首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
The heat-inducible CtsR regulon of Bacillus subtilis codes for three Clp proteins with chaperone or protease activity. While the importance of ClpC and ClpP has been elucidated for a wide range of cellular adaptation processes, this study deals with the physiological role of B. subtilis ClpE. Northern experiments and reporter gene analyses revealed that ClpE is essential both for efficient CtsR-dependent gene derepression and for rerepression during heat stress. ClpEP was found to destabilize the global regulator CtsR after heat shock in vivo with different kinetics than ClpCP, which is known to degrade CtsR in vitro and in vivo upon heat stress. Furthermore, ClpE was localized at heat-generated inclusion bodies by electron microscopy. The comparison of radiolabeled aggregated protein fractions of wild-type and clpE mutant cells during heat stress displayed a significant delay of protein disaggregation in the absence of ClpE. A kinetic Western blotting approach confirmed the long-term residence of ClpE in the insoluble cell fraction rather than in the cytoplasmic fraction. These observations indicate the involvement of ClpE in global protein disaggregation. As a characteristic structural element of ClpE, the N-terminal zinc finger domain was proven to be essential for basal in vitro ATPase activity.  相似文献   

3.
4.
Controlled protein degradation is an important cellular reaction for the fast and efficient adaptation of bacteria to ever-changing environmental conditions. In the low-GC, Gram-positive model organism Bacillus subtilis, the AAA+ protein ClpC requires specific adaptor proteins not only for substrate recognition but also for chaperone activity. The McsB adaptor is activated particularly during heat stress, allowing the controlled degradation of the CtsR repressor by the ClpCP protease. Here we report how the McsB adaptor becomes activated by autophosphorylation on specific arginine residues during heat stress. In nonstressed cells McsB activity is inhibited by ClpC as well as YwlE.  相似文献   

5.
The soil bacterium Bacillus subtilis possesses a fine-tuned and complex heat stress response system. The repressor CtsR, whose activity is regulated by its modulators McsA and McsB, controls the expression of the cellular protein quality control genes clpC, clpE and clpP. Here, we show that the interaction of McsA and McsB with CtsR results in the formation of a ternary complex that not only prevents the binding of CtsR to its target DNA, but also results in a subsequent phosphorylation of McsB, McsA and CtsR. We further demonstrate that McsB is a tyrosine kinase that needs McsA to become activated. ClpC inhibits the kinase activity of McsB, indicating a direct role in initiating CtsR-controlled heat shock response. Interestingly, the kinase domain of McsB is homologous to guanidino phosphotransferase domains originating from eukaryotic arginine and creatine kinases. Mutational analysis of key residues of the guanidino kinase domain demonstrated that McsB utilizes this domain to catalyze the tyrosine phosphorylation. McsB represents therefore a new kind of tyrosine kinase, driven by a guanidino phosphotransferase domain.  相似文献   

6.
During the development of transformability (competence), Bacillus subtilis synthesizes a set of proteins that mediate both the uptake of DNA at the cell poles and the recombination of this DNA with the resident chromosome. Most, if not all, of these Com proteins localize to the poles of the cell, where they associate with one another, and are then seen to delocalize as transformability declines. In this study, we use fluorescence microscopy to analyse the localization and delocalization processes. We show that localization most likely occurs by a diffusion-capture mechanism, not requiring metabolic energy, whereas delocalization is prevented in the presence of sodium azide. The kinetics of localization suggest that this process requires the synthesis of a critical protein or set of proteins, which are needed to anchor the Com protein complex to the poles. We further show that the protein kinase proteins McsA and McsB are needed for delocalization, as are ClpP and either of the AAA+ ( A TPases a ssociated with a variety of cellular a ctivities) proteins ClpC or ClpE. Of these proteins, at least McsB, ClpC and ClpP localize to the cell poles of competent cells. Our evidence strongly suggests that delocalization depends on the degradation of the postulated anchor protein(s) by the McsA-McsB-(ClpC or ClpE)-ClpP protease in an ATP-dependent process that involves the autophosphorylation of McsB. The extent of cell–pole association at any given time reflects the relative rates of localization and delocalization. The kinetics of this dynamic process differs for individual Com proteins, with the DNA-binding proteins SsbB and DprA exhibiting less net localization.  相似文献   

7.
In vitro mariner transposon mutagenesis of Streptococcus pneumoniae chromosomal DNA was used to isolate regulatory mutants affecting expression of the comCDE operon, encoding the peptide quorum-sensing two-component signal transduction system controlling competence development. A transposon insertion leading to increased comC expression was found to lie directly upstream from the S. pneumoniae clpP gene, encoding the proteolytic subunit of the Clp ATP-dependent protease, whose expression in Bacillus subtilis is controlled by the CtsR repressor. In order to examine clp gene regulation in S. pneumoniae, a detailed analysis of the complete genome sequence was performed, indicating that there are five likely CtsR-binding sites located upstream from the clpE, clpP, and clpL genes and the ctsR-clpC and groESL operons. The S. pneumoniae ctsR gene was cloned under the control of an inducible promoter and used to demonstrate regulation of the S. pneumoniae clpP and clpE genes and the clpC and groESL operons by using B. subtilis as a heterologous host. The CtsR protein of S. pneumoniae was purified and shown to bind specifically to the clpP, clpC, clpE, and groESL regulatory regions. S. pneumoniae Delta ctsR, Delta clpP, Delta clpC, and Delta clpE mutants were constructed by gene deletion/replacement. ClpP was shown to act as a negative regulator, preventing competence gene expression under inappropriate conditions. Phenotypic analyses also indicated that ClpP and ClpE are both required for thermotolerance. Contrary to a previous report, we found that ClpC does not play a major role in competence development, autolysis, pneumolysin production, or growth at high temperature of S. pneumoniae.  相似文献   

8.
9.
The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. In plant chloroplasts and cyanobacteria, the essential constitutive Clp protease consists of the Hsp100/ClpC chaperone partnering a proteolytic core of catalytic ClpP and noncatalytic ClpR subunits. In the present study, we have examined putative determinants conferring the highly specific association between ClpC and the ClpP3/R core from the model cyanobacterium Synechococcus elongatus. Two conserved sequences in the N-terminus of ClpR (tyrosine and proline motifs) and one in the N-terminus of ClpP3 (MPIG motif) were identified as being crucial for the ClpC-ClpP3/R association. These N-terminal domains also influence the stability of the ClpP3/R core complex itself. A unique C-terminal sequence was also found in plant and cyanobacterial ClpC orthologues just downstream of the P-loop region previously shown in Escherichia coli to be important for Hsp100 association to ClpP. This R motif in Synechococcus ClpC confers specificity for the ClpP3/R core and prevents association with E. coli ClpP; its removal from ClpC reverses this core specificity.  相似文献   

10.
The Hsp100/Clp ATPases constitute a family of closely related proteins of which some members function solely as chaperones whereas others additionally can associate with the unrelated ClpP peptidase forming a Clp proteolytic complex. We have investigated the role of four Clp ATPases in the versatile pathogen, Staphylococcus aureus. Previously, we showed that ClpX is required for expression of major virulence factors and for virulence of S. aureus, but not for survival during heat shock. In the present study, we have inactivated clpC, clpB and clpL and, while none of these mutations affected toxin production, both ClpC and ClpB and to a minor extent ClpL were required for intracellular multiplication within bovine mammary epithelial cells. These defects were paralleled by an inability of the clpC mutant to grow at high temperature and of the clpB mutant to induce thermotolerance indicating that the protective functions of these proteins are required both at high temperature and during infection. By primer extension analysis and footprint studies, we show that expression of clpC and clpB is controlled by the negative heat-shock regulator, CtsR, and that ClpC is required for its repressor activity. Thus, ClpC is a likely sensor of stress encountered during both environmental stress and infection. In addition to virulence factor production the ability to form biofilms is of importance to S. aureus as a nosocomial pathogen. Interestingly, biofilm formation was reduced in the absence of ClpX or ClpC whereas it was enhanced in the absence of ClpP. Thus, our data show that Clp proteolytic complexes and the Clp ATPases control several key processes of importance to the success of S. aureus as a pathogen.  相似文献   

11.
Regulated proteolysis is required in all organisms for the removal of misfolded or degradation-tagged protein substrates in cellular quality control pathways. The molecular machines that catalyze this process are known as ATP-dependent proteases with examples that include ClpAP and ClpCP. Clp/Hsp100 subunits form ring-structures that couple the energy of ATP binding and hydrolysis to protein unfolding and subsequent translocation of denatured protein into the compartmentalized ClpP protease for degradation. Copies of the clpA, clpC, clpE, clpK, and clpL genes are present in all characterized bacteria and their gene products are highly conserved in structure and function. However, the evolutionary relationship between these proteins remains unclear. Here we report a comprehensive phylogenetic analysis that suggests divergent evolution yielded ClpA from an ancestral ClpC protein and that ClpE/ClpL represent intermediates between ClpA/ClpC. This analysis also identifies a group of proteobacterial ClpC proteins that are likely not functional in regulated proteolysis. Our results strongly suggest that bacterial ClpC proteins should not be assumed to all function identically due to the structural differences identified here.  相似文献   

12.
13.
The heat shock response in bacterial cells is characterized by rapid induction of heat shock protein expression, followed by an adaptation period during which heat shock protein synthesis decreases to a new steady-state level. In this study we found that after a shift to a high temperature the Clp ATPase (ClpE) in Lactococcus lactis is required for such a decrease in expression of a gene negatively regulated by the heat shock regulator (CtsR). Northern blot analysis showed that while a shift to a high temperature in wild-type cells resulted in a temporal increase followed by a decrease in expression of clpP encoding the proteolytic component of the Clp protease complex, this decrease was delayed in the absence of ClpE. Site-directed mutagenesis of the zinc-binding motif conserved in ClpE ATPases interfered with the ability to repress CtsR-dependent expression. Quantification of ClpE by Western blot analysis revealed that at a high temperature ClpE is subjected to ClpP-dependent processing and that disruption of the zinc finger domain renders ClpE more susceptible. Interestingly, this domain resembles the N-terminal region of McsA, which was recently reported to interact with the CtsR homologue in Bacillus subtilis. Thus, our data point to a regulatory role of ClpE in turning off clpP gene expression following temporal heat shock induction, and we propose that this effect is mediated through CtsR.  相似文献   

14.
CtsR, the global heat shock repressor in low GC, Gram+ bacteria, regulates a crucial subset of genes involved in protein quality control. CtsR de-repression occurs not only during heat stress but also during a variety of other environmental stresses, most notably thiol-specific oxidative stress. Here we report that McsA acts as a molecular redox switch that regulates CtsR de-repression via the activation of McsB. Once critical thiols of McsA become oxidized, the strong interaction between McsA and McsB is interrupted and free McsB is no longer inhibited by McsA, resulting in the inactivation of CtsR. This mechanism differs significantly from inactivation of CtsR during heat stress demonstrating a dual activity control of CtsR. Moreover, we show that in those low GC, Gram+ bacteria, which lack the McsA/McsB complex, the Zn finger protein ClpE is able to sense and respond to oxidative stress, also resulting in CtsR inactivation.  相似文献   

15.
Distinctive types of ATP-dependent Clp proteases in cyanobacteria   总被引:2,自引:0,他引:2  
Cyanobacteria are the only prokaryotes that perform oxygenic photosynthesis and are thought to be ancestors to plant chloroplasts. Like chloroplasts, cyanobacteria possess a diverse array of proteolytic enzymes, with one of the most prominent being the ATP-dependent Ser-type Clp protease. The model Clp protease in Escherichia coli consists of a single ClpP proteolytic core flanked on one or both ends by a HSP100 chaperone partner. In comparison, cyanobacteria have multiple ClpP paralogs plus a ClpP variant (ClpR), which lacks the catalytic triad typical of Ser-type proteases. In this study, we reveal that two distinct soluble Clp proteases exist in the unicellular cyanobacterium Synechococcus elongatus. Each protease consists of a unique proteolytic core comprised of two separate Clp subunits, one with ClpP1 and ClpP2, the other with ClpP3 and ClpR. Each core also associates with a particular HSP100 chaperone partner, ClpC in the case of the ClpP3/R core, and ClpX for the ClpP1/P2 core. The two adaptor proteins, ClpS1 and ClpS2 also interact with the ClpC chaperone protein, likely increasing the range of protein substrates targeted by the Clp protease in cyanobacteria. We also reveal the possible existence of a third Clp protease in Synechococcus, one which associates with the internal membrane network. Altogether, we show that presence of several distinctive Clp proteases in cyanobacteria, a feature which contrasts from that in most other organisms.  相似文献   

16.
17.
We identified, in the facultative intracellular pathogen Listeria monocytogenes , a previously unknown Clp ATPase, unique among the HSP100 proteins because of the presence of a short N-terminal region with a potential zinc finger motif. This protein of 726 amino acids is highly homologous to ClpE of Bacillus subtilis , and is a member of a new subfamily of HSP100/Clp ATPases. The clpE gene is transcribed as a monocistronic mRNA from a typical consensus σA promoter. clpE is not stimulated by various stresses, but is upregulated in a clpC mutant. This is the first example of cross-regulation between Clp ATPases. By constructing a clpE mutant of L. monocytogenes , we found that ClpE is required for prolonged survival at 42°C and is involved in the virulence of this pathogen. A double mutant deficient in both ClpE and ClpC was avirulent in a mouse model and completely eliminated in the liver. Electron microscopy studies did not show any morphological alterations in clpE or clpC mutants. In the clpE–clpC double mutant, however, cell division was affected, indicating that ClpE acts synergistically with ClpC in cell septation. These results show that the Clp chaperones play a crucial role in both cell division and virulence of L. monocytogenes .  相似文献   

18.
Halperin T  Ostersetzer O  Adam Z 《Planta》2001,213(4):614-619
The chloroplast ATP-dependent Clp protease (EC 3.4.21.92) is composed of the proteolytic subunit ClpP and the regulatory ATPase, ClpC. Although both subunits are found in the stroma, the interaction between the two is dynamic. When immunoprecipitation with antibodies against ClpC was performed on stroma from dark-adapted pea (Pisum sativum L. cv. Alaska) chloroplasts, ClpC but not ClpP was precipitated. However, when stroma was supplemented with ATP, both ClpC and ClpP were precipitated. Co-immunoprecipitation was even more efficient in the presence of ATP-gamma-S, suggesting that the association between regulatory and proteolytic subunits is dependent on binding of ATP to ClpC, but not its hydrolysis. To further test this association, stroma was fractionated by column chromatography, and the presence of Clp subunits in the different fractions was monitored immunologically. When stroma depleted of ATP was fractionated on an ion-exchange column, ClpP and ClpC migrated separately, whereas in the presence of ATP-gamma-S both subunits co-migrated. Similar results were observed in size-exclusion chromatography. To further characterize the precipitated enzyme, its proteolytic activity was assayed by testing its ability to degrade beta-casein. No degradation was observed in the absence of ATP, and degradation was inhibited in the presence of phenylmethylsulfonyl fluoride, consistent with Clp being an ATP-dependent serine protease. The activity of the isolated enzyme was further tested using chimeric OE33 as a model substrate. This protein was also degraded in an ATP-dependent manner, supporting the suggested role of Clp protease as a major housekeeping protease in the stroma.  相似文献   

19.
The molecular chaperone ClpC/Hsp93 is essential for chloroplast function in vascular plants. ClpC has long been held to act both independently and as the regulatory partner for the ATP-dependent Clp protease, and yet this and many other important characteristics remain unclear. In this study, we reveal that of the two near-identical ClpC paralogs (ClpC1 and ClpC2) in Arabidopsis chloroplasts, along with the closely related ClpD, it is ClpC1 that is the most abundant throughout leaf maturation. An unexpectedly large proportion of both chloroplast ClpC proteins (30% of total ClpC content) associates to envelope membranes in addition to their stromal localization. The Clp proteolytic core is also bound to envelope membranes, the amount of which is sufficient to bind to all the similarly localized ClpC. The role of such an envelope membrane Clp protease remains unclear although it appears uninvolved in preprotein processing or Tic subunit protein turnover. Within the stroma, the amount of oligomeric ClpC protein is less than that of the Clp proteolytic core, suggesting most if not all stromal ClpC functions as part of the Clp protease; a proposal supported by the near abolition of Clp degradation activity in the clpC1 knock-out mutant. Overall, ClpC appears to function primarily within the Clp protease, as the principle stromal protease responsible for maintaining homeostasis, and also on the envelope membrane where it possibly confers a novel protein quality control mechanism for chloroplast preprotein import.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号