首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyaluronidases are enzymes that mediate the breakdown of hyaluronan(HA), a large polysaccharide abundant in the extracellular matrixof vertebrate tissues. Six genes have been predicted to encodehyaluronidases in humans, but the protein products of only SPAM1,HYAL1, and HYAL2 have been characterized. We have now expressedthe mouse Hyal3 gene product, hyaluronidase 3 (Hyal3), in BabyHamster Kidney (BHK) cells and demonstrated the presence ofmultiple forms of Hyal3 ranging from 45 to 56 kDa in expressionlysates. Complete and partial digestions of the expressed proteinwith PNGase F showed three N-linked oligosaccharides accountedfor all forms of Hyal3 detected in expression lysates. Mostof these oligosaccharides were Endo H sensitive, indicatingthat they were high mannose or hybrid N-linked oligosaccharides.Subcellular fractionation of Hyal3-expressing BHK cells by densitygradient centrifugation revealed most Hyal3 in a low-densityvesicular population. Low levels of Hyal3 were detected in higherdensity vesicles, but no colocalization with the late endosomal/lysosomalmarker Lamp1 was found by immunofluorescence microscopy. BHKcells stably expressing Hyal3 had increased acid-active hyaluronidaseactivity, but no such activity was detected when Hyal3 was transfectedinto Hyaluronidase 1 (Hyal1)-deficient fibroblasts. Overexpressionof Hyal3 in BHK cells increased the Hyal1 protein and mRNA levels,suggesting that the increased hyaluronidase activity in thesecells was due to Hyal1 rather than Hyal3. The results indicatethat Hyal3 overexpressed in cultured cells lacks intrinsic hyaluronidaseactivity and that Hyal3 may contribute to HA metabolism by augmentingthe activity of Hyal1.  相似文献   

2.
3.
The ovine betaretroviruses jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV) cause contagious cancers in the lungs and upper airways of sheep and goats. Oncogenic transformation assays using mouse and rat fibroblasts have localized the transforming activity to the Env proteins encoded by these viruses, which require the putative lung and breast cancer tumor suppressor hyaluronidase 2 (Hyal2) to promote virus entry into cells. These results suggested the hypothesis that the JSRV and ENTV Env proteins cause cancer by inhibiting the tumor suppressor activity of Hyal2. Consistent with this hypothesis, we show that human Hyal2 and other Hyal2 orthologs that can promote virus entry, including rat Hyal2, can suppress transformation by the Env proteins of JSRV and ENTV. Furthermore, we provide direct evidence for binding of the surface (SU) region of JSRV Env to human and rat Hyal2. However, mouse Hyal2 did not mediate entry of virions bearing JSRV or ENTV Env proteins, bound JSRV SU poorly if at all, and did not suppress transformation by the JSRV or ENTV Env proteins, indicating that mouse Hyal2 plays no role in transformation of mouse fibroblasts and that the Env proteins can transform at least some cells by a Hyal2-independent mechanism. Expression of human Hyal2 in mouse cells expressing JSRV Env caused a marked reduction in Env protein levels, indicating that human Hyal2 suppresses Env-mediated transformation in mouse cells by increasing Env degradation rather than by exerting a more general Env-independent tumor suppressor activity.  相似文献   

4.
5.
6.
Earlier we showed that Sperm adhesion molecule1 (Spam1), the best studied sperm hyaluronidase, is involved in the sperm dysfunction associated with Robertsonian translocations (Rb). The dysfunction results in reduced fertility in mice homozygous for the Rb(6.16) or the Rb(6.15) translocation and transmission ratio distortion (TRD) in heterozygous males. This conclusion was based on the finding that Spam1 in the Rbs harbors multiple point mutations and a genomic alteration at the locus [in the case of Rb(6.16)]; and is accompanied by reduced steady-state levels of the RNA and protein. Here we show that closely linked family members in the hyaluronidase gene cluster on mouse chromosome 6, Hyalp1 and Hyal5, also harbor point mutations in these Rbs, leading to nonconservative substitutions in both the encoded proteins. To test if Spam1 by itself is capable of producing TRD we analyzed the transmission of wild-type and null alleles of the gene in the progeny of carriers and show that there is no significant TRD. This lack of TRD in null carriers argues for only a contributory role of Spam1 in the TRD seen in the Rb-bearing mice, and supports the involvement of Hyalp1 and/or Hyal5 in the sperm dysfunction and the resulting TRD. It is proposed that the clustering of point mutations in all three genes results from the cumulative effect of spontaneous mutations that do not disperse in the population due to suppression of recombination that occurs at Rb junctions.  相似文献   

7.
8.
Retrovirus entry into cells is mediated by specific interactions between virus envelope glycoproteins and cell surface receptors. Many of these receptors contain multiple membrane-spanning regions, making their purification and study difficult. The jaagsiekte sheep retrovirus (JSRV) receptor, hyaluronidase 2 (Hyal2), is a glycosylphosphatidylinositol (GPI)-anchored molecule containing no peptide transmembrane regions, making it an attractive candidate for study of retrovirus entry. Further, the hyaluronidase activity reported for human Hyal2, combined with its broad expression pattern, may point to a critical function of Hyal2 in the turnover of hyaluronan, a major extracellular matrix component. Here we describe the properties of a soluble form of human Hyal2 (sHyal2) purified from a baculoviral expression system. sHyal2 is a 54-kDa monomer with weak hyaluronidase activity compared to that of the known hyaluronidase Spam1. In contrast to a previous report indicating that Hyal2 cleaved hyaluronan to a limit product of 20 kDa and was active only at acidic pH, we find that sHyal2 is capable of further degradation of hyaluronan and is active over a broad pH range, consistent with Hyal2 being active at the cell surface where it is normally localized. Interaction of sHyal2 with the JSRV envelope glycoprotein was analyzed by viral inhibition assays, showing >90% inhibition of transduction at 28 nM sHyal2, and by surface plasmon resonance, revealing a remarkably tight specific interaction with a dissociation constant (KD) of 32 ± 1 pM. In contrast to results obtained with avian retroviruses, purified receptor was not capable of promoting transduction of cells that do not express the virus receptor.  相似文献   

9.
It has long been predicted that the members of the hyaluronidase enzyme family have important non-enzymatic functions. However, their nature remains a mystery. The metabolism of hyaluronan (HA), their major enzymatic substrate, is also enigmatic. To examine the function of Hyal2, a glycosylphosphatidylinositol-anchored hyaluronidase with intrinsically weak enzymatic activity, we have compared stably transfected rat fibroblastic BB16 cell lines with various levels of expression of Hyal2. These cell lines continue to express exclusively the standard form (CD44s) of the main HA receptor, CD44. Hyal2, CD44, and one of its main intracellular partners, ezrin-radixin-moesin (ERM), were found to co-immunoprecipitate. Functionally, Hyal2 overexpression was linked to loss of the glycocalyx, the HA-rich pericellular coat. This effect could be mimicked by exposure of BB16 cells either to Streptomyces hyaluronidase, to HA synthesis inhibitors, or to HA oligosaccharides. This led to shedding of CD44, separation of CD44 from ERM, reduction in baseline level of ERM activation, and markedly decreased cell motility (50% reduction in a wound healing assay). The effects of Hyal2 on the pericellular coat and on CD44-ERM interactions were inhibited by treatment with the Na+/H+ exchanger-1 inhibitor ethyl-N-isopropylamiloride. We surmise that Hyal2, through direct interactions with CD44 and possibly some pericellular hyaluronidase activity requiring acidic foci, suppresses the formation or the stability of the glycocalyx, modulates ERM-related cytoskeletal interactions, and diminishes cell motility. These effects may be relevant to the purported in vivo tumor-suppressive activity of Hyal2.  相似文献   

10.
Hyaluronan (HA) turnover accelerates metastatic progression of prostate cancer in part by increasing rates of tumor cell proliferation and motility. To determine the mechanism, we overexpressed hyaluronidase 1 (Hyal1) as a fluorescent fusion protein and examined its impact on endocytosis and vesicular trafficking. Overexpression of Hyal1 led to increased rates of internalization of HA and the endocytic recycling marker transferrin. Live imaging of Hyal1, sucrose gradient centrifugation, and specific colocalization of Rab GTPases defined the subcellular distribution of Hyal1 as early and late endosomes, lysosomes, and recycling vesicles. Manipulation of vesicular trafficking by chemical inhibitors or with constitutively active and dominant negative Rab expression constructs caused atypical localization of Hyal1. Using the catalytically inactive point mutant Hyal1-E131Q, we found that enzymatic activity of Hyal1 was necessary for normal localization within the cell as Hyal1-E131Q was mainly detected within the endoplasmic reticulum. Expression of a HA-binding point mutant, Hyal1-Y202F, revealed that secretion of Hyal1 and concurrent reuptake from the extracellular space are critical for rapid HA internalization and cell proliferation. Overall, excess Hyal1 secretion accelerates endocytic vesicle trafficking in a substrate-dependent manner, promoting aggressive tumor cell behavior.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
NK cells are able to lyse a variety of virally infected and neoplastic cells in an MHC-unrestricted manner. The cell-surface protein NKR-P1 is thought to play a key role in this process. NKR-P1, initially identified in rat IL-2 activated NK cells, is encoded in the mouse by at least three similar, but not identical, genes. We previously reported the isolation and characterization of three different NKR-P1 cDNA, termed cDNA 2, 34, and 40, from IL-2 activated mouse NK cells. This report describes the structure of the gene encoding NKR-P1 cDNA 2, the smallest of these three cDNA. Gene 2 is composed of six exons spanning approximately 14 kb of genomic DNA. The first exon encodes the N-terminal intracellular domain, and exons 4, 5, and 6 contain the sequences coding for the CRD. This organization is similar to that of other genes that encode C-type animal lectins. The expression of the NKR-P1 genes in A-LAK cells from 13 mouse strains was examined by Northern blot analysis. NKR-P1 expression appears to coincide with that of the NK1.1 Ag. This observation further supports the hypothesis that the NK1.1 Ag is encoded by one of the NKR-P1 genes. Nucleotide sequence analysis of the promoter region of the three NKR-P1 genes in BALB/c and C57BL/6 mice suggests that differences in the level of expression probably do not result from alterations in the upstream regions of these genes, but may be caused by the expression of strain-specific transacting factors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号