首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Telomere-specific repeat sequences are essential for chromosome end stability. Telomerase maintains telomere length by adding sequences de novo onto chromosome ends. The template domain of the telomerase RNA component dictates synthesis of species-specific telomeric repeats and other regions of the RNA have been suggested to be important for enzyme structure and/or catalysis. Using enzyme reconstituted in vitro with RNAs containing deletions or substitutions we identified nucleotides in the RNA component that are important for telomerase activity. Although many changes to conserved features in the RNA secondary structure did not abolish enzyme activity, levels of activity were often greatly reduced, suggesting that regions other than the template play a role in telomerase function. The template boundary was only altered by changes in stem II that affected the conserved region upstream of the template, not by changes in other regions, such as stems I, III and IV, consistent with a role of the conserved region in defining the 5' boundary of the template. Surprisingly, telomerase RNAs with substitutions or deletion of residues potentially abolishing the conserved pseudoknot structure had wild-type levels of telomerase activity. This suggests that this base pairing interaction may not be required for telomerase activity per se but may be conserved as a regulatory site for the enzyme in vivo.  相似文献   

3.
The ribonucleoprotein enzyme telomerase synthesizes one strand of telomeric DNA by copying a template sequence within the RNA moiety of the enzyme. Kinetic studies of this polymerization reaction were used to analyze the mechanism and properties of the telomerase from Tetrahymena thermophila. This enzyme synthesizes TTGGGG repeats, the telomeric DNA sequence of this species, by elongating a DNA primer whose 3' end base pairs with the template-forming domain of the RNA. The enzyme was found to act nonprocessively with short (10- to 12-nucleotide) primers but to become processive as TTGGGG repeats were added. Variation of the 5' sequences of short primers with a common 3' end identified sequence-specific effects which are distinct from those involving base pairing of the 3' end of the primer with the RNA template and which can markedly induce enzyme activity by increasing the catalytic rate of the telomerase polymerization reaction. These results identify an additional mechanistic basis for telomere and DNA end recognition by telomerase in vivo.  相似文献   

4.
5.
Telomerase contains two essential components: an RNA molecule that templates telomeric repeat synthesis and a catalytic protein component. Human telomerase is processive, while the mouse enzyme has much lower processivity. We have identified nucleotide determinants in the telomerase RNA that are responsible for this difference in processivity. Mutations adjacent to the template region of human and mouse telomerase RNA significantly altered telomerase processivity both in vitro and in vivo. We also identified functionally important nucleotides in the pseudoknot domain of telomerase RNA that potentially mediate the incompatibility between human TERT and mouse telomerase RNA. These experiments identify essential residues of the telomerase RNA that regulate telomerase activity and processivity.  相似文献   

6.
RNA binding domain of telomerase reverse transcriptase   总被引:13,自引:0,他引:13       下载免费PDF全文
  相似文献   

7.
8.
9.
10.
11.
12.
C Autexier  R Pruzan  W D Funk    C W Greider 《The EMBO journal》1996,15(21):5928-5935
Telomerase is a ribonucleoprotein that catalyzes telomere elongation through the addition of TTAGGG repeats in humans. Activation of telomerase is often associated with immortalization of human cells and cancer. To dissect the human telomerase enzyme mechanism, we developed a functional in vitro reconstitution assay. After removal of the essential 445 nucleotide human telomerase RNA (hTR) by micrococcal nuclease digestion of partially purified human telomerase, the addition of in vitro transcribed hTR reconstituted telomerase activity. The activity was dependent upon and specific to hTR. Using this assay, truncations at the 5' and 3' ends of hTR identified a functional region of hTR, similar in size to the full-length telomerase RNAs from ciliates. This region is located between positions 1-203. Furthermore, we found that residues 1-44, 5' to the template region (residues 46-56) are not essential for activity, indicating a minimal functional region is located between residues 44-203. Mutagenesis of full-length hTR between residues 170-179, 180-189 or 190-199 almost completely abolished the ability of the hTR to function in the reconstitution of telomerase activity, suggesting that sequences or structures within this 30 nucleotide region are required for activity, perhaps by binding telomerase protein components.  相似文献   

13.
14.
15.
Ciliate telomerase RNA structural features.   总被引:14,自引:1,他引:13       下载免费PDF全文
Telomerase RNA is an integral part of telomerase, the ribonucleoprotein enzyme that catalyzes the synthesis of telomeric DNA. The RNA moiety contains a templating domain that directs the synthesis of a species-specific telomeric repeat and may also be important for enzyme structure and/or catalysis. Phylogenetic comparisons of telomerase RNA sequences from various Tetrahymena spp. and hypotrich ciliates have revealed two conserved secondary structure models that share many features. We have cloned and sequenced the telomerase RNA genes from an additional six Tetrahymena spp. (T. vorax, T. borealis, T. australis, T. silvana, T. capricornis and T. paravorax). Inclusion of these sequences, most notably that from T. paravorax, in a phylogenetic comparative analysis allowed us to more narrowly define structural elements that may be necessary for a minimal telomerase RNA. A primary sequence element, positioned 5' of the template and conserved between all previously known ciliate telomerase RNAs, has been reduced from 5'-(C)UGUCA-3' to the 4 nt sequence 5'-GUCA-3'. Conserved secondary structural features and the impact they have on the general organization of ciliate telomerase RNAs is discussed.  相似文献   

16.
Telomerase promotes telomere maintenance by copying a template within its integral RNA subunit to elongate chromosome ends with new telomeric repeats. Motifs have been defined within the telomerase RNA that contribute to mature RNA accumulation, holoenzyme catalytic activity, or enzyme recruitment to telomeres. Here, we describe a motif of human telomerase RNA (hTR), not previously characterized in a cellular context, comprised of several guanosine tracts near the RNA 5' end. These guanosine tracts together are recognized by the DEXH box RNA helicase DHX36. The helicase domain of DHX36 does not mediate hTR binding; instead, hTR interacts with the N-terminal accessory domain of DHX36 known to bind specifically to the parallel-strand G-quadruplex substrates resolved by the helicase domain. The steady-state level of DHX36-hTR interaction is low, but hTR guanosine tract substitutions substantially reduce mature hTR accumulation and thereby reduce telomere maintenance. These findings suggest that G-quadruplex formation in the hTR precursor improves the escape of immature RNP from degradation, but subsequently the G-quadruplex may be resolved in favor of a longer terminal stem. We conclude that G-quadruplex formation within hTR can stimulate telomerase-mediated telomere maintenance.  相似文献   

17.
18.
19.
20.
The ribonucleoprotein enzyme telomerase synthesizes DNA at the ends of chromosomes. Although the telomerase catalytic protein subunit (TERT) is well conserved, the RNA component is rapidly evolving in both size and sequence. Here, we reduce the 1,157-nucleotide (nt) Saccharomyces cerevisiae TLC1 RNA to a size smaller than the 451-nt human RNA while retaining function in vivo. We conclude that long protein-binding arms are not essential for the RNA to serve its scaffolding function. Although viable, cells expressing Mini-T have shortened telomeres and reduced fitness as compared to wild-type cells, suggesting why the larger RNA has evolved. Previous attempts to reconstitute telomerase activity in vitro using TLC1 and yeast TERT (Est2p) have been unsuccessful. We find that substitution of Mini-T for wild-type TLC1 in a reconstituted system yields robust activity, allowing the contributions of individual yeast telomerase components to be directly assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号