首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The molecular bridges that link the LH surge with functional changes in cumulus cells that possess few LH receptors are being unraveled. Herein we document that epidermal growth factor (EGF)-like factors amphiregulin (Areg), epiregulin (Ereg), and betacellulin (Btc) are induced in cumulus oocyte complexes (COCs) by autocrine and paracrine mechanisms that involve the actions of prostaglandins (PGs) and progesterone receptor (PGR). Areg and Ereg mRNA and protein levels were reduced significantly in COCs and ovaries collected from prostaglandin synthase 2 (Ptgs2) null mice and Pgr null (PRKO) mice at 4 h and 8 h after human chorionic gonadotropin, respectively. In cultured COCs, FSH/forskolin induced Areg mRNA within 0.5 h that peaked at 4 h, a process blocked by inhibitors of p38MAPK (SB203580), MAPK kinase (MEK) 1 (PD98059), and PTGS2 (NS398) but not protein kinase A (PKA) (KT5720). Conversely, AREG but not FSH induced Ptsg2 mRNA at 0.5 h with peak expression of Ptgs2 and Areg mRNAs at 4 h, processes blocked by the EGF receptor tyrosine kinase inhibitor AG1478 (AG), PD98059, and NS398. PGE2 reversed the inhibitory effects of AG on AREG-induced expression of Areg but not Ptgs2, placing Ptgs2 downstream of EGF-R signaling. Phorbol 12-myristate 13-acetate (PMA) and adenovirally expressed PGRA synergistically induced Areg mRNA in granulosa cells. In COCs, AREG not only induced genes that impact matrix formation but also genes involved in steroidogenesis (StAR, Cyp11a1) and immune cell-like functions (Pdcd1, Runx1, Cd52). Collectively, FSH-mediated induction of Areg mRNA via p38MAPK precedes AREG induction of Ptgs2 mRNA via ERK1/2. PGs acting via PTGER2 in cumulus cells provide a secondary, autocrine pathway to regulate expression of Areg in COCs showing critical functional links between G protein-coupled receptor and growth factor receptor pathways in ovulating follicles.  相似文献   

4.
During ovulation, granulosa cells and cumulus cells synthesize and secrete a wide variety of factors including members of the IL cytokine family via the process of exocytosis. Exocytosis is controlled by the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex consisting of proteins residing in the vesicle membrane and the plasma membrane. One of the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor proteins, synaptosomal-associated protein (SNAP)25, is expressed abundantly in neuronal cells and is also induced transiently in the rat ovary in response to LH. Therefore, we sought to determine the molecular mechanisms controlling ovarian expression of the Snap25 gene, and the role of SNAP25 in exocytosis of secreted factors, such as ILs from cumulus cells and granulosa cells. In preovulatory follicles of equine (e) chorionic gonadotropin (CG)-primed mice, expression of Snap25 mRNA was negligible but was induced markedly 8 h after human (h) CG stimulation. In Pgr null mice Snap25 mRNA and protein levels were significantly lower at 8 h after hCG compared with wild-type mice. To analyze the molecular mechanisms by which progesterone receptor regulates this gene, a 1517-bp murine Snap25 promoter-luciferase reporter construct was generated and transfected into granulosa cell cultures. Three specificity protein (SP)-1/SP-3 sites, but not consensus activator protein 1 or cAMP response element sites, were essential for basal and forskolin/phorbol 12-myristate 13-acetate-induced promoter activity in granulosa cells. The induction was significantly suppressed by PGR antagonist, RU486. Treatment of cumulus oocyte complexes or granulosa cells with FSH/amphiregulin, LH, or forskolin/phorbol 12-myristate 13-acetate-induced elevated expression of Snap25 mRNA and increased the secretion of eight cytokine and chemokine factors. Transfection of granulosa cells with Snap25 small interfering RNA significantly reduced the levels of both SNAP25 protein and the secretion of cytokines. From these results, we conclude that progesterone-progesterone receptor-mediated SNAP25 expression in cumulus oocyte complexes and granulosa cells regulates cytokine and chemokine secretion via an exocytosis system.  相似文献   

5.
6.
7.
Interleukin 8 (IL-8) is a chemoattractant involved in the recruitment and activation of neutrophils and is associated with the ovulate process. We examined the possible role of IL-8 in steroid production by bovine granulosa cells before and after ovulation. The concentration of IL-8 in the follicular fluid of estrogen-active dominant (EAD) and pre-ovulatory follicles (POF) was higher than that of small follicles (SF). CXCR1 mRNA expression was higher in the granulosa cells of EAD and POF than that of SF. In contrast, CXCR2 mRNA expression was lower in granulosa cells of EAD and POF than in SF. IL-8 inhibited estradiol (E2) production in follicle-stimulating hormone (FSH)-treated granulosa cells at 48 h of culture. IL-8 also suppressed CYP19A1 mRNA expression in FSH-treated granulosa cells. IL-8 stimulated progesterone (P4) production in luteinizing hormone (LH)-treated granulosa cells at 48 h of culture. Although IL-8 did not alter the expression of genes associated with P4 production, it induced StAR protein expression in LH-treated granulosa cells. The expression of CXCR1 mRNA in corpus luteum (CL) did not change during the luteal phase. In contrast, the expression of CXCR2 mRNA in middle CL was significantly higher than in early and regression CL during the luteal phase. In luteinizing granulosa cells, an in vitro model of granulosa cell luteinization, CXCR2 mRNA expression was downregulated, whereas CXCR1 mRNA expression was unchanged. IL-8 also stimulated P4 production in luteinizing granulosa cells. These data provide evidence that IL-8 functions not only as a chemokine, but also act as a regulator of steroid synthesis in granulosa cells to promote luteinization after ovulation.  相似文献   

8.
9.
The ovulatory process is tightly regulated by endocrine as well as paracrine factors. In the periovulatory period, extensive remodeling of the follicle wall occurs to allow the extrusion of the oocyte and accompanying cumulus granulosa cells. Growth differentiation factor-9 (GDF-9) and bone morphogenetic protein-15 (BMP-15) are secreted members of the TGFbeta superfamily that are expressed beginning in the oocyte of small primary follicles and through ovulation. Besides its critical role as a growth and differentiation factor during early folliculogenesis, GDF-9 also acts as a paracrine factor to regulate several key events in preovulatory follicles. By analyzing GDF-9-regulated expression profiles using gene chip technology, we identified TNF-induced protein 6 (Tnfip6) and pentraxin 3 (Ptx3 or PTX3) as novel factors induced by GDF-9 in granulosa cells of preovulatory follicles. Whereas Tnfip6 is induced in all granulosa cells by the LH surge, Ptx3 expression in the ovary is specifically observed after the LH surge in the cumulus granulosa cells adjacent to the oocyte. PTX3 is a member of the pentraxin family of secreted proteins, induced in several tissues by inflammatory signals. To define PTX3 function during ovulation, we generated knockout mice lacking the Ptx3 gene. Homozygous null (Ptx3(-/-)) mice develop normally and do not show any gross abnormalities. Whereas Ptx3(-/-) males are fertile, Ptx3(-/-) females are subfertile due to defects in the integrity of the cumulus cell-oocyte complex that are reminiscent of Bmp15(-/-)Gdf9(+/-) double mutant and BMP type IB receptor mutant mice. These studies demonstrate that PTX3 plays important roles in cumulus cell-oocyte interaction in the periovulatory period as a downstream protein in the GDF-9 signal transduction cascade.  相似文献   

10.
The matrix metalloproteinases (MMPs) are postulated to facilitate follicular rupture. In the present study, expression of the stromelysins (MMP3, MMP10, MMP11) was analyzed in the periovulatory human and rat ovary. Human granulosa and theca cells were collected from the dominant follicle at various times after human chorionic gonadotropin (hCG). Intact rat ovaries, granulosa cells, and residual tissue (tissue remaining after granulosa cell collection) were isolated from equine CG (eCG)-hCG-primed animals. Mmp10 mRNA was highly induced in human granulosa and theca cells and intact rat ovaries, granulosa cells, and residual tissue. Localization of MMP10 to granulosa and theca cells in both human and rat ovarian follicles was confirmed by immunohistochemistry. Mmp3 mRNA was unchanged in human cells and rat granulosa cells, but increased in intact rat ovaries and residual tissue. Mmp11 mRNA decreased following hCG treatment in human granulosa and theca cells as well as rat granulosa cells. Regulation of Mmp10 in cultured rat granulosa cells revealed that the EGF inhibitor AG1478 and the progesterone receptor antagonist RU486 suppressed the induction of Mmp10 mRNA, whereas the prostaglandin inhibitor NS398 had no effect. Studies on the Mmp10 promoter demonstrated that forskolin plus PMA stimulated promoter activity, which was dependent upon a proximal AP1 site. In conclusion, there are divergent patterns of stromelysin expression associated with ovulation, with a marked induction of Mmp10 mRNA and a decrease in Mmp11 mRNA, yet a species-dependent pattern on Mmp3 mRNA expression. The induction of Mmp10 expression suggests an important role for this MMP in the follicular changes associated with ovulation and subsequent luteinization.  相似文献   

11.
12.
Undifferentiated granulosa cells from prehierarchal (6- to 8-mm-diameter) hen follicles express very low to undetectable levels of LH receptor (LH-R) mRNA, P450 cholesterol side chain cleavage (P450scc) enzyme activity, and steroidogenic acute regulatory (StAR) protein, and produce negligible progesterone, in vitro, following an acute (3-h) challenge with either FSH or LH. It has previously been established that culturing such cells with FSH for 18-20 h induces LH-R, P450scc, and StAR expression, which enables the initiation of progesterone production. The present studies were conducted to characterize the ability of activin and transforming growth factor (TGF) beta, both alone and in combination with FSH, to promote hen granulosa cell differentiation, in vitro. A 20-h culture of prehierarchal follicle granulosa cells with activin A or transforming growth factor beta (TGFbeta)1 increased LH-R mRNA levels compared with control cultured cells. Activin A and TGFbeta1 also promoted FSH-receptor (FSH-R) mRNA expression when combined with FSH treatment. Neither activin A nor TGFbeta1 alone stimulated progesterone production after 20 h culture. However, preculture with either factor for 20 h (to induce gonadotropin receptor mRNA expression) followed by a 3-h challenge with FSH or LH potentiated StAR expression and progesterone production compared with cells challenged with gonadotropin in the absence of activin A or TGFbeta1 preculture. Significantly, activation of the mitogen-activated protein (MAP) kinase pathway with transforming growth factor alpha (TGFalpha) (monitored by Erk phosphorylation) blocked TGFbeta1-induced LH-R expression, and this effect was associated with the inhibition of Smad2 phosphorylation. We conclude that a primary differentiation-inducing action of activin A and TGFbeta1 on hen granulosa cells from prehierarchal follicles is directed toward LH-R expression. Enhanced LH-R levels subsequently sensitize granulosa cells to LH, which in turn promotes StAR plus P450scc expression and subsequently an increase in P4 production. Significantly, the finding that TGFbeta signaling is negatively regulated by MAP kinase signaling is proposed to represent a mechanism that prevents premature differentiation of granulosa cells.  相似文献   

13.
Cyclic GMP (cGMP)-dependent protein kinase II (Prkg2, cGK II) was identified as a potential target of the progesterone receptor (Nr3c3) in the mouse ovary based on microarray analyses. To document this further, the expression patterns of cGK II and other components of the cGMP signaling pathway were analyzed during follicular development and ovulation using the pregnant mare serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG)-primed immature mice. Levels of cGK II mRNA were low in ovaries of immature mice, increased 4-fold in response to pregnant mare serum gonadotropin and 5-fold more within 12 h after hCG, the time of ovulation. In situ hybridization localized cGK II mRNA to granulosa cells and cumulus oocyte complexes of periovulatory follicles. In progesterone receptor (PR) null mice, cGK II mRNA was reduced significantly at 12 h after hCG in contrast to heterozygous littermates. In primary granulosa cell cultures, cGK II mRNA was induced by phorbol 12-myristate 13-acetate enhanced by adenoviral expression of PR-A and blocked by RU486 and trilostane. PR-A in the absence of phorbol 12-myristate 13-acetate was insufficient to induce cGK II. Expression of cGK I (Prkg1) was restricted to the residual tissue and not regulated by hormones. Guanylate cyclase-A (Npr1; GC-A) mRNA expression increased 6-fold by 4 h after hCG treatment in contrast to pregnant mare serum gonadotropin alone and was localized to granulosa cells of preovulatory follicles. Collectively, these data show for the first time that cGK II (not cGK I) and GC-A are selectively induced in granulosa cells of preovulatory follicles by LH- and PR-dependent mechanisms, thereby providing a pathway for cGMP function during ovulation.  相似文献   

14.
Ovarian granulosa cells synthesize anticoagulant heparan sulfate proteoglycans (aHSPGs), which bind and activate antithrombin III. To determine if aHSPGs could contribute to the control of proteolytic activities involved in follicular development and ovulation, we studied the pattern of expression of these proteoglycans during the ovarian cycle. aHSPGs were localized on cells and tissues by (125)I-labeled antithrombin III binding followed by microscopic autoradiography. Localization of aHSPGs has shown that cultured granulosa cells, hormonally stimulated by gonadotropins to differentiate in vitro, up-regulate their synthesis and release of aHSPGS: In vivo, during gonadotropin-stimulated cycle, aHSPGs are present on granulosa cells of antral follicles and are strongly labeled in preovulatory follicles. These data demonstrate that aHSPG expression in the ovarian follicle is hormonally induced to culminate in preovulatory follicles. Moreover, we have shown that five heparan sulfate core proteins mRNA (perlecan; syndecan-1, -2, and -4; and glypican-1) are synthesized by granulosa cells, providing attachment for anticoagulant heparan sulfate chains on the cell surface and in the extracellular matrix. These core proteins are constantly expressed during the cycle, indicating that modulations of aHSPG levels observed in the ovary are likely controlled at the level of the biosynthesis of anticoagulant heparan sulfate glycosaminoglycan chains. This expression pattern enables aHSPGs to focus serine protease inhibitors in the developing follicle to control proteolysis and fibrin formation at ovulation.  相似文献   

15.
The steroid hormone progesterone (P) plays a pivotal role during ovulation. Mice lacking P receptor (Pgr) gene fail to ovulate due to a defect in follicular rupture. The P receptor (PGR)-regulated pathways that modulate ovulation, however, remain poorly understood. To identify these pathways, we performed gene expression profiling using ovaries from mice subjected to gonadotropin-induced superovulation in the presence and in the absence of CDB-2914, a synthetic PGR antagonist. Prominent among the genes that were down-regulated in response to CDB-2914 was endothelin (ET)-2, a potent vasoactive molecule. ET-2 mRNA was transiently induced in mural granulosa cells of the preovulatory follicles immediately preceding ovulation. This induction was absent in the ovaries of PGR null mice, indicating a critical role of this receptor in ET-2 expression. To investigate the functional role of ET-2 during ovulation, we employed selective antagonists of endothelin receptors, ETR-A and ETR-B. Mice treated with an ETR-B antagonist exhibited a dramatic (>85%) decline in the number of released oocytes. Strong expression of ETR-B was observed in the mural and cumulus granulosa cells of the preovulatory follicles as well as in the capillaries lining the inner border of the theca interna. We also identified cGMP-dependent protein kinase II, a previously reported PGR-regulated gene, as a downstream target of ET-2 during ovulation. Collectively, our studies uncovered a unique pathway in which ET-2, produced by PGR in mural granulosa cells, acts in a paracrine or autocrine manner on multiple cell types within the preovulatory follicle to control the final events leading to its rupture.  相似文献   

16.
17.
Preantral follicles from pro-oestrous and oestrous hamsters were isolated enzymically (Stages 1-5) and by microdissection (Stage 6) and cultured for up to 168 h in the absence or presence of 100 ng ovine FSH or LH separately or combined or 1 or 10 micrograms progesterone or estradiol-17 beta in serum-free defined medium and exposed to 1 muCi [3H]thymidine for 24 h before termination. In the presence of insulin and hydrocortisone but not gonadotrophins, the morphology of follicles from pro-oestrous animals at Stages 1-4 (1-4 layers granulosa cells; no theca) were unaffected for up to 48 h whereas for Stages 5 (5-6 layers granulosa cells and developing theca) and 6 (7-8 layers granulosa cells and theca), atresia was prominent by 24 h. FSH significantly reduced the percentage of atretic follicles in Stages 1-5 throughout the culture period; but was effective only up to 96 h for Stage-6 follicles. LH was also effective, albeit to a lesser extent. FSH increased follicular labelling indexes during every 24-h labelling period and, during a pulse-chase period, follicular DNA content and granulosa cell numbers. FSH, but not LH, induced differentiation by 96 h of preantral follicles at Stage 6 into small antral stages (Stages 7-8). FSH and LH together induced almost the same effect as FSH alone. However, neither progesterone nor oestradiol had any significant long-term effects on DNA synthesis and oestradiol induced atresia beyond 24 h. Both FSH and LH induced follicular maturation in vitro as evident from increases in progesterone, androstenedione and oestradiol production. Follicles (Stages 1-4) collected from oestrous hamsters responded to FSH to a lesser extent than did those from pro-oestrous animals, possibly because of in-vivo exposure to periovulatory changes in gonadotrophins; however, an antrum formed in Stage-6 follicles by 72 h.  相似文献   

18.
The aim of this study was to investigate the presence and localization of gonadotropin-releasing hormone receptor-I (GnRHRI), gonadotropin receptors (FSHR, LHR), progesterone receptor (PGR), and progesterone receptor membrane-binding component-I (PGRMCI) in the different developmental stages of the rabbit follicle. The ovaries were collected from four healthy New Zealand white rabbits, and the mRNA expression and protein levels of GnRHRI, FSHR, LHR, PGR, and PGRMCI were examined with real-time PCR and immunohistochemistry. The results showed that GnRHRI, FSHR, LHR, PGR, and PGRMCI mRNA was expressed in the ovary; furthermore, we show cell-type specific and follicular development stage-specific expression of these receptors at the protein level. Specifically, all of the receptors were detected in the oocytes from the primordial to the tertiary follicles and in the granulosa and theca cells from the secondary and tertiary follicles. In the mature follicles, all receptors were primarily localized in the granulosa and theca cells. In addition, LHR was also localized in the granulosa cells from the primordial and primary follicles. With follicular development, the expression level of all of the receptors, except GnRHRI, in the follicles showed a tendency to decrease because the area of the follicle increased sharply. The expression level of GnRHRI, FSHR, and PGR in the granulosa and theca cells showed an increasing trend with ongoing follicular development. Interestingly, the expression level of FSHR in the oocytes obviously decreased from the primary to the tertiary follicles, whereas LHR in the oocytes increased from the secondary to tertiary follicles. In conclusion, the expression of GnRHRI, the gonadotropin receptors, PGR, and PGRMCI decreased from the preantral follicles (primordial, primary, and secondary follicles) to the tertiary follicles. The expression of GnRHRI and LHR in the oocytes increased from the secondary to the tertiary follicles, whereas FSHR decreased from the primary to the tertiary follicles. The expression of GnRHRI and PGR in the granulosa and theca cells increased from the secondary to the mature follicles. These observations suggest that these receptors play roles in follicular development and participate in the regulation of follicular development.  相似文献   

19.
CD8+ T cells play an important role in the anti-tumor activities of the body. The dysfunction of CD8+ T cells in glioma is unclear. This study aims to elucidate the glioma cell-derived ADAM10 (A Disintegrin and metalloproteinase domain-containing protein 10) in the suppression of CD8+ effector T cells by the induction of regulatory B cells. In this study, glioma cells were isolated from surgically removed glioma tissue and stimulated by Phorbol myristate acetage (PMA) in the culture. The levels of ADAM10 in the culture were determined by enzyme-linked immunosorbent assay. Immune cells were assessed by flow cytometry. The results showed that the isolated glioma cells express ADAM10, which was markedly up regulated after stimulated with PMA. The glioma-derived ADAM10 induced activated B cells to differentiate into regulatory B cells, the later suppressed CD8+ T cell proliferation as well as the induced regulatory T cells, which also showed the immune suppressor effect on CD8+ effector T cell proliferation. In conclusion, glioma cells produce ADAM10 to induce Bregs; the latter suppresses CD8+ T cells and induces Tregs.  相似文献   

20.
Studies in both mammalian and nonmammalian ovarian model systems have demonstrated that activation of the mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) signaling pathways modulates steroid biosynthesis during follicle development, yet the collective evidence for facilitory versus inhibitory roles of these pathways is inconsistent. The present studies in the hen ovary describe the changing role of MAPK and PKC signaling in the regulation of steroidogenic acute regulatory protein (STAR) expression and progesterone production in undifferentiated granulosa cells collected from prehierarchal follicles prior to follicle selection versus differentiated granulosa from preovulatory follicles subsequent to selection. Treatment of undifferentiated granulosa cells with a selective epidermal growth factor receptor (EGFR) and ERBB4 receptor tyrosine kinase inhibitor (AG1478) both augments FSH receptor (Fshr) mRNA expression and initiates progesterone production. Conversely, selective inhibitors of both EGFR/ERBB4 and MAPK activity attenuate steroidogenesis in differentiated granulosa cells subsequent to follicle selection. In addition, inhibition of PKC signaling with GF109203X augments FSH-induced Fshr mRNA plus STAR protein expression and initiates progesterone synthesis in undifferentiated granulosa cells, but inhibits both gonadotropin-induced STAR expression and progesterone production in differentiated granulosa. Granulosa cells from the most recently selected (9- to 12-mm) follicle represent a stage of transition as inhibition of MAPK signaling promotes, while inhibition of PKC signaling blocks gonadotropin-induced progesterone production. Collectively, these data describe stage-of-development-related changes in cell signaling whereby the differentiation-inhibiting actions of MAPK and PKC signaling in prehierarchal follicle granulosa cells undergo a transition at the time of follicle selection to become obligatory for gonadotropin-stimulated progesterone production in differentiated granulosa from preovulatory follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号