significant effect of leaf position (the order of the leaf from the top of the plant). The magnitude of residuals was positively related to leaf size and may be related to the intensity of phloem transport from the source leaves to sink organs.  相似文献   

8.
Potato leafroll virus (PLRV; genus Polerovirus, family Luteoviridae) is a persistently transmitted circulative virus that depends on aphids for spreading. The primary vector of PLRV is the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Solanum tuberosum L. potato cv. Kardal (Solanaceae) has a certain degree of resistance to M. persicae: young leaves seem to be resistant, whereas senescent leaves are susceptible. In this study, we investigated whether PLRV‐infection of potato plants affected aphid behaviour. We found that M. persicae's ability to differentiate headspace volatiles emitted from PLRV‐infected and non‐infected potato plants depends on the age of the leaf. In young apical leaves, no difference in aphid attraction was found between PLRV‐infected and non‐infected leaves. In fact, hardly any aphids were attracted. On the contrary, in mature leaves, headspace volatiles from virus infected leaves attracted the aphids. We also studied the effect of PLRV‐infection on probing and feeding behaviour (plant penetration) of M. persicae using the electrical penetration graph technique (DC system). Several differences were observed between plant penetration in PLRV‐infected and non‐infected plants, but only after infected plants showed visual symptoms of PLRV infection. The effects of PLRV‐infection in plants on the behaviour of M. persicae, the vector of the virus, and the implications of these effects on the transmission of the virus are thoroughly discussed.  相似文献   

9.
3种寄主上桃蚜的选择性及形态分化   总被引:4,自引:0,他引:4  
桃蚜是一种重要的农业害虫,寄主广泛,种下分化复杂。以采自黄土高原旱作区桃树、烟草、甘蓝上的桃蚜为研究对象,通过叶片选择法、传统比较形态测定法研究了3种寄主上桃蚜的选择性及形态分化。结果表明:在3种寄主同时存在的情况下,烟草上的桃蚜嗜食烟草,表现为63.5%的桃蚜选择烟草叶,13.8%选择甘蓝叶,8.2%选择桃叶,而甘蓝和桃树上的桃蚜对原寄主没有表现出明显的嗜好性;从形态指标来看,3种寄主上的桃蚜在体长、触角末节长度、后足腿节长度、触角与体长的比例方面存在显著差异(P0.05),说明这几个特征可以作为区分这3种寄主上桃蚜的依据。综合分析可以初步认为黄土高原旱作区烟草上的桃蚜可能形成了寄主专化型-烟草型。  相似文献   

10.
The impacts of infestation by the green peach aphid (Myzus persicae) on sweetpotato whitefly (Bemisia tabaci) settling on tomato were determined in seven separate experiments with whole plants and with detached leaves through manipulation of four factors: durations of aphid infestation, density of aphids, intervals between aphid removal after different durations of infestation and the time of whitefly release, and leaf positions on the plants. The results demonstrated that B. tabaci preferred to settle on the plant leaves that had not been infested by aphids when they had a choice. The plant leaves on which aphids were still present (direct effect) had fewer whiteflies than those previously infested by aphids (indirect effect). The whiteflies were able to settle on the plant which aphids had previously infested, and also could settle on leaves with aphids if no uninfested plants were available. Tests of direct factors revealed that duration of aphid infestation had a stronger effect on whitefly landing preference than aphid density; whitefly preference was the least when 20 aphids fed on the leaves for 72 h. Tests of indirect effects revealed that the major factor that affected whitefly preference for a host plant was the interval between the time of aphid removal after infestation and the time of whitefly release. The importance of the four factors that affected the induced plant defense against whiteflies can be arranged in the following order: time intervals between aphid removal and whitefly release > durations of aphid infestation > density of aphids > leaf positions on the plants. In conclusion, the density of aphid infestation and time for which they were feeding influenced the production of induced compounds by tomatoes, the whitefly responses to the plants, and reduced interspecific competition.  相似文献   

11.
Bean yellow vein-banding virus (BYVBV) has been found occasionally in mixed infection with pea enation mosaic virus (PEMV) in spring-sown field beans (Vicia faba minor) in southern England. Glasshouse tests confirmed that, like PEMV, BYVBV is transmissible by manual inoculation and by aphids in the persistent manner. However, BYVBV can be transmitted by aphids only from plants that are also infected with a helper virus, usually PEMV. Thus after separation from PEMV by passage through Phaseolus vulgaris it was no longer aphid-transmissible. It became aphid-transmissible again only after re-mixing in plants with PEMV or with a substitute helper, bean leaf roll virus (BLRV). It was not transmitted by aphids that fed sequentially on plants singly infected with PEMV and BYVBV. Thus the interaction between BYVBV and PEMV (or BLRV) that enables BYVBV to be transmitted by aphids seems to occur only in doubly infected plants. However, it was not transmitted by aphids from plants doubly infected with BYVBV and broad bean wilt virus (BBWV). BYVBV and PEMV were transmitted more readily by Acyrthosiphon pisum than by Myzus persicae; neither virus was transmitted by Aphis fabae. Phenol extracts of BYVBV-infected leaves were more infective than phosphate buffer or bentonite-clarified extracts and were sometimes infective when diluted to 1/1000. The infectivity of BYVBV in phosphate buffer extracts of leaves singly infected with BYVBV, unlike that in extracts of leaves doubly infected with BYVBV and PEMV (or BLRV), was destroyed by treatment with organic solvents. BYVBV infected 11 of 28 plant species that were inoculated with phenol extracts; seven of the infected species were legumes. No transmission of BYVBV was detected through seed harvested from infected field bean plants. Isometric particles c. 30 nm in diameter were seen in extracts of plants doubly infected with BYVBV and PEMV but not in extracts of plants infected with BYVBV alone. Leaves of plants infected with BYVBV, alone or with PEMV, contained membrane-bound structures c. 50–90 nm in diameter associated with the tonoplast in cell vacuoles. These structures were not found in healthy leaves. BYVBV has several properties in common with other known aphid-borne viruses that are helper-dependent and transmitted in a persistent manner. Possibly, as suggested for some of them, aphid transmission of BYVBV depends on the coating of its nucleic acid with helper virus coat protein.  相似文献   

12.
In the field, caged potato plants of King Edward and Majestic cultivars infested with the potato aphid Macrosiphum euphorbiae developed top-roll symptoms, the proportion of affected plants increasing with the size and persistence of the aphid population. Yield of tubers from plots in which 90% of the plants had top-roll symptoms was 40% less than that from control plots; yield of saleable ware was even less. Foliage produced after the aphids had been killed was symptomless even when it arose from the axil of an affected leaf. Caged field plants treated with phorate granules to prevent aphid attack did not develop top-roll. Prolonged infestation of Pentland Crown, Majestic and King Edward plants by M. euphorbiae in a glasshouse induced rolling of upper leaves similar to top-roll of field plants. Experimental results suggest that rolling was directly attributable to heavy attack by M. euphorbiae, not to an aphid-transmitted pathogen.  相似文献   

13.
The influence of Russian wheat aphid ( Diuraphis noxia Mordvilko) infestation on the response of barley ( Hordeum vulgare L. ev Hazen) plants to drought stress was investigated. Fourteen-day-old plants were infested with eight apterous adult aphids, which were removed 7 days later with systemic insecticide. Leaves previously infested with aphids had lower relative water content, reduced stomatal conductance, more negative water potential, lower levels of chlorophyll and higher levels of amino-N, proline and glycinebetaine than corresponding leaves from uninfested plants. When water was withheld for a period of 7 days after aphids were removed, the relative water content of previously infested plants dropped steadily from 0.89 to 0.60, while the relative water content of uninfested plants remained at about 0.94 for the first 4 days of the drought stress period followed by a steady drop to about 0.77 by the end of the drought stress period. Leaf water potentials dropped steadily during the drought stress period in both previously infested (-1.14 to -1.91 MPa) and unin-fested (-0.54 to -1.52 MPa) plants. Analysis of glycinebetaine and proline levels at the end of the drought stress period indicated that leaves of previously infested plants accumulated lower levels of these solutes than leaves from uninfested plants. Upon alleviation of drought stress, plants previously infested with aphids showed little increase in dry weight while younger leaves and tillers from uninfested plants showed large increases. It is concluded that Russian wheat aphids cause drought-stress symptoms in leaves of infested plants even in the presence of ample root moisture. The observations of low levels of glycinebetaine and proline present in leaves after water was withheld from roots and lack of leaf growth upon alleviation of drought stress in previously-infested plants, suggest that aphid infestation limits the capacity of barley plants to adjust successfully to drought stress.  相似文献   

14.
The preference‐performance hypothesis predicts that insect preference should correspond to host suitability for offspring development. We studied the pattern of within‐plant preference in the aphid Sipha flava and its consequences for offspring performance on the host‐plant Sorghum halepense, regarding the role of induced responses of plants to aphid feeding. The consequences of within‐plant preference on aphid population growth and host‐plant traits were also evaluated. Our results showed that winged and wingless aphids preferred to settle on mature rather than young leaves. In contrast, aphid individual growth rate was higher on young leaves when compared with mature leaves, suggesting that the outcome of this test rejected the preference‐performance hypothesis. However, the inclusion of the factor ‘previous aphid infestation’ changed the outcome from a maladaptive choice to a neutral one. Thus, individual growth rates of S. flava increased when aphids developed on leaves that had been previously infested. Interestingly, aphid growth rate on previously infested leaves did not differ between young and mature leaves. On the other hand, aphid population reproductive rate was higher and the percentage of winged aphids lower when infestation occurred on mature rather than young leaves. Aphid infestation reduced plant and shoot biomass, and increased leaf mortality. These negative effects on plant traits related to plant fitness were greater when aphid infestation occurred on young leaves. Likewise, whereas infestation on mature leaves did not cause a significant reduction in the number of flowering plants compared with control plants, aphid infestation on young leaves did reduce the number of plants at the flowering stage. Consequently, if both the reproductive rate of aphids in the mid‐term, and host‐plant fitness are taken into account, the results indicate that aphid preference for mature leaves may be an adaptive choice, thus supporting the preference‐performance hypothesis.  相似文献   

15.
The restriction of aphid reestablishment onto plants by epigeal predators represents a critical component of integrated pest management. To further realize the potential that these predators might have in control programs, it is necessary to quantify such behavior as aphid falling rate to reveal the number of aphids that are available as potential prey. This study calculated the falling rate of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Sternorrhyncha: Aphididae), and tested whether this aphid more likely fell from wheat plants that differed between flat leaf architecture versus those with furled leaves. Specifically, the hypothesis was tested that a resistant wheat line (flat leaves) will have a higher aphid falling rate than a susceptible closely related line (furled leaves). The experiment was performed at Fort Collins and Akron, Colorado, USA, from May through July, 2008. Aphids were sampled from infested wheat rows to estimate aphid density, and sticky traps were used to capture falling aphids and to measure falling rate. Falling rates ranged from 0.7 to 69.5% in Fort Collins and from 1.4 to 59.5% in Akron. The falling rate of D. noxia was more influenced by plant growth stage than aphid densities, with the highest falling rate occurring after wheat senescence. Wheat plants with flat leaf architecture did not significantly increase aphid falling rate. Diuraphis noxia falls at a higher rate at lower aphid densities, which is when epigeal predators could have their greatest biological control impact.  相似文献   

16.
Comparison of Arabidopsis thaliana (Arabidopsis) gene expression induced by Myzus persicae (green peach aphid) feeding, aphid saliva infiltration and abscisic acid (ABA) treatment showed a significant positive correlation. In particular, ABA‐regulated genes are over‐represented among genes that are induced by M. persicae saliva infiltration into Arabidopsis leaves. This suggests that the induction of ABA‐related gene expression could be an important component of the Arabidopsis–aphid interaction. Consistent with this hypothesis, M. persicae populations induced ABA production in wild‐type plants. Furthermore, aphid populations were smaller on Arabidopsis aba1‐1 mutants, which cannot synthesize ABA, and showed a significant preference for wild‐type plants compared with the mutant. Total free amino acids, which play an important role in aphid nutrition, were not altered in the aba1‐1 mutant line, but the levels of isoleucine (Ile) and tryptophan (Trp) were differentially affected by aphids in wild‐type and mutant plants. Recently, indole glucosinolates have been shown to promote aphid resistance in Arabidopsis. In this study, 4‐methoxyindol‐3‐ylmethylglucosinolate was more abundant in the aba1‐1 mutant than in wild‐type Arabidopsis, suggesting that the induction of ABA signals that decrease the accumulation of defence compounds may be beneficial for aphids.  相似文献   

17.
Summary We examined the capacity of the galling aphid, Pemphigus betae, to manipulate the sink-source translocation patterns of its host, narrowleaf cottonwood (Populus angustifolia). A series of 14C-labeling experiments and a biomass allocation experiment showed that P. betae galls functioned as physiologic sinks, drawing in resources from surrounding plant sources. Early gall development was dependent on aphid sinks increasing allocation from storage reserves of the stem, and later development of the progeny within the gall was dependent on resources from the galled leaf blade and from neighboring leaves. Regardless of gall position within a leaf, aphids intercepted 14C exported from the galled leaf (a non-mobilized source). However, only aphid galls at the most basal site of the leaf were strong sinks for 14C fixed in neighboring leaves (a mobilized source). Drawing resources from neighboring leaves represents active herbivore manipulation of normal host transport patterns. Neighboring leaves supplied 29% of the 14C accumulating in aphids in basal galls, while only supplying 7% to aphids in distal galls. This additional resource available to aphids in basal galls can account for the 65% increase in progeny produced in basal galls compared to galls located more distally on the leaf and limited to the galled leaf as a food resource. Developing furits also act as skins and compete with aphid-induced sinks for food supply. Aphid success in producing galls was increased 31% when surrounding female catkins were removed.  相似文献   

18.
Enzyme-linked immunosorbent assay (ELISA) was adapted for the efficient detection and assay of potato leafroll virus (PLRV) in aphids. Best results were obtained when aphids were extracted in 0.05 M phosphate buffer, pH 7.0, and the extracts incubated at 37 °C for 1 h before starting the assay. Using batches of 20 green peach aphids (Myzus persicae), about 0.01 ng PLRV/aphid could be detected. The virus could also be detected in single aphids allowed a 1-day acquisition access period on infected potato leaves. The PLRV content of aphids depended on the age of potato source-plants and the position of source leaves on them. It increased with increase in acquisition access period up to 7 days but differed considerably between individual aphids. A maximum of 7 ng PLRV/aphid was recorded but aphids more usually accumulated about 0.2 ng PLRV per day. When aphids were allowed acquisition access periods of 1–3 days, and then caged singly on Physalis floridana seedlings for 3 days, the PLRV content of each aphid, measured subsequently, was not strongly correlated with the infection of P. floridana. The concentration of PLRV in leaf extracts differed only slightly when potato plants were kept at 15, 20, 25 or 30 °C for 1 or 2 wk, but the virus content of aphids kept on leaves at the different temperatures decreased with increase of temperature. PLRV was transmitted readily to P. floridana at all temperatures, but by a slightly smaller proportion of aphids, and after a longer latent period, at 15 °C than at 30 °C. The PLRV content of M. persicae fed on infected potato leaves decreased with increasing time after transfer to turnip (immune to PLRV). The decrease occurred in two phases, the first rapid and the second very slow. In the first phase the decrease was faster, briefer and greater at 25 and 30 °C than at 15 and 20 °C. No evidence was obtained that PLRV multiplies in M. persicae. These results are compatible with a model in which much of the PLRV in aphids during the second phase is in the haemocoele, and transmission is mainly limited by the rate of passage of virus particles from haemolymph to saliva. The potato aphid, Macrosiphum euphorbiae, transmitted PLRV much less efficiently than M. persicae. Its inefficiency as a vector could not be ascribed to failure to acquire or retain PLRV, or to the degradation of virus particles in the aphid. Probably only few PLRV particles pass from the haemolymph to saliva in this species. The virus content of M. euphorbiae collected from PLRV-infected potato plants in the field increased from early June to early July, and then decreased. PLRV was detected both in spring migrants collected from the plants and in summer migrants caught in yellow water-traps. PLRV was also detected in M. persicae collected from infected plants in July and August, and in trapped summer migrants, but their PLRV content was less than that of M. euphorbiae, and in some instances was too small for unequivocal detection.  相似文献   

19.
Soil‐applied imidacloprid at full (125 g a.i. ha?1) and half approved doses gave levels of control of damson‐hop aphid, (Phorodon humuli), similar to that provided by foliar spray(s) of tebufenpyrad on the aphid‐susceptible dwarf hop cvs First Gold and Herald. On those cultivars, aphid control was unreliable on plots treated with quarter dose imidacloprid and was generally no better than on untreated plants. Aphids were virtually eliminated from the leaves by the end of July each year in all treatments consistent with the action of natural enemies. Aphid contamination of cones reflected the numbers on foliage at flowering time, but varied widely between years. Yields and percentage α‐acids content of dried hops were unaffected by the numbers of aphids on leaves early in the season and in cones at harvest, but aphid contamination reduced the economic values of crops by as much as 80%. Few P. humuli colonised the partially aphid‐resistant breeding line 23/90/08 before their numbers were regulated and consistent with natural enemy activity. Yields, percentage α‐acids content, and commercial value of harvested cones were similar in all treatments on 23/90/08 whether or not plants were treated with aphicides. The commercial risks posed by P. humuli preclude substantial reductions in aphicide usage on aphid‐susceptible dwarf hop cultivars, but future cultivars expressing a similar level of partial resistance to aphids as 23/90/08 should not need treatment with aphicides.  相似文献   

20.
We observed the movement of predatory larvae of the syrphid flyEupeodes corollae (F.) (formerlyMetasyrphus corollae) among small pea plants with and without aphids. Starved larvae spent longer time than well-fed larvae on similar plants and both groups of larvae stayed longer on plants with aphids than on plants without aphids. On plants with aphids, larvae which failed to capture prey left the plant sooner than those which captured aphids. The capture of at least one aphid on a plant increased the persistence of syrphid larvae. The average rate of energy gain was higher for well-fed larvae than for starved larvae because starved larvac stayed on plants even when their rate of return was lower. When larvae that had captured aphids left plants, their rate of energy gain, tended to be lower than at any time following capture of the 2nd, aphid. The 1st aphid was captured in less time than similar larvae spent on plants without aphids. Time between captures of aphids by well-fed larvae was less than the time such larvae spent on plants without aphids. Among starved larvae, the intercatch intervals were similar to the time on plants without aphids. We discuss the significance of these results relative to current predator foraging theory and the efficiency ofE. corollae as a biological control agent.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号