首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bacterium, Eubacterium rectale IIIH, which possessed arylsulfotransferase (ASST) activity was isolated from human feces. The ASST gene (astA) was cloned and the corresponding protein partially characterized. This gene shows only moderate homology to the previously sequenced ASST genes of Klebsiella and Enterobacter, which are very closely related to each other. Journal of Industrial Microbiology & Biotechnology (2000) 25, 305–309. Received 02 August 2000/ Accepted in revised form 19 November 2000  相似文献   

2.
A novel type of aryl sulfotransferase is produced by an anaerobic bacterium of human intestine, Eubacterium A-44. Aryl sulfotransferase separated from this bacterium differs from the sulfotransferase which uses 3'-phosphoadenosine 5'-phosphosulfate as a donor. The enzyme catalyzes stoichiometric transfer of a sulfate group from a phenol sulfate ester to other phenolic compounds, with strict specificity. The optimal pH and molecular weight were 8-9 and 315,000, respectively.  相似文献   

3.
Flagella from Roseburia cecicola, an obligately anaerobic bacterium originally isolated from murine caecal mucosa, were purified by mechanical shearing followed by differential centrifugation. Purity of the flagellar preparation was determined by polyacrylamide gel electrophoresis, electron microscopy and chemical analysis. The flagella were composed of a single protein subunit (flagellin) with an estimated molecular weight of 42 000. The amino acid composition of the flagellin was similar to that of some facultatively anaerobic and aerobic bacteria.  相似文献   

4.
A novel type of sulfotransferase was purified from Klebsiella K-36, an intestinal bacterium of rat. The enzyme (M(r) 160,000) is composed of two subunits (M(r) 73,000) with pI and optimal pH values of 5.3 and 10-10.5, respectively. The apparent Km for PNS (p-nitrophenyl sulfate) using phenol as an acceptor and that for phenol using PNS as a donor substrate were determined to be 0.11 and 0.66 mM, respectively. The enzyme is activated by magnesium ion and inhibited by EDTA.  相似文献   

5.
6.
Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90°C. It was found to be able to grow in the presence of micromolar molecular oxygen (O2). Activity of NADH oxidase was detected in the cell-free extract of T. hypogea, from which an NADH oxidase was purified to homogeneity. The purified enzyme was a homodimeric flavoprotein with a subunit of 50 kDa, revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It catalyzed the reduction of O2 to hydrogen peroxide (H2O2), specifically using NADH as electron donor. Its catalytic properties showed that the NADH oxidase had an apparent Vmax value of 37 mol NADH oxidized min–1 mg–1 protein. Apparent Km values for NADH and O2 were determined to be 7.5 M and 85 M, respectively. The enzyme exhibited a pH optimum of 7.0 and temperature optimum above 85°C. The NADH-dependent peroxidase activity was also present in the cell-free extract, which could reduce H2O2 produced by the NADH oxidase to H2O. It seems possible that O2 can be reduced to H2O by the oxidase and peroxidase, but further investigation is required to conclude firmly if the purified NADH oxidase is part of an enzyme system that protects anaerobic T. hypogea from accidental exposure to O2.  相似文献   

7.
Two novel chondroitinases, chondroitin ABC lyase (EC 4.2.2.4) and chondroitin AC lyase (EC 4.2.2.5), have been purified from Bacteroides stercoris HJ-15, which was isolated from human intestinal bacteria with glycosaminoglycan degrading enzymes. Chondroitin ABC lyase was purified to apparent homogeneity by a combination of QAE-cellulose, CM-Sephadex C-50, hydroxyapatite and Sephacryl S-300 column chromatography with a final specific activity of 45.7 micromol.min-1.mg-1. Chondroitin AC lyase was purified to apparent homogeneity by a combination of QAE-cellulose, CM-Sephadex C-50, hydroxyapatite and phosphocellulose column chromatography with a final specific activity of 57.03 micromol.min-1.mg-1. Chondroitin ABC lyase is a single subunit of 116 kDa by SDS/PAGE and gel filtration. Chondroitin AC lyase is composed of two identical subunits of 84 kDa by SDS/PAGE and gel filtration. Chondroitin ABC and AC lyases showed optimal activity at pH 7.0 and 40 degrees C, and 5.7-6.0 and 45-50 degrees C, respectively. Both chondroitin lyases were potently inhibited by Cu2+, Zn2+, and p-chloromercuriphenyl sulfonic acid. The purified Bacteroidal chondroitin ABC lyase acted to the greatest extent on chondroitin sulfate A (chondroitin 4-sulfate), to a lesser extent on chondroitin sulfate B (dermatan sulfate) and C (chondroitin 6-sulfate). The purified chondroitin AC lyase acted to the greatest extent on chondroitin sulfate A, and to a lesser extent on chondroitin C and hyaluronic acid. They did not act on heparin and heparan sulfate. These findings suggest that the biochemical properties of these purified chondroitin lyases are different from those of the previously purified chondroitin lyases.  相似文献   

8.
Phosphoenolpyruvate (PEP) carboxykinase was purified 42-fold with a 25% yield from cell extracts of Ruminococcus flavefaciens by ammonium sulfate precipitation, preparative isoelectric focusing, and removal of carrier ampholytes by chromatography. The enzyme had a subunit molecular mass of ∼66.3 kDa (determined by mass spectrometry), but was retained by a filter having a 100-kDa nominal molecular mass cutoff. Optimal activity required activation of the enzyme by Mn2+ and stabilization of the nucleotide substrate by Mg2+. GDP was a more effective phosphoryl acceptor than ADP, while IDP was not utilized. Under optimal conditions the measured activity in the direction of PEP carboxylation was 17.2 μmol min–1 (mg enzyme)–1. The apparent K m values for PEP (0.3 mM) and GDP (2.0 mM) were 9- and 14-fold lower than the apparent K m values for the substrates of the back reaction (oxaloacetate and GTP, respectively). The data are consistent with the involvement of PEP carboxykinase as the primary carboxylation enzyme in the fermentation of cellulose to succinate by this bacterium. Received: 20 August 1996 / Accepted: 28 December 1996  相似文献   

9.
Protoporphyrinogen oxidase has been solubilized from plasma membranes of Desulfovibrio gigas. The enzyme was purified to apparent homogeneity with single silver-stained protein bands on isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gels. This protoporphyrinogen oxidase has a molecular weight (Mr) of 148,000 and is composed of three dissimilar subunits of Mrs 12,000, 18,500, and 57,000, which are held together by sulfhydryl bonds. Unlike other protoporphyrinogen oxidases, which use molecular oxygen as an electron acceptor, this enzyme does not couple to oxygen. The protoporphyrinogen oxidase donates electrons to 2,6-dichlorophenol-indophenol but not to NAD+, NADP+, flavin adenine dinucleotide, or flavin mononucleotide. The natural physiological electron acceptor of the protoporphyrinogen oxidase from D. gigas is unknown. By using 2,6-dichlorophenol-indophenol as the electron acceptor, the Km and Vmax values for oxidation of protoporphyrinogen were determined to be 21 microM and 8.38 nmol/min per 70 micrograms of protein, respectively. The catalytic rate constant, Kcat, was calculated to be 17.7 mol of protoporphyrin formed per mole of enzyme per min of incubation, and the Kcat/Km was 0.84. Energies of activation were calculated from Arrhenius plots with 7,429 cal (ca. 31,080 J)/mol per degree below 10 degrees C and 1,455 cal (ca. 6,088, J)/mol per degree above 10 degrees C. Optimum enzyme activity was at 23 degrees C, and inhibition was observed with both N-ethylmaleimide and iodoacetamide.  相似文献   

10.
Fusobacterium K-60, a ginsenoside Rb1-metabolizing bacterium, was isolated from human intestinal feces. From this Fusodobacterium K-60, a ginsenoside Rb1-metabolizing enzyme, beta-glucosidase, has been purified. The enzyme was purified to apparent homogeneity by a combination of butyl-Toyopearl, hydroxyapatite ultragel, Q-Sepharose, and Sephacryl S-300 HR column chromatographies with a final specific activity of 1.52 micromol/min/mg. It had optimal activity at pH 7.0 and 40 degrees C. The molecular mass of this purified enzyme was 320 kDa, with 4 identical subunits (80 kDa). The purified enzyme activity was inhibited by Ba++, Fe++, and some agents that modify cysteine residues. This enzyme strongly hydrolyzed sophorose, followed by p-nitrophenyl beta-D-glucopyranoside, esculin, and ginsenoside Rb1. However, this enzyme did not change 20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol (IH-901) to 20(S)-protopanaxadiol, while it weakly changed ginsenoside Rb1 to IH-901. These findings suggest that the Fusobacterial beta-glucosidase is a novel enzyme transforming ginsenoside Rb1.  相似文献   

11.
A novel, strictly anaerobic, gram-negative, non-spore-forming, fusiform, rod-shaped bacterium having high dehydrodivanillin (DDV)-degrading activity was isolated from cow ruminal fluid. This strain degraded a range of six main lignin-related compounds such as DDV, ferulic acid, dehydrodiisoeugenol, guaiacoxyacetic acid, vanillin, and veratrylglycerol-beta-guaiacyl ether to the extent of 14 to 83% within 2 days under strictly anaerobic conditions. As DDV degradation intermediates, three aromatic compounds (dehydrodivanillic acid, vanillic acid, and 5-carboxyvanillic acid) and two alicyclic compounds (cyclohexanecarboxylic acid and cyclohexanol) were detected by thin-layer, high-performance liquid, and gas chromatography and mass spectrometry. The addition of 1% glucose and peptone in a synthetic medium stimulated growth of the strain but slowed down DDV degradation. The presence of 0.1% yeast extract increased both cell growth and DDV degradation. The growth yield in defined medium was 151.5 g (dry weight) of cells per mol of DDV utilized. Characterization of the strain indicated that it was distinct from known Fusobacterium and Clostridium species. The bacterium was easily induced to form protoplasts after treatment with either penicillin or lysozyme. The frequencies of protoplast formation and regeneration in the strain were 94 and 18%, respectively.  相似文献   

12.
【目的】分离、保护油藏嗜热微生物资源,解析其主要的代谢特征。【方法】利用Hungte厌氧分离技术从大港油田埕海一区油层采出液中分离出厌氧菌株BF1。通过生理生化特征分析、16S rRNA基因序列比对与电化学分析,确定BF1的分类地位及其S元素代谢对腐蚀电流的影响。【结果】菌株BF1为严格嗜热厌氧革兰氏阴性杆菌,顶端产芽孢、不运动,菌体大小为0.42μm×(1.6 5.4)μm,单生、成对或成串生长。其温度生长范围为45°C 75°C(最适温度60°C);pH生长范围在4.5 8.5(最适pH 6.5)之间,比生长速率(μm)0.99 h 1,倍增时间为42 min。能利用葡萄糖、松三糖、棉子糖、甘露糖、乳糖、纤维二糖、果糖、核糖等碳水化合物,利用葡萄糖发酵的产物是乙醇、乙酸、CO2及少量的H2。菌株BF1能还原亚硫酸盐与硫代硫酸盐产生H2S,其耐受上限分别为50 mmol/L和75 mmol/L;还原硫代硫酸钠(50 mmol/L)后其极化电阻由2 099/cm2降低至776/cm2,腐蚀电流由9.936e-006 A提高至3.25e-005 A。细胞膜脂肪酸主要由高级饱和脂肪酸组成,含量最丰富的为十五烷酸占70.6%。菌株BF1的DNA(G+C)mol%含量为34.0%,其16S rRNA与Thermoanaerobacter pseudethanolicus DSM 2355T相似性最高,为98.3%,与T.brockii subsp.brockii DSM 1457T次之,为98.0%。菌株BF1的许多生理、生化特征与T.pseudethanolicus DSM 2355T和T.brockii subsp.brockii DSM 1457T有着明显的差别,如倍增时间、最适生长温度及底物利用等;而菌株BF1的细胞膜脂肪酸组成与T.pseude-thanolicus DSM 2355T也不相同。【结论】菌株BF1可能是Thermoanaerobacter属中的一个新种,其确切分类地位还需要进一步进行DNA分子杂交;其代谢元素硫提高腐蚀电流密度,可能会对油田管道与设备造成腐蚀。  相似文献   

13.
Summary A cellulolyticm obligately anaerobic, extreme thermophile (strain NA10) was isolated from an alkaline hot spring in Nagano Prefecture, Japan. The microorganism was a non-spore-forming, flagellated rod which had a negative reaction to Gram stain, and occurred singly or in pairs. The growth temperature was between 50° C and 85° C with the optimum at 75° C, and the growth pH was between 6.0 and 9.5 with the optimum at 8.1. The anaerobe characteristically fermented cellulose, and produced acetic acid, H2, CO2 (main products) and lactic acid (minor product). The DNA had a base composition of 37.7 mol% guanine+cytosine content.  相似文献   

14.
An anaerobic, motile, gram-negative, rod-shaped bacterium is described which degrades benzoate in coculture with an H2-utilizing organism and in the absence of exogenous electron acceptors such as O2, SO 4 = or NO 3 - . The bacterium was isolated from a municipal primary, anaerobic sewage digestor using anaerobic roll-tube medium with benzoate as the main energy source and in syntrophic association with an H2-utilizing sulfate-reducing Desulfovibrio sp. which cannot utilize benzoate or fatty acids apart from formate as energy source. The benzoate utilizer produced acetate (3 mol/mol of substrate degraded) and presumably CO2 and H2, or formate from benzoate. In media without sulfate and with Methanospirillum hungatei (a methanogen that utilizes only H2–CO2 or formate as the energy source) added, 3 mol of acetate and 0.7 mol of methane were produced per mol of benzoate and CO2 was probably formed. Low numbers of Desulfovibrio sp. were present in the methanogenic coculture and a pure coculture of the benzoate utilizer with M. hungatei was not obtained. The generation times for growth of the sulfate-reducing and methanogenic cocultures were 132 and 166h, respectively. The benzoate utilizer did not utilize other common aromatic compounds, C 3 - –C7 monocarboxylic acids, or C4-C6 dicarboxylic acids for growth, nor did it appear to use SO 4 = , NO 3 - or fumarate as alternative electron acceptors. Addition of H2 inhibited growth and benzoate degradation.  相似文献   

15.
An obligately anaerobic bacterium which transforms several chlorinated phenols was isolated. Dechlorination of the substituents ortho to the phenolic OH group was preferred, while removal of a meta-substituted chlorine was observed only with 3,5-dichlorophenol. The bacterium was a gram-positive, endospore-forming, motile, slightly curved rod. Sulfate was not reduced. Nitrate was reduced via nitrite to ammonium. The bacterium is related to the genus Clostridium. The highest growth rate was obtained in a medium containing pyruvate and yeast extract. Pyruvate supported growth as the sole source of carbon, and the fermentation of pyruvate produced almost equimolar amounts of acetate.  相似文献   

16.
A novel, strictly anaerobic, gram-negative, non-spore-forming, fusiform, rod-shaped bacterium having high dehydrodivanillin (DDV)-degrading activity was isolated from cow ruminal fluid. This strain degraded a range of six main lignin-related compounds such as DDV, ferulic acid, dehydrodiisoeugenol, guaiacoxyacetic acid, vanillin, and veratrylglycerol-beta-guaiacyl ether to the extent of 14 to 83% within 2 days under strictly anaerobic conditions. As DDV degradation intermediates, three aromatic compounds (dehydrodivanillic acid, vanillic acid, and 5-carboxyvanillic acid) and two alicyclic compounds (cyclohexanecarboxylic acid and cyclohexanol) were detected by thin-layer, high-performance liquid, and gas chromatography and mass spectrometry. The addition of 1% glucose and peptone in a synthetic medium stimulated growth of the strain but slowed down DDV degradation. The presence of 0.1% yeast extract increased both cell growth and DDV degradation. The growth yield in defined medium was 151.5 g (dry weight) of cells per mol of DDV utilized. Characterization of the strain indicated that it was distinct from known Fusobacterium and Clostridium species. The bacterium was easily induced to form protoplasts after treatment with either penicillin or lysozyme. The frequencies of protoplast formation and regeneration in the strain were 94 and 18%, respectively.  相似文献   

17.
An obligately anaerobic bacterium which transforms several chlorinated phenols was isolated. Dechlorination of the substituents ortho to the phenolic OH group was preferred, while removal of a meta-substituted chlorine was observed only with 3,5-dichlorophenol. The bacterium was a gram-positive, endospore-forming, motile, slightly curved rod. Sulfate was not reduced. Nitrate was reduced via nitrite to ammonium. The bacterium is related to the genus Clostridium. The highest growth rate was obtained in a medium containing pyruvate and yeast extract. Pyruvate supported growth as the sole source of carbon, and the fermentation of pyruvate produced almost equimolar amounts of acetate.  相似文献   

18.
The expression of a high-Mr sialogalactoprotein (gp580) on rat 13762NF mammary adenocarcinoma cells was identified and correlated with spontaneous metastatic potential to colonize lung [Steck & Nicolson (1983) Exp. Cell Res. 147, 255-267]. Using a highly metastatic tumour-cell clone, MTLn3, we isolated and characterized gp580 from cells growing in vitro and in vivo in the mammary fat-pads of Fischer 344 rats. The glycoprotein was extracted with 4 M-guanidinium chloride/4% Zwittergent 3-12 solution in the presence of proteinase inhibitors. The extracts were then subjected to dissociative CsCl-density-gradient centrifugation, gel filtration on Sepharose CL-2B columns and ion-exchange chromatography on DEAE-Sephacel. The isolated glycoprotein possessed low electrophoretic mobility in SDS/polyacrylamide gels, and after desialylation bound 125I-labelled peanut agglutinin. Electrophoresis of gp580 in polyacrylamide-gradient gels resulted in a diffuse but homogeneous migrating band of Mr approx. 55,000. After removal of carbohydrate, gp580 was demonstrated to have a protein core of Mr approx. 150,000. The gp580 had a high density (1.430 g/ml) on isopycnic centrifugation in 4 M-guanidinium chloride and was resistant to most proteinases and other degradative enzymes, suggesting a mucin-like structure. Amino acid and carbohydrate analyses revealed that gp580 has high contents of serine, threonine, glutamic acid, aspartic acid, glucosamine and galactosamine; several acidic and neutral oligosaccharides were obtained from alkaline-borohydride digests. Cellular localization studies suggested that gp580 is associated mainly with the cell-surface and extracellular-matrix fractions of MTLn3 cells.  相似文献   

19.
A sulfate-reducing bacterium (SRB) was isolated from a continuous anaerobic digester, which converted the furfural-containing wastewater to methane and CO2. This SRB isolate could use furfural, furfuryl alcohol, and 2-furoic acid as sole source of carbon and energy in a defined mineral sulfate medium. Acetic acid was the major end product of furfural degradation. This organism also used wide varieties of other carbon sources, including ethanol, pyruvate, lactate, succinate, propanol, formate, and malate. The SRB isolate contained the electron carrier desulfoviridin. It used SO4, NO3, and thiosulfate as electron acceptors. This isolate used ammonium chloride, nitrate and glutamate as nitrogen source. The characteristics of the SRB isolate were closely similar toDesulfovibrio sp.  相似文献   

20.
An equol-producing bacterium was newly isolated from the feces of healthy humans and its morphological and biochemical properties were characterized. The cells were obligate anaerobes. They were non-sporulating, non-motile, gram-positive bacilliform bacteria with a pleomorphic morphology. The strain was catalase-positive, and oxidase-, urease-, and indole-negative. The only other sugar utilized by the strain was glycerin. The strain also degraded gelatin, but not esculin. It was most closely related to Eggerthella hongkongensis HKU10, with 93.3% 16S rDNA nucleotide sequence homology. Based on these features, the isolate was identified as a novel species of the genus Eggerthella. It was named Eggerthella sp. YY7918. Strain YY7918 converted substrates daidzein and dihydrodaidzein into S-equol, but did not convert daidzin, glysitein, genistein, or formononetin into it. An antimicrobial susceptibility assay indicated that strain YY7918 was susceptible to aminoglycoside-, tetracycline-, and new quinolone-antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号