首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of proteolytic enzymes on the humoral immune response, survival rate and mean survival time of mice, infected with S. aureus culture and receiving antibiotics was studied. Infection with staphylococcal suppressed the formation of antibodies to sheep red blood cells. Ampicillin made this immunosuppression even more pronounced, while gentamicin produced practically no effect on the degree of immunosuppression in the infected animals. Proteolytic enzymes terrilytin and terridecase exhibited immunocorrecting properties when used in combination with antibiotics. Terridecase, the immobilized form of the enzyme proved to have the highest activity. In experimental generalized staphylococcal infection all preparations under study produced a protective effect. The maximum effect was noted after the use of ampicillin in combination with terridecase.  相似文献   

2.
A/Jax mice were rendered immune to the syngeneic and transplantable methylcholanthrene-induced Sarcoma 1509a by the surgical removal of the tumor 7 days after implantation; subsequent injection i.v. transfer of 10(7) to 10(8) washed thymus or spleen cells of tumor-bearing animals (TBA) to immune animals significantly inhibited the rejection of the tumor; this suppressive effect was entirely abolished by the treatment of these lymphocytes with anti-theta serum or anti-thymocyte serum (ATS) and complement before adoptive transfer. On the other hand, an equal number of thymus or spleen cells of normal animals or of animals bearing an unrelated tumor had no suppressive effect. Treatment of normal syngeneic animals with ATS after tumor cell inoculation or splenectomy of TBA resulted in the suppression of the tumor growth. The serum of TBA had no effect on tumor growth in immune syngeneic mice. Together these results suggest that TBA possess immunosuppressor T cells regulating negatively their immune response to the tumor.  相似文献   

3.
Changes in photoperiod can significantly impact the physiology of many species. For example, we have observed an improvement in cellular immune function in cattle on short-day photoperiod (SDPP) relative to long-day photoperiod (LDPP). In addition, prolactin (PRL) and PRL receptor (PRL-R) are affected by photoperiod management. Our hypothesis is that the inverse relationship observed between PRL and PRL-R mRNA expression during photoperiod treatment alters the sensitivity of the animal to PRL, thereby affecting the changes in their cellular immune function. The objective of this study was to determine the effects of exogenous PRL on photoperiodic-mediated immune responses. Eight Holstein steers received each of four treatments: LDPP (16L:8D), SDPP (8L:D), SDom (SDPP plus PRL via osmotic minipump for 10 days), and SDinj (SDPP plus PRL via 3x daily injections for 10 days). Steers on SDPP had decreased PRL relative to the other treatments. Expression of PRL-R mRNA was increased in SDPP animals relative to LDPP, SDom, and SDinj. Prior to PRL treatment, SDPP animals had greater lymphocyte proliferation and neutrophil chemotaxis relative to LDPP animals. Following PRL treatment, cellular immune function of SDom and SDinj animals was reduced to the level of LDPP animals. Addition of PRL to the in vitro lymphocyte proliferation did not alter response of LDPP animals but increased proliferation of lymphocytes from SDPP animals. The results of these experiments suggest that an animal's responsiveness to PRL correlate to changes in cellular immune function that occur with photoperiod manipulation.  相似文献   

4.
The action of some aminoglycoside antibiotics on the immune system was studied on both intact mice and the animals with immune deficiency caused by administration of cyclophosphamide. The following tests were used: local hemolysis (the Herne test), lymphocyte transformation (LT), delayed hypersensitivity to sheep red blood cells and the local graft versus host reaction (GVHR). Amikacin was shown to have no significant action on the activity of lymphocytes in the intact mice and stimulated both cellular (LT and GVHR) and humoral (the Herne test) immunity in the animals with lowered immunological reactivity. Sisomicin had no significant action on the immune system of the animals. Gentamicin suppressed the immune response only in the intact mice. Kanamycin and streptomycin induced inhibition of humoral and cellular immunity in both the intact mice and animals with immune deficiency. On the basis of the results it was concluded that gentamicin, amikacin and sisomicin may be used in the treatment of diseases developing in the presence of immune deficiency whereas streptomycin and kanamycin should be recommended when inhibition of the immunity is needed.  相似文献   

5.
In order to avoid both starvation and disease, animals must allocate resources between energy reserves and immune defence. We investigate the optimal allocation. We find that animals with low reserves choose to allocate less to defence than animals with higher reserves because when reserves are low it is more important to increase reserves to reduce the risk of starvation in the future. In general, investment in immune defence increases monotonically with energy reserves. An exception is when the animal can reduce its probability of death from disease by reducing its foraging rate. In this case, allocation to immune defence can peak at intermediate reserves. When food changes over time, the optimal response depends on the frequency of changes. If the environment is relatively stable, animals forage most intensively when the food is scarce and invest more in immune defence when the food is abundant than when it is scarce. If the environment changes quickly, animals forage at low intensity when the food is scarce, but at high intensity when the food is abundant. As the rate of environmental change increases, immune defence becomes less dependent on food availability. We show that the strength of selection on reserve-dependent immune defence depends on how foraging intensity and immune defence determine the probability of death from disease.  相似文献   

6.
The dependence of humoral immune response and the formation of immunological memory to corpuscular staphylococcal antigen (CSA) on the T-system of immunity was studied in experiments on B-mice and on mice with the congenital absence of the thymus (nude). Primary and secondary immune response to CSA in athymic mice was found to be considerably less than in normal animals. After the repeated immunization of genetically athymic mice the pronounced secondary reaction of the formation of antibodies to CSA was observed. As shown in this investigation carried out with the use of adoptive transfer techniques, the induction of memory B-cells to CSA may occur in animals with congenital or experimentally induced T-immunodeficiency. The conclusion was made on the T-dependence of humoral immune response to CSA, the formation of immunological memory to this antigen being relatively T-independent.  相似文献   

7.
Li RW  Wu S  Li W  Huang Y  Gasbarre LC 《PloS one》2011,6(9):e24417
Infections in cattle by the abomasal nematode Ostertagia ostertagi result in impaired gastrointestinal function. Six partially immune animals were developed using multiple drug-attenuated infections, and these animals displayed reduced worm burdens and a slightly elevated abomasal pH upon reinfection. In this study, we characterized the abomasal microbiota in response to reinfection using metagenomic tools. Compared to uninfected controls, infection did not induce a significant change in the microbial community composition in immune animals. 16S rRNA gene-based phylogenetic analysis identified 15 phyla in the bovine abomasal microbiota with Bacteroidetes (60.5%), Firmicutes (27.1%), Proteobacteria (7.2%), Spirochates (2.9%), and Fibrobacteres (1.5%) being the most predominant. The number of prokaryotic genera and operational taxonomic units (OTU) identified in the abomasal microbial community was 70.8±19.8 (mean ± SD) and 90.3±2.9, respectively. However, the core microbiome comprised of 32 genera and 72 OTU. Infection seemingly had a minimal impact on the abomasal microbial diversity at a genus level in immune animals. Proteins predicted from whole genome shotgun (WGS) DNA sequences were assigned to 5,408 Pfam and 3,381 COG families, demonstrating dazzling arrays of functional diversity in bovine abomasal microbial communities. However, none of COG functional classes were significantly impacted by infection. Our results demonstrate that immune animals may develop abilities to maintain proper stability of their abomasal microbial ecosystem. A minimal disruption in the bovine abomasal microbiota by reinfection may contribute equally to the restoration of gastric function in immune animals.  相似文献   

8.
Individuals that display elaborate sexually selected characters often show reduced immune function. According to the immunocompetence handicap hypothesis, testosterone (T) is responsible for this result as it drives the development and maintenance of sexual characters and causes immunosuppression. But glucocorticoids also have strong influences on immune function and may also be elevated in reproductively active males. Here, we compared immune activity using the phytohemagglutinin (PHA) skin test in three discrete groups of male marine iguanas (Amblyrhynchus cristatus): territorials, satellites, and bachelors. Males of these three reproductive phenotypes had indistinguishable T concentrations during the height of the breeding season, but their corticosterone (cort) concentrations, body condition and hematocrit were significantly different. Territorial males, the animals with the most elaborate sexual ornaments and behaviors, had lower immune responses and body condition but higher cort concentrations and hematocrit than satellites or bachelors. To test directly cort's immunosuppressive role, we elevated cort by either restraining animals or additionally injecting cort and compared their PHA swelling response with the response of free-roaming animals. Such experimental elevation of cort significantly decreased immune activity in both restrained and cort-injected animals. Our data show that cort can induce immunosuppression, but they do not support the immunocompetence handicap hypothesis in its narrow sense because T concentrations were not related to immunosuppression.  相似文献   

9.
In seasonal mammals, photoperiod change is associated with a suite of alterations in physiology. It has recently been proposed that the immune response is one of the systems regulated by changes in photoperiod, although this hypothesis has not been rigorously challenged by assays of functional immune responses. The aim of this study was to test the hypothesis that photoperiod modulates immune responsiveness in Syrian (Mesocricetus auratus) and Siberian (Phodopus sungorus) hamsters. Consistent with previously reported data, short-day-housed (SD) animals exhibited a significant increase in lymph node cell (LNC) numbers and increased cellular proliferation in response to the polyclonal mitogen concanavalin A compared to long-day-housed (LD) animals. In contrast, LNC numbers from intact or gonadectomized SD animals that had been sensitized with the antigen dinitrofluorobenzene (DNFB) exhibited a reduced ex vivo proliferative response and reduced production of interleukin-6 (IL-6) compared to LD animals. In vivo studies of the contact hypersensitivity response of animals that had previously been sensitized, and subsequently challenged, with DNFB were similar in SD and LD animals, as was the proliferative activity of LNC recovered from these animals. There were also no photoperiodic differences in the antidinitrophenyl antibody response of animals sensitized with DNFB, or the anti-sheep red blood cell (srbc) response of animals immunized with srbc. Furthermore, no differences could be detected in the activity of natural killer cells from spleens of LD and SD Siberian hamsters, or in lipopolysaccharide-induced IL-6 production by LD and SD Syrian hamsters in vivo. Thus, although photoperiod is able to influence factors regulating the gross number and non-antigen-specific proliferation of lymphocytes in seasonally breeding mammals, day length does not directly influence activation of an effective immune response. The authors conclude, therefore, that expression of the immune response is not directly modified or compromised by photoperiod in these seasonally breeding hamster species.  相似文献   

10.
The immune function of wild animals has been rather little studied. Wild animals' immune function may differ from that of laboratory bred animals because of their different environments. This idea follows from the concept of resource partitioning in which animals distribute scarce resources to all aspects of life, including to costly immune responses. A logical extension of this idea is that there may be substantial interindividual variation in the immune function of wild animals. To begin to investigate this, we compared the immune function of a laboratory bred mouse strain (C57BL/6, a widely used mouse strain that makes potent immune responses) and wild caught Mus musculus. We found that by most measures of immune function, the wild caught mice had greater immune function. Specifically, wild mice had greater concentrations and more avid antigen-specific IgG responses, as well as higher concentrations of total IgG and IgE, compared with those laboratory bred mice. Moreover, flow cytometric analysis showed a comparatively greater overall level of activation of the cells of the immune system in wild mice. Lastly, we observed that immune function was substantially more variable among wild caught mice than among the laboratory bred mice. The next research challenge is to understand which aspects of an individual animal's life determine its immune function.  相似文献   

11.
In the experiments on artificial infection the survival of larvae of Oestrus ovis L. in sheep with depressed, normal and stimulated immune system was studied. The maximum number of larvae survived in immune depressed animals (62.9%), the minimum number survived in immune stimulated animals (0.4%). For the estimation of specific immune response the reaction of indirect hemagglutination (IHA), the reaction of diffused precipitation (RDP) and the immune ferment analysis (ELISA) were used.  相似文献   

12.
The repercussion on the immune response of the expression of intraspecific aggressiveness in the face of a stressor agent was investigated in rats. Ninety-day-old animals were divided into three groups: the control group (only immunological measurements were performed), the foot-shock (FS) (animals individually receiving FS), and the intraspecific aggressive response (IAR) group (animals receiving FS and presenting IAR). For immunological measurements, blood samples were collected promptly at 7 and 15 days after FS or IAR. The FS reduced the total leukocyte amount presented. However, aggressiveness triggered not only reduction of the leukocytes, but also lymphocyte decrease and neutrophil increase. Moreover, an elevation in total leukocytes associated with an increase in the humoral immune response was also observed one week after IAR. In this study, the expression of intraspecific aggressiveness in the face of a stressor seemed to activate the immune system and to potentiate the antigen specific humoral response.  相似文献   

13.
Chromium is a biologically important element for humans and laboratory animals. Although the favorable effects of trivalent chromium on immune responses of studied animals have been well documented, the precise mechanisms by which the chromium acts on immune system is relatively poor studied. In this study, real-time qPCR technique was employed to evaluate the expression profiles of four immune-related genes (B2M, MHCA, MHCB, and Rap2A) in spleens of the domestic goats, Capra hircus, feeding on four different levels of supplemental chromium (0, 0.5, 1, and 1.5 mg/day) as chromium–methionine. The results showed that 1.5 mg/day of supplemental chromium significantly increased the expression of the four studied genes (P?<?0.01). Since the studied genes play important roles in development, activation, and migration of lymphocytes, their increased expression seems to be an unknown mechanism by which chromium impose reinforcing effects on immune system. Therefore, supplemental chromium can be potentially used to improve immune responses especially in animals experiencing any type of stress such as invasion by a pathogen.  相似文献   

14.
本文给普通BALB/C小鼠口服不同剂量的链霉素、新霉素干扰动物肠道菌群平衡状态,初步研究了肠道菌群平衡紊乱对动物迟发型超敏反应、脾脏抗体形成细胞数、外周血白细胞化功能、腹腔巨噬细胞吞噬活性的影响,以初步探讨普通动物中正常菌群与免疫机制间的微生态关系。结果表明,口服两种抗生素破坏动物正常菌群平衡均可导致机体免疫机能水平降低;免疫机能降低程度与抗生素抗菌谱、药物剂量及用药时间有密切关系。提示,口服抗生素引起机体肠道正常菌群平衡紊乱是导致机体免疫机能下降的重要原因;正常菌群与机体保持稳定的平衡状态对机体免疫机能的正常发挥是必不可少的。  相似文献   

15.
Modern scientific research has shown that Acanthopanax senticosus (AS) can regulate the innate immunity of healthy animals, thus affecting the health of animals. However, there are few systematic reports on the changes of innate immune indices of healthy animals after consuming AS. The purpose of this project was to study the effect on healthy mice’s innate immunity and changes of related immune factors induced by feeding AS root powder supplementation. The results showed that the killing rate of natural cells increased in a dose-dependent manner in a certain time period. Compared to the control group, the treatment groups (T1, T2 and T3) improved significantly in the innate immune index (lysozyme, β-defensin-2 and duodenal secretory IgA (SIgA) to varying degrees) and induced corresponding changes of immune factors at certain time periods. The correlation between SIgA and IFN-γ in mouse serum was enhanced, and the higher the concentration of AS in the diet, the stronger the correlation was. However, there was no significant difference in growth performance among groups. It is proved that AS supplementation can enhance innate immunity and change several relevant immune factors and cells of healthy mice without affecting growth performance.  相似文献   

16.
Programmed cell death in the plant immune system   总被引:2,自引:0,他引:2  
Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.  相似文献   

17.
Studies of the immune response to Babesia bovis (syn. B. argentina) in Bos taurus cattle, using the passive transfer of serum from immune animals, indicated that an effector mechanism was mediated by antibodies which reacted with the parasitized erythrocytes. During removal from the peripheral blood, the parasites did not show reduced viability on subinoculation into other non-infected animals, and thus were not dead or irreversibly damaged at this time. It was concluded that opsonization of infected erythrocytes was probably the basis of protection by the system. There was some evidence that minor variation of the protective antigen(s) occurred within strains of the parasite but this had little effect on the efficiency of the host's immune response. However, there was no cross-protection between the antibodies against different strains. These interstrain differences in antibody specificity were reconciled with earlier observations that cross-immunity commonly occurs between different strains in infected animals. It was concluded that the mechanism of cross-immunity relied on priming of the host's immune system by the protective antigen(s) of the strain so that a secondary response against the heterologous strain occurred soon after challenge.  相似文献   

18.
The third-stage larvae (L3) of the parasitic nematode, Anisakis simplex, have been implicated in the induction of hyperimmune allergic reactions in orally infected humans. In this work, we have conducted a review of an investigation into immune reactions occurring in animals experimentally infected with A. simplex L3. The patterns of serum antibody productions in the experimental animals against excretory-secretory products (ESP) of A. simplex L3 contributed to our current knowledge regarding specific humoral immune reactions in humans. In our review, we were able to determine that L3 infection of experimental animals may constitute a good model system for further exploration of immune mechanisms and allergy in anisakiasis of humans.  相似文献   

19.
Wu J  Randle KE  Wu LP 《Cellular microbiology》2007,9(4):1073-1085
The immune response-deficient 1 (ird1) gene was identified in a forward genetic screen as a novel regulator for the activation of Imd NFkappaB immune signalling pathway in Drosophila. ird1 animals are also more susceptible to Escherichia coli and Micrococcus luteus bacterial infection. ird1 encodes the Drosophila homologue of the Vps15/p150 serine/threonine kinase that regulates a class III phosphoinositide 3-kinase and is necessary for phagosome maturation and starvation-induced autophagy in yeast and mammalian cells. To gain insight into the role of ird1 in the immune response, we examine how amino acid starvation affects the immune signalling pathways in Drosophila. Starvation, in the absence of infection, leads to expression of antimicrobial peptide (AMP) genes and this response is dependent on ird1 and the Imd immune signalling pathway. Starvation, in addition to bacterial infection, suppresses the AMP response in wild-type animals and reduces the ability to survive M. luteus infection. Our results suggest that starvation and innate immune signalling may be intimately linked processes.  相似文献   

20.
Senescence, a decline in survival and reproductive prospects with age, is controlled by hormones. In insects, juvenile hormone (JH) is involved in senescence with captive individuals, but its effect under natural conditions is unknown. We have addressed this gap by increasing JH levels in young and old wild males of the damselfly Hetaerina americana. We assessed survival in males that were treated with a JH analogue (methoprene), which is known to promote sexual activity, and an immune challenge, which is known to promote terminal investment in reproduction in the studied species. We replicated the same procedure in captivity (to control for environmental variation), where males were deprived of any activity or food. We expected old males to show the lowest survival after being treated with JH and immune‐challenged, because the effect of terminal investment on senescence would be exacerbated by JH. However, this should be the case for wild animals, but not for captive animals, as the effects of JH and immune challenge should lead to an increase in high energetic‐demanding activities only occurring in the wild. Old animals died sooner compared with young animals in both the wild and captivity, confirming that males are subject to senescence. In wild but not captive animals, JH decreased survival in young males and increased it in old males, confirming that JH is sensitive to the environment when shaping animal senescence. Immune challenge had no effect on survival, suggesting no effect of terminal investment on senescence. Additionally, contrary to the expected effects of terminal investment, with an immune challenge, recapture rates increased in young males and decreased in old males. Our results show that male senescence in the wild is mediated by JH and that terminal investment does not cause senescence. One explanation is that animals undergoing senescence and terminal investment modify their feeding behaviour to compensate for their physiological state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号