首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The absolute rates of synthesis of specific ribosomal proteins have been determined during growth and meiotic maturation of mouse oocytes, as well as during early embryogenesis in the mouse. These measurements were made possible by the development of a high-resolution twodimensional gel electrophoresis procedure capable of resolving basic proteins with isoelectric points between 9.1 and 10.2. Mouse ribosomal proteins were separated on such gels and observed rates of incorporation of [35S]methionine into each of 12 representative ribosomal proteins were converted into absolute rates of synthesis (femtograms or moles synthesized/hour/oocyte or embryo) by using previously determined values for the absolute rates of total protein synthesis in mouse oocytes and embryos (R. M. Schultz, M. J. LaMarca, and P. M. Wassarman, 1978,Proc. Nat. Acad. Sci. USA,75, 4160;R. M. Schultz, G. E. Letourneau, and P. M. Wassarman, 1979,Develop. Biol.,68, 341–359). Ribosomal proteins were synthesized at all stages of oogenesis and early embryogenesis examined and, while equimolar amounts of ribosomal proteins were found in ribosomes, they were always synthesized in nonequimolar amounts during development. Rates of synthesis of individual ribosomal proteins differed from each other by more than an order of magnitude in some cases. Synthesis of ribosomal proteins accounted for 1.5, 1.5, and 1.1% of total protein synthesis during growth of the oocyte, in the fully grown oocyte, and in the unfertilized egg, respectively. During meiotic maturation of mouse oocytes the absolute rate of synthesis of ribosomal proteins decreased about 40%, from 620 to 370 fg/hr/cell, as compared to a 23% decrease in the rate of total protein synthesis during the same period. On the other hand, during early embryogenesis the absolute rates of synthesis of each of the 12 ribosomal proteins examined increased substantially as compared with those of the unfertilized egg, such that at the eight-cell stage of embryogenesis synthesis of ribosomal proteins (4.17 pg/hr/embryo) accounted for about 8.1% of the total protein synthesis in the embryo. Consequently, while the absolute rate of total protein synthesis increased about 1.5-fold during development from an unfertilized mouse egg to an eight-cell compacted embryo, the absolute rate of ribosomal protein synthesis increased more than 11-fold during the same period. These results seem to reflect the differences reported for the patterns of ribosomal RNA synthesis during early development of mammalian, as compared to nonmammalian, animal species. The results are compared with those obtained using oocytes and embryos fromXenopus laevis.  相似文献   

2.
Oocytes at several stages of growth have been isolated by enzymatic digestion and/or physical disruption of ovaries excised from juvenile and adult mice. The absolute rates of total protein synthesis and tubulin synthesis in these isolated oocytes were determined by measuring sizes of the endogenous methionine pool and apparent rates of incorporation of [35S]methionine into total protein and tubulin using methods described previously (R. M. Schultz, M. J. LaMarca, and P. M. Wassarman, 1978,Proc. Nat. Acad. Sci. USA,75, 4160;R. M. Schultz, G. E. Letourneau, and P. M. Wassarman, 1979,Develop. Biol.,68, 341). The size of the endogenous methionine pool increases approximately 350-fold during oocyte growth, from 0.16 fmole in nongrowing oocytes (12 μm) to 56 fmole in fully grown oocytes (85 μm). Since the volume of mouse oocytes also increases about 350-fold during growth, the concentration of intracellular free methionine remains constant at approximately 170 μM. The absolute rate of protein synthesis increases from 1.1 to 41.8 pg/hr/oocyte for nongrowing and fully grown mouse oocytes, respectively. Since this represents about a 38-fold increase in the absolute rate of protein synthesis, the rate of synthesis per picoliter of cytoplasm actually decreases nearly 10-fold during oocyte growth. These measurements indicate that the growing mouse oocyte itself is capable of synthesizing only about 50% of the protein found in fully grown oocytes. Tubulin is one of the major proteins synthesized by growing mouse oocytes since the absolute rate of tubulin synthesis is, on the average, 1.8% of total protein synthesis. The absolute rate of tubulin synthesis increases from 0.4 to 0.6 pg/hr/oocyte as the oocyte grows from 40 to 85 μm in diameter. However, overall, the percentage of total protein synthesis devoted to the synthesis of tubulin actually declines somewhat during this phase of growth, from 2 to 1.5%. Although equimolar amounts of tubulin subunits are present in microtubules, the ratio of absolute rate of synthesis of the β subunit to that of the α subunit varies from 1.3 to 2.0 throughout oocyte growth. High-resolution two-dimensional gel electrophoretic analyses of [35S]methionine-labeled proteins reveal that many changes take place in the pattern of protein synthesis during oocyte growth.  相似文献   

3.
Mouse embryos from the one-cell to the blastocyst stage were cultured for 2 hr in the presence of 5 μM [3H]uridine or 10 μM [3H]adenosine, and the size and specific activity of the UTP and ATP pools were determined by an Escherichia coli RNA polymerase assay using synthetic poly(dA-dT) as template. The total UTP pool increased in size and specific activity with development from 0.05 pmole (0.06% labeled) in the one-cell stage to 0.54 pmole (27% labeled) in the blastocyst stage. The total ATP pool remained relatively constant in size at about 1 pmole/embryo, but increased in specific activity from 2.6 to 52% from one-cell to blastocyst. The turnover of the [3H]UTP pool was also examined under pulse-chase conditions in eight-cell and morula-stage embryos. The UTP pool decayed with approximately first-order kinetics up to 20 hr of chase, but the rate of decay was slower in eight-cell embryos (t0.5 = 5.5 hr) than in morulae (t0.5 = 2.8 hr). The observed specific activities of the UTP pools were used to calculate the overall rates of uridine incorporation into acid-precipitable material during early development. The rate of uridine incorporation per embryo increased from 3.6 × 10?3 pmole/2 hr in the two-cell embryo to 1.8 × 10?1 pmole/2 hr in the blastocyst. The rate of RNA synthesis per cell over a 2-hr period was estimated at 2.5 pg in the two- to four-cell embryo, 5 pg in the eight-cell, and 10 pg in the morula-early blastocyst.  相似文献   

4.
Previous work has shown that more than 50% or about 50 pg of polyadenylated RNA found in the full-grown mouse oocyte is deadenylated or degraded during meiotic maturation. Here we show that rRNA declines by 60 pg during this period, accounting for most of the 80-pg decline in total RNA and indicating that a significant amount of mRNA is deadenylated but not degraded during maturation. Actin mRNA is deadenylated at about 7 hr of in vitro maturation, following the decline in its translation. The poly(A) tail on hypoxanthine phosphoribosyltransferase (HPRT) mRNA is elongated at 7 hr of maturation, preceding an increase in HPRT activity. Actin mRNA is partially degraded in the one-cell embryo and falls to near the limit of detection in the late two-cell stage, while HPRT mRNA shows no change in early two-cell embryos, but is deadenylated and declines greatly during the two-cell stage. In aging unfertilized eggs, most of these changes occur on a delayed schedule. The various species of alpha-tubulin mRNA are largely deadenylated and more than half are degraded during maturation. Taken together with other published results, we conclude that each mRNA has its own pattern of changes in the length of the poly(A) tail (correlated with translation) and degradation during the period of maternal control of protein synthesis, and, for those examined, the maternal mRNAs remaining in the early two-cell embryo are degraded to low levels by the late two-cell stage.  相似文献   

5.
Synthesis of histone H4 by mouse oocytes and unfertilized eggs has been examined by using a modified high-resolution two-dimensional gel electrophoresis procedure capable of resolving basic proteins (M. J. LaMarca and P. M. Wassarman, 1979, Develop. Biol.73, 103–119). Histones were separated on such gels and observed rates of incorporation of [35S]methionine into histone H4 were converted into absolute rates of synthesis by using previously determined values for the absolute rates of total protein synthesis in mouse oocytes and unfertilized eggs Schultz et al., 1979a, Schultz et al., 1979b. Histone H4 was synthesized at all stages of oogenesis examined, and accounted for 0.07, 0.05, and 0.04% of total protein synthesis in growing oocytes, fully grown oocytes, and unfertilized eggs, respectively. During oocyte maturation the absolute rate of histone H4 synthesis decreased by about 40%, as compared to a 23% decrease in the rate of total protein synthesis during the same period. These measurements indicate that enough histone is synthesized during oogenesis in the mouse to support two to three cell divisions. Examination of the intracellular location of newly synthesized proteins in fully grown oocytes revealed that histone H4 was highly concentrated in the nucleus (germinal vesicle), whereas total protein and tubulin were not. Nearly 50% of the histone H4 synthesized during a 5-hr period was located in the oocyte's germinal vesicle, as compared to 1.9 and 0.9% for total protein and tubulin, respectively. These results are compared with those obtained using oocytes and eggs from nonmammalian animal species.  相似文献   

6.
A total of 15 blue fox vixens aged 1–6 years were mated, 12 once on the first day of estrus and three a second time 48 hr after the first mating, and were killed 4 hr to 8 days following mating. Ova were collected from the oviducts, evaluated by stereomicroscopy, and studied by transmission (TEM; N = 49, 12 vixens) or scanning (SEM, N = 11, three vixens) electron microscopy. At 0–3 days after ovulation, the ova had not cleaved and were at different stages of meiotic maturation. In about one-half of these ova, representing all stages of meiotic maturation, a decondensing sperm head without nuclear envelope or a small pronucleus with partial nuclear envelope was observed. No clear relationship was found between maternal meiotic stage and the stage of paternal pronucleus formation. Sperm tails were never identified in the ooplasm. Cortical granules were released after sperm penetration at early stages of meiotic maturation. Thus the block against polyspermic penetration was activated during maturation of the oocyte. The first two-cell stage appeared 4 days after ovulation (3 days after mating), the first four-cell stage the following day (day 5), and the first eight-cell stage 6 days after ovulation (5 days after mating). In a single vixen mated late (7 days postovulation) two- to four-cell stages appeared the following day (day 8). This indicates that the time required for the first cleavage division decreases with increasing interval from ovulation to mating. The development of a functional nucleolus with fibrillar centers and fibrillar and granular components at the eight-cell stage indicates activation of embryonic RNA synthesis in fox embryos at the six- to eight-cell stage, suggesting that the embryonic genome is activated at this stage. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Previously, we found high levels of skin-embryo-brain-oocyte homeobox (Sebox) gene expression in germinal vesicle (GV)-stage oocytes. The objective of the present study was to determine the role played by SEBOX in oocyte maturation and early embryogenesis using RNA interference (RNAi). Microinjection of Sebox double-stranded RNA into GV oocytes resulted in a marked decrease in Sebox mRNA and protein expression. However, Sebox RNAi affects neither oocyte maturation rate nor morphological characteristics, including spindle and chromosomal organization of metaphase II oocytes. In addition, Sebox RNAi had no discernible effect on the activities of M-phase promoting factor or mitogen-activated protein kinase. In contrast, microinjection of Sebox double-stranded RNA into pronuclear-stage embryos resulted in holding embryo development at the two-cell (84.9%) and the four- and eight-cell (15.1%) stages. We concluded that Sebox is a new addition to maternal effect genes that produced and stored in oocytes and function in preimplantation embryo development.  相似文献   

8.
The authors sought to determine whether developmental differences in the magnitude of embryonic mortality caused by heat stress in vivo are caused by changes in resistance of embryos to elevated temperature. In this regard, responses of oocytes, two-cell embryos, four- to eight-cell embryos, and compacted morulae to heat shock were compared. An additional goal was to define further the role of cumulus cells and glutathione in thermoprotection of oocytes. In experiment 1, heat shock (41°C for 12 hr) decreased the number of embryos developing to the blastocyst stage for two-cell (26% vs. 0%) and four- to eight-cell (25% vs. 10%) embryos but did not affect morulae (37% vs. 42%). In experiment 2, exposure of two-cell embryos to 41°C for 12 hr reduced the number of four- to eight-cell embryos present 24 hr after the end of heat shock (88% vs. 62%). In experiment 3, heat shock reduced the number of two-cell embryos developing to blastocyst (49% vs. 8%) but did not affect subsequent development of oocytes when heat shock occurred during the first 12 hr of maturation (46% vs. 41% development to blastocyst); membrane integrity was not altered. In experiment 4, oocytes were cultured with an inhibitor of glutathione synthesis, DL-buthionine-[S,R]-sulfoximine (BSO), for 24 hr and exposed to 41°C for the first 12 hr of maturation. Percentages of blastocysts were 35% (39°C), 18% (41°C), 17% (39°C+BSO), and 11% (41°C+BSO). For experiment 5, oocytes were either denuded or left with cumulus intact and were then radiolabeled with [35S]methionine and [35S]cysteine at 39°C or 41°C for 12 hr. Exposure of oocytes to 41°C for 12 hr reduced overall synthesis of 35S-labeled TCA-precipitable intracellular proteins (18,160 vs. 14,594 dpm/oocyte), whereas presence of cumulus increased synthesis (9,509 vs. 23,246). Analysis by two-dimensional SDS PAGE and fluorography revealed that heat shock protein 68 (HSP68) and two other putative heat shock proteins, P71 and P70, were synthesized by all oocytes regardless of treatment. Heat shock did not alter the synthesis of HSP68 or P71 but decreased amounts of newly synthesized P70. Cumulus cells increased synthesis of P71 and P70. Results indicate there is a biphasic change in resistance to elevations in temperature as oocytes mature, become fertilized, and develop. Resistance declines from the oocyte to the two-cell stage and then increases. Evidence suggests a role for cumulus cells in increasing HSP70 molecules and protein synthesis. Data also indicate a role for glutathione in oocyte function. Mol Reprod Dev 46:138–145, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
The absolute rate of protein synthesis in developing embryos of Strongylocentrotus purpuratus has been measured by lysine incorporation. Protein synthesis rises to about 240 pg hr?1 embryo?1 from the two- to eight-cell stage, and then gradually increases to a maximum of over 500 pg hr?1 embryo?1 in the blastula. The changes in protein synthesis are accompanied by similar increase in the polyribosomes in the embryo, so that 60–65% of the ribosomes are in polyribosomes by the blastula stage. The data are used to calculate an average peptide elongation rate of 1.8 amino acids ribosome?1 sec?1.  相似文献   

10.
The calmodulin levels in stage 6 Xenopus oocytes averaged 89 +/- 24 (SD) ng/oocyte and had largely accumulated by stage 3 of oogenesis. From stage 3 to early stage 6, calmodulin levels did not increase further. However, in large stage 6 oocytes (greater than 1.25 mm diam) calmodulin levels again rose to a level as high as 121 ng/oocyte. Calmodulin levels did not change during the maturation of stage 6 oocytes and the results of measurements on animal and vegetal oocyte halves from control and mature oocytes showed no evidence of a redistribution of calmodulin during maturation. Measurements of calmodulin synthesis in stages 1 and 2 oocytes, stage 4 oocytes, and stage 6 oocytes indicated that calmodulin was being synthesized continuously during oogenesis and that the rate of synthesis increased during oogenesis. In stage 1 and 2 oocytes (combined), the synthesis rate was 3.5 pg/hr/oocyte; in stage 4 oocytes it was 48 pg/hr/oocyte, and in large stage 6 oocytes the rate had increased to 160 pg/hr/oocyte. These changes in the rates of synthesis were discussed as they relate to the pattern of calmodulin accumulation during oogenesis.  相似文献   

11.
We investigated the effects of puromycin on mouse oocyte chromosomes during meiotic maturation in vitro. Puromycin treatment for 6 hr at 100 μg/ml almost completely, but reversibly, suppressed [35S]methionine incorporation into oocyte protein at all stages of maturation tested. Nevertheless, oocytes treated at the germinal vesicle stage underwent germinal vesicle breakdown (GVBD) and chromosome condensation. These oocytes completed nuclear maturation to metaphase II (MII) if the inhibitor was withdrawn. Prolonged (24-hr) treatment, however, caused the chromsomes to degenerate. The chromosomes of oocytes treated shortly after GVBD for 6 hr remained condensed, but the oocytes failed to form a polar body. However, 24-hr treatment caused the chromosomes to decondense to form an interphase nucleus. Oocytes treated near MI for 6 hr gave off a polar body during the treatment, and their chromosomes decondensed to form a nucleus, which remained as long as the treatment was continued. However, if the puromycin was withdrawn, the chromosomes recondensed to a state morphologically similar to that at MII. Thus, the chromosome decondensation induced by protein synthesis inhibition at MI was reversible. Oocytes treated at MII, several hours after first polar body formation, also underwent chromosome decondensation to form a nucleus. In the continuous presence of puromycin, the chromosomes remained decondensed, but neither DNA synthesis nor mitosis occurred. However, following puromycin withdrawal, these occytes synthesised DNA and underwent mitosis. Thus, protein synthesis inhibition at MII, by parthenogenetically activating the oocytes, caused irreversible chromosome decondensation. Based on these observations, we discussed the roles of protein synthesis in the regulation of oocyte chromosome behaviour during meiotic maturation.  相似文献   

12.
13.
Protein synthetic patterns during oogenesis in Drosophila melanogaster were examined; in particular the site, time, and rate of tubulin synthesis and accumulation during oogenesis were determined. Ovarian proteins were labeled with [35S]methionine in vivo or in organ culure in vitro, and the proteins synthesized in egg chambers of specific developmental stages displayed by two-dimensional gel electrophoresis. A dissection technique was devised to examine proteins synthesized in each of the three cell types present in stage 10B egg chambers. The majority of proteins which were resolved by two-dimensional gel electrophoresis, including tubulin and actin, were synthesized throughout oogenesis and, at least to some extent, in each of the stage 10B cell types. Protein synthesis specific to developmental stage and/or cell type was also observed; for example, two nonchorion proteins were synthesized only in follicle cells and primarily at stage 10. A sensitive and specific radioimmune assay was developed in order to quantitate tubulin accumulation. Synthesis of several α-tubulin subunits and one β-tubulin subunit was observed. The tubulin content per egg chamber increased from 3 ng in stage 9 to 17 ng in stage 14, a period of about 13 hr. An accumulation rate of 1 ng/hr suggests that tubulin mRNA can account for about 4% of the total, nonmitochondrial, poly(A)+ RNA of the egg. Analysis of separated cell types at stage 10B revealed that both the follicle and nurse cells synthesize and accumulate appreciable amounts of tubulin. The stage 10B oocyte contains relatively little tubulin but actively synthesizes it. These two complementary analyses demonstrate that the tubulin present in the egg is synthesized within the oocyte-nurse cell syncytium, first in the nurse cells and later in the oocyte.  相似文献   

14.
The mass of tubulin protein in developing embryos of the sea urchin Lytechinus pictus was measured using a radiodilution immunoassay based on densitometric analysis of immunoprecipitated tubulins resolved electrophoretically. The tubulins constitute an average of 360 +/- 35 pg per egg, or 0.66% of the total protein, and there is no significant change in their concentration during embryogenesis. The masses of soluble and polymerized tubulin were measured for extracts prepared under conditions that stabilize microtubules. In eggs, a maximum of 14% of the tubulin is insoluble, and this increases throughout embryogenesis to 67% at pluteus stage (72 hr). The concentration of tubulin in eggs is at least 500 micrograms/ml, well above the critical concentration for tubulin assembly in vitro, yet microtubules have not been observed in eggs. The mass of newly synthesized tubulin, estimated from the mass of tubulin mRNA per embryo, accounts for a small fraction of the total tubulin by the end of gastrulation but for over half of the tubulin by the 72-hr pluteus stage. These observations are consistent with a model in which the declining level of unpolymerized tubulin controls the stability of tubulin mRNa, providing an autogenous regulation of the ontogenetic pattern of tubulin synthesis during sea urchin embryogenesis (Gong and Brandhorst, Development 102: 31-43).  相似文献   

15.
High-resolution two-dimensional sodium dodecyl sulfate-polyacrylamide (2D-SDS) gel electrophoresis combined with computerized analysis of gel images was used to construct and analyze protein databases for two stages of preimplantation mouse embryogenesis, the compacted eight-cell stage and the fully expanded blastocyst stage. These stages were chosen for their ease in identification of multiple synchronous embryos. Synchronous cohorts of 30–50 embryos were labelled with L-[35S]methionine for 2 hr. The embryos were then lysed in 30 μl hot SDS sample buffer, and the lysates were stored at ?80°C until the gels were run. Five replicates were run for eight-cell embryos, and four for blastocyst-stage embryos. The samples were processed for 2D gel electrophoresis and fluorography; multiple exposures were made. Gel images were analyzed using the PDQUEST system, and databases were constructed. Analysis of the databases for both developmental stages showed high reproducibility of protein spots in multiple gel images. Of 1,674 total spots in eight-cell embryo standards, >79% of spots had a percentage error (S.E.M./average) <50%, and >45% had a percentage error <30%. Similarly, of 1,653 total spots in blastocyst-stage embryo standards, 74% of spots had a percentage error <50%, and approximately 47% of spots had a percentage error <30%. Forty-three spots (approximately 3% of the total spots) were found to be detected only in the eight-cell stage, while 75 spots were detected solely in the blastocyst stage. Sixty-nine proteins showed a greater than threefold increase in isotope incorporation from the eight-cell to the blastocyst stage, with a percentage error <50% in both the eight-cell and the blastocyst stages. In contrast, 41 of the proteins showed a decrease during this period. Analysis of the protein databases described in this study has allowed us to document the overall quantitative changes in proteins from the compacted eight-cell stage to the blastocyst stage of mouse preimplantation development. These databases provide a valuable tool for further detailed quantitative analysis of specific proteins associated with developmental events. In addition they will permit analysis of the effects of environmental factors, such as growth factors, on early embryo development. © 1994 Wiley-Liss, Inc.  相似文献   

16.
The organization of chromatin and cytoplasmic microtubules changes abruptly at M-phase entry in both mitotic and meiotic cell cycles. To determine whether the early nuclear and cytoplasmic events associated with meiotic resumption are dependent on protein synthesis, cumulus-enclosed hamster oocytes were cultured in the presence of 100 micrograms/ml puromycin or cycloheximide for 5 hr. Both control (untreated) and treated oocytes were analyzed by fluorescence microscopy after staining with Hoechst 33258 and tubulin antibodies. Freshly isolated oocytes exhibit prominent nucleoli and diffuse chromatin within the germinal vesicle as well as an interphase network of cytoplasmic microtubules. After 4-4.5 hr in culture, most oocytes were in prometaphase I of meiosis as characterized by a prominent spindle with fully condensed chromosomes and numerous cytoplasmic asters. After 5-5.5 hr in culture, microtubule asters are no longer detected in most cells, and the spindle is the only tubulin-positive structure. Incubation for 5 hr in the presence of inhibitors does not impair germinal vesicle breakdown, chromatin condensation, kinetochore microtubule assembly, or cytoplasmic aster formation in the majority of oocytes examined; however, under these conditions, a population of oocytes retains a germinal vesicle, exhibiting variable degrees of chromatin condensation and cytoplasmic aster formation. Meiotic spindle formation is inhibited in all oocytes. These effects are fully reversible upon culture of treated oocytes in drug-free medium for 5 hr. The data indicate that meiotic spindle assembly is dependent on ongoing protein synthesis in the cumulus-enclosed hamster oocyte; in contrast, chromatin condensation and aster formation are not as sensitive to protein synthesis inhibitors during meiotic resumption.  相似文献   

17.
In vitro matured porcine oocytes were used to test the importance of protein synthesis for sperm penetration, the second meiotic division, and pronuclear development. Experiments were carried out to measure rates of protein synthesis in the presence of protein synthesis inhibitors (35 microM or 350 microM cycloheximide or a combination of inhibitors) (study 1); to test for sperm penetration and pronuclear development when protein synthesis was inhibited during fertilization (study 2); to test for oocyte meiosis, sperm penetration, and female and male pronuclear development when protein synthesis was inhibited during maturation (oocyte maturation in vitro with addition of inhibitor at 0, 24, or 36 hr of culture) (study 3); and to analyze the changes in the pattern of protein synthesis during these phases. Sperm penetration, oocyte meiosis, and female pronuclear development were not affected by the total inhibition of protein synthesis during fertilization. By contrast, inhibiting protein synthesis during maturation severely impaired the completion of meiosis and pronuclear development. Although inhibition of protein synthesis after 36 hr of maturation culture did not totally block male pronuclear development (MPN), the rate of MPN formation was lower than for controls (52% vs. 72%, P less than 0.05). However, protein synthesis was absolutely essential between 24 and 36 hr for the formation of MPN after decondensation. This period of maturation coincided with the dominant phase of protein reprogramming in the oocyte.  相似文献   

18.
When meiotic maturation of primary oocytes of the starfish Asterias forbesi is induced by 1-methyladenine, rapid and striking changes in the pattern of protein synthesis detectable by electrophoresis occur after germinal vesicle breakdown. These include a decline in relative labeling with [35S]methionine of several polypeptides synthesized in the oocyte, and increased labeling and new appearance of several polypeptides. Fertilization does not result in other detectable changes. The population of total mRNA translatable in a rabbit reticulocyte lysate cell-free system does not change, but the distribution of mRNAs between polysomes and the postribosomal supernatant reflects the changes observed in vivo. Thus these changes are regulated at the translational level. A review of the literature indicates that translationally mediated changes in patterns of protein synthesis during maturation of oocytes may be a widespread phenomenon.  相似文献   

19.
Glucosamine is a component of hyaluronic acid and an alternative substrate to glucose for the extracellular matrix synthesis of COCs. Its addition to an IVM medium reduces the glucose consumption of bovine COCs. Glucosamine is also metabolized to UDP-N-acetyl glucosamine (UDP-GlcNAc) via the hexosamine biosynthesis pathway and is utilized for O-linked glycosylation by the X-linked enzyme, O-linked GlcNAc transferase (OGT). Moreover, the inactivation of the second X chromosome in female embryos is influential in producing the sex ratio bias observed in vitro when embryos are cultured in the presence of glucose above 2.5mM. Accordingly, the aim of this study is to examine whether the presence of glucosamine during maturation or embryo culture causes a sex ratio bias in bovine blastocysts. Glucosamine was added to the medium in three different embryo developmental periods: in vitro maturation, the one-cell to eight-cell stage (before the maternal-zygotic transition, MZT), and the eight-cell to blastocyst stage (after MZT). When glucosamine was added during in vitro maturation, the developmental competence of oocytes was severely compromised. However, the sex ratio of embryos was not influenced. When glucosamine was added to embryo culture medium during development from one-cell to eight-cell stage (before MZT), it affected neither the development nor the sex ratio of bovine embryos. Finally, when glucosamine was added after MZT, the development rate of embryos was severely decreased, and the sex ratio was skewed toward males. Moreover, an inhibitor of OGT, benzyl-2-acetamido-2-deoxy-alpha-D-galactopyranoside (BADGP), negated the effect of glucosamine on the sex ratio when it was added to embryo culture medium from the eight-cell to blastocyst stage (after MZT). These results suggest that, like glucose, the supplementation of glucosamine into the medium skewed the sex ratio to males and that OGT, an X-linked enzyme, was involved in this phenomenon. Moreover, this effect of glucosamine was limited only to when it was present in the embryo culture medium after MZT.  相似文献   

20.
Aurora-A is a serine/threonine protein kinase that plays a role in cell-cycle regulation. The activity of this kinase has been shown to be required for regulating multiple stages of mitotic progression in somatic cells. In this study, the changes in aurora-;A expression were revealed in mouse oocytes using Western blotting. The subcellular localization of aurora-A during oocyte meiotic maturation, fertilization, and early cleavages as well as after antibody microinjection or microtubule assembly perturbance was studied with confocal microscopy. The quantity of aurora-A protein was high in the germinal vesicle (GV) and metaphase II (MII) oocytes and remained stable during other meiotic maturation stages. Aurora-A concentrated in the GV before meiosis resumption, in the pronuclei of fertilized eggs, and in the nuclei of early embryo blastomeres. Aurora-A was localized to the spindle poles of the meiotic spindle from the metaphase I (MI) stage to metaphase II stage. During early embryo development, aurora-A was found in association with the mitotic spindle poles. Aurora-A was not found in the spindle region when colchicine or staurosporine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. Aurora-A antibody microinjection decreased the rate of germinal vesicle breakdown (GVBD) and distorted MI spindle organization. Our results indicate that aurora-A is a critical regulator of cell-cycle progression and microtubule organization during mouse oocyte meiotic maturation, fertilization, and early embryo cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号