首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main transporting protein for vitamin A in rabbit serum, the retinol-binding protein (RBP), was isolated and its amino acid sequence determined. Rabbit RBP was found to be highly homologous to human RBP, whose amino acid sequence was elucidated earlier, and to rat RBP. The rat RBP sequence was obtained by combining information deduced from the nucleotide sequences of two overlapping cDNA clones with the NH2-terminal sequence of the isolated protein determined by automated Edman degradation. The identity between the three proteins is approximately 90%. The high degree of homology between RBP molecules from different species is probably explained by the fact that RBP participates in at least three types of molecular interactions: in the binding of prealbumin, in the interaction with retinol, and in the recognition of a specific cell surface receptor. All these interactions should lead to a conservation of RBP structure. The amino acid differences between rabbit, rat, and human RBP are discussed in light of the recent elucidation of the three-dimensional structure of human RBP. Hybridization of a probe isolated from a rat RBP cDNA clone to restriction enzyme-digested genomic DNA from rat and mouse suggests that RBP is encoded by a single gene.  相似文献   

2.
C M Merritt  P G Board 《Gene》1988,66(1):97-106
Human alpha 1-acid glycoprotein (AGP), also known as orosomucoid, is a major acute-phase plasma protein. The amino acid sequence of AGP, which was determined by sequencing from protein isolated from pooled plasma, contained amino acid substitutions in 21 different positions. Genomic and cDNA clones which correspond to one of the possible amino acid sequences have been previously reported. In this paper we present the complete nucleotide sequence of a second gene, AGP2 which is located approx. 3.3 kb downstream from AGP1. The derived amino acid sequence of AGP2 contains 19 of the possible alternative amino acid substitutions as well as two additional differences. It is clear from the results presented here that the AGP in human plasma is the product of two separate gene loci.  相似文献   

3.
Alpha-1-acid glycoprotein   总被引:20,自引:0,他引:20  
Alpha-1-acid glycoprotein (AGP) or orosomucoid (ORM) is a 41-43-kDa glycoprotein with a pI of 2.8-3.8. The peptide moiety is a single chain of 183 amino acids (human) or 187 amino acids (rat) with two and one disulfide bridges in humans and rats,respectively. The carbohydrate content represents 45% of the molecular weight attached in the form of five to six highly sialylated complex-type-N-linked glycans. AGP is one of the major acute phase proteins in humans, rats, mice and other species. As most acute phase proteins, its serum concentration increases in response to systemic tissue injury, inflammation or infection, and these changes in serum protein concentrations have been correlated with increases in hepatic synthesis. Expression of the AGP gene is controlled by a combination of the major regulatory mediators, i.e. glucocorticoids and a cytokine network involving mainly interleukin-1 beta (IL-1 beta), tumour necrosis factor-alpha (TNF alpha), interleukin-6 and IL-6 related cytokines. It is now well established that the acute phase response may take place in extra-hepatic cell types, and may be regulated by inflammatory mediators as observed in hepatocytes. The biological function of AGP remains unknown; however,a number of activities of possible physiological significance, such as various immunomodulating effects, have been described. AGP also has the ability to bind and to carry numerous basic and neutral lipophilic drugs from endogenous (steroid hormones) and exogenous origin; one to seven binding sites have been described. AGP can also bind acidic drugs such as phenobarbital. The immunomodulatory as well as the binding activities of AGP have been shown to be mostly dependent on carbohydrate composition. Finally, the use of AGP transgenic animals enabled to address in vivo, functionality of responsive elements and tissue specificity, as well as the effects of drugs that bind to AGP and will be an useful tool to determine the physiological role of AGP.  相似文献   

4.
Two-dimensional polyacrylamide gel electrophoresis has revealed the presence of a group of relatively acidic proteins of molecular weight about 22,000 in the uterine flushings of pseudopregnant pigs. The proteins have been purified by a combination of gel filtration chromatography and high performance anion-exchange chromatography and shown to bind both [3H] retinol and [3H]retinoic acid. At least four protein peaks that bound retinoids could be detected in the uterine secretions of a single pig. The ion-exchange procedure also allowed the retinol-free apoproteins to be separated from the holoforms that had associated ligand. Amino acid sequencing of the NH2 termini of polypeptides within three of the peaks revealed the presence of proteins with some degree of sequence identity to serum retinol-binding proteins (RBP). The most basic polypeptides showed the least similarity (about 30% identity), while the most acidic isoform analyzed shared about 70% sequence identity with the NH2 terminus of human serum RBP. Western blotting procedures employing an antiserum raised against the most basic isoforms showed that the amount of retinol-binding protein in uterine secretions increased markedly in ovariectomized animals in response to long term progesterone treatment. These proteins appear to form part of the uterine histotroph thought to be essential for nourishment of the conceptuses during pregnancy. A simple three-step procedure for purifying retinol-binding protein from pig serum is also described. The NH2-terminal sequence of this RBP is similar to that of human RBP but different from those of the uterine forms. The study suggests that a family of RBP, distinct from the serum form, is secreted by the uterine endometrium of the pig in response to progesterone.  相似文献   

5.
The adhesive interactions of cells with laminins are mediated by integrins and non-integrin-type receptors such as alpha-dystroglycan and syndecans. Laminins bind to these receptors at the C-terminal globular domain of their alpha chains, but the regions recognized by these receptors have not been mapped precisely. In this study, we sought to locate the binding sites of laminin-10 (alpha5beta1gamma1) for alpha(3)beta(1) and alpha(6)beta(1) integrins and alpha-dystroglycan through the production of a series of recombinant laminin-10 proteins with deletions of the LG (laminin G-like) modules within the globular domain. We found that deletion of the LG4-5 modules did not compromise the binding of laminin-10 to alpha(3)beta(1) and alpha(6)beta(1) integrins but completely abrogated its binding to alpha-dystroglycan. Further deletion up to the LG3 module resulted in loss of its binding to the integrins, underlining the importance of LG3 for integrin binding by laminin-10. When expressed individually as fusion proteins with glutathione S-transferase or the N-terminal 70-kDa region of fibronectin, only LG4 was capable of binding to alpha-dystroglycan, whereas neither LG3 nor any of the other LG modules retained the ability to bind to the integrins. Site-directed mutagenesis of the LG3 and LG4 modules indicated that Asp-3198 in the LG3 module is involved in the integrin binding by laminin-10, whereas multiple basic amino acid residues in the putative loop regions are involved synergistically in the alpha-dystroglycan binding by the LG4 module.  相似文献   

6.
This paper reports the isolation of cDNAs encoding the protein backbone of two arabinogalactan-proteins (AGPs), one from pear cell suspension cultures (AGP Pc 2) and the other from suspension cultures of Nicotiana alata (AGP Na 2). The proteins encoded by these cDNAs are quite different from the 'classical' AGP backbones described previously for AGPs isolated from pear suspension cultures and extracts of N. alata styles. The cDNA for AGP Pc 2 encodes a 294 amino acid protein, of which a relatively short stretch (35 amino acids) is Hyp/Pro rich; this stretch is flanked by sequences which are dominated by Asn residues. Asn residues are not a feature of the 'classical' AGP backbones in which Hyp/Pro, Ser, Ala and Thr account for most of the amino acids. The cDNA for AGP Na 2 encodes a 437 amino acid protein, which contains two distinct domains: one rich in Hyp/Pro, Ser, Ala, Thr and the other rich in Asn, Tyr and Ser. The composition and sequence of the Pro-rich domain resembles that of the 'classical' AGP backbone. The Asn-rich domains of the two cDNAs described have no sequence similarity; in both cases they are predicted to be processed to give a mature backbone with a composition similar to that of the 'classical' AGPs. The study shows that different AGPs can differ in the amino acid sequence in the protein backbone, as well as the composition and sequence of the arabinogalactan side-chains. It also shows that differential expression of genes encoding AGP protein backbones, as well as differential glycosylation, can contribute to the tissue specificity of AGPs.  相似文献   

7.
Hoffman DW  Carroll D  Martinez N  Hackert ML 《Biochemistry》2005,44(35):11777-11785
Antizyme and its isoforms are members of an unusual yet broadly conserved family of proteins, with roles in regulating polyamine levels within cells. Antizyme has the ability to bind and inhibit the enzyme ornithine decarboxylase (ODC), targeting it for degradation at the proteasome; antizyme is also known to affect the transport of polyamines and interact with the antizyme inhibitor protein (AZI), as well as the cell-cycle protein cyclin D1. In the present work, NMR methods were used to determine the solution structure of a stable, folded domain of mammalian antizyme isoform-1 (AZ-1), consisting of amino acid residues 87-227. The protein was found to contain eight beta strands and two alpha helices, with the strands forming a mixed parallel and antiparallel beta sheet. At the level of primary sequence, antizyme is not similar to any protein of known structure, and results show that antizyme exhibits a novel arrangement of its strands and helices. Interestingly, however, the fold of antizyme is similar to that found in a family of acetyl transferases, as well as translation initiation factor IF3, despite a lack of functional relatedness between these proteins. Structural results, combined with amino acid sequence comparisons, were used to identify conserved features among the various homologues of antizyme and their isoforms. Conserved surface residues, including a cluster of acidic amino acids, were found to be located on a single face of antizyme, suggesting this surface is a possible site of interaction with target proteins such as ODC. This structural model provides an essential framework for an improved future understanding of how the different parts of antizyme play their roles in polyamine regulation.  相似文献   

8.
Human alpha(1)-acid glycoprotein (AGP), which is comprised of 183 amino acid residues and 5 carbohydrate chains, is a major plasma protein that binds to basic and neutral drugs as well as to steroid hormones. It has a beta-sheet-rich structure in aqueous solution. Our previous findings suggest that AGP forms an alpha-helix structure through an interaction with biomembranes. We report herein on a study of the mechanism of alpha-helix formation in AGP using various modified AGPs. The disulfide reduced AGP (R-AGP) was extensively unfolded, whereas asialylated AGP (A-AGP) maintained the native structure. Intriguingly, reduced and asialylated AGP (RA-AGP) increased the alpha-helix content as observed in the presence of biomembrane models, and showed a significant decrease in ligand binding capacity. This suggests that AGP has an innate tendency to form an alpha-helix structure, and disulfide bonds are a key factor in the conformational transition between the beta-sheet and alpha-helix structures. However, RA-AGP with all histidine residues chemically modified (HRA-AGP) was found to lose the intrinsic ability to form an alpha-helix structure. Furthermore, disulfide reduction of the H172A mutant expressed in Pichia pastoris also caused a similar loss of folding ability. The present results indicate that disulfide bonds and the C-terminal region, including H172 of AGP, play important roles in alpha-helix formation in the interaction of the protein with biomembranes.  相似文献   

9.
The three-dimensional structures of cro repressor protein and of the amino-terminal domain of lambda repressor protein, both from bacteriophage lambda, are compared. The second and third alpha-helices, alpha 2 and alpha 3, are shown to have essentially identical conformations in the two proteins, confirming the significance of the amino acid sequence homology previously noted between these and other DNA binding proteins in the region corresponding to these helices. The correspondence between the two-helical units in cro and lambda repressor protein is better than the striking agreement noted previously between two-helical units in cro and catabolite gene-activator protein. Parts of the first alpha-helices of repressor and cro show a structural correspondence that suggests a revised sequence homology between the two proteins in their extreme amino-terminal regions. In particular, there is a short loop between the alpha 1 and alpha 2 helices of lambda repressor that is missing from cro. This structural difference may account for the observed differences found with different cros and repressors in the pattern of phosphates whose ethylation prevents the binding of these proteins to their specific recognition sites. Although the two proteins have strikingly similar alpha 2-alpha 3 helical units that are presumed to bind to DNA in an essentially similar manner, stereochemical restrictions prevent the alpha 2-alpha 3 units of the respective proteins aligning on the DNA in exactly the same way.  相似文献   

10.
The eukaryotic pathogen Leishmania donovani possesses a housekeeping protein Elongation-Factor-1alpha (EF-1alpha) which has been found to be unexpectedly involved in the pathogen's virulence. Because it is associated with virulence and essential for cell survival, this protein is an attractive choice for drug targeting; however, its sequence is highly similar (> 80% sequence identity) to that of its human homolog, rendering it a risky choice for a drug target. The chief difference between these two proteins has been found to be a 12 amino acid sequence present in human EF-1alpha but absent from leishmania EF-1alpha. Furthermore, it has been shown that this 12 amino acid insert in the human sequence corresponds to a hairpin loop on the surface of the protein. In this study, we searched for those spatial features in leishmania EF-1alpha that are impacted or obscured by the extra hairpin loop in the human counterpart. We have also conducted a large-scale in silico screening for small molecules that could plausibly bind to these protein features. While experimental evidence is required to verify our results, our findings thus far appear to support this approach as a new strategy for the development of antagonists against pathogenic targets having close human homologs.  相似文献   

11.
12.
Liu YF  Zhang N  Yao HW  Pan XM  Ge M 《PloS one》2011,6(5):e19977
The Sac10b protein family is regarded as a group of nucleic acid-binding proteins that are highly conserved and widely distributed within archaea. All reported members of this family are basic proteins that exist as homodimers in solution and bind to DNA and/or RNA without apparent sequence specificity in vitro. Here, we reported a unique member of the family, Mth10b from Methanobacterium thermoautotrophicum ΔH, whose amino acid sequence shares high homology with other Sac10b family proteins. However, unlike those proteins, Mth10b is an acidic protein; its potential isoelectric point is only 4.56, which is inconsistent with the characteristics of a nucleic acid-binding protein. In this study, Mth10b was expressed in Escherichia coli and purified using a three-column chromatography purification procedure. Biochemical characterization indicated that Mth10b should be similar to typical Sac10b family proteins with respect to its secondary and tertiary structure and in its preferred oligomeric forms. However, an electrophoretic mobility shift analysis (EMSA) showed that neither DNA nor RNA bound to Mth10b in vitro, indicating that either Mth10b likely has a physiological function that is distinct from those of other Sac10b family members or nucleic acid-binding ability may not be a fundamental factor to the actual function of the Sac10b family.  相似文献   

13.
The lipopolysaccharides (LPS) of Gram-negative bacteria initiate potentially fatal processes in many host organisms. Recently published amino acid sequence data suggest that there is a family of LPS binding proteins that may participate in the host response to Gram-negative bacteremia. The first two members of the family to be identified are an LPS binding protein present in serum after an acute phase response in humans, mice, rabbits, and rats and a bactericidal/permeability increasing protein present in the primary granules of human and rabbit neutrophils. LPS binding protein and bactericidal/permeability increasing protein share an ability to bind to LPS, have homologous NH2-terminal amino acid sequences, and are immunologically cross-reactive. Nevertheless, these two molecules differ in their effects on LPS and Gram-negative bacteria, in their sites of biosynthesis, and localization in vivo.  相似文献   

14.
Ofran Y  Margalit H 《Proteins》2006,64(1):275-279
It is well established that there is a relationship between the amino acid composition of a protein and its structural class (i.e., alpha, beta, alpha + beta, or alpha/beta). Several studies have even shown the power of amino acid composition in predicting the secondary structure class of a protein. Herein, we show that significant similarity in amino acid composition exists not only between proteins of the same class, but even between proteins of the same fold. To test conjectural explanations for this phenomenon, we analyzed a set of structurally similar proteins that are dissimilar in sequence. Based on this analysis, we suggest that specific residues that are involved in intramolecular interactions may account for this surprising relationship between composition and structure.  相似文献   

15.
We purified two proteins with molecular masses of approximately 50 kDa and 80 kDa with N-terminal sequences similar to those of alpha1-antitrypsin (a1AT) and transferrin indicating that they are identical to or highly homologous to these proteins. Proteins from human follicular fluid were purified after ammonium sulfate fractionation followed by water dialysis and High Performance Liquid Chromatography. The fraction of peak 3 showed a single band on electrophoresis and its N-terminal amino acid sequence was similar to that of human serum transferrin. The fraction of peak 10 proved to be a glycoprotein and its N-terminal amino acid sequence was similar to that of human serum a1AT. There are indications that transferrin may be involved in the fertilization process. Sperm motion was assessed employing computer-assisted semen analysis. The addition of purified protein to prepared sperm samples from normospermic men significantly increases the straight-line velocity (VSL), the amplitude of lateral head displacement (ALH) and the number of progressively motile sperm. a1AT does not seem to have a stimulatory effect on sperm motility.  相似文献   

16.
LIM proteins contain one or more double zinc finger structures (LIM domains) mediating specific contacts between proteins that participate in the formation of multiprotein complexes. We report that the LIM-only protein DRAL/FHL2, with four and a half LIM domains, can associate with alpha(3A), alpha(3B), alpha(7A), and several beta integrin subunits as shown in yeast two-hybrid assays as well as after overexpression in human cells. The amino acid sequence immediately following the conserved membrane-proximal region in the integrin alpha subunits or the C-terminal region with the conserved NXXY motif of the integrin beta subunits are critical for binding DRAL/FHL2. Furthermore, the DRAL/FHL2 associates with itself and with other molecules that bind to the cytoplasmic domain of integrin alpha subunits. Deletion analysis of DRAL/FHL2 revealed that particular LIM domains or LIM domain combinations bind the different proteins. These results, together with the fact that full-length DRAL/FHL2 is found in cell adhesion complexes, suggest that it is an adaptor/docking protein involved in integrin signaling pathways.  相似文献   

17.
Mittra B  Ray DS 《Eukaryotic cell》2004,3(5):1185-1197
Crithidia fasciculata cycling sequence binding proteins (CSBP) have been shown to bind with high specificity to sequence elements present in several mRNAs that accumulate periodically during the cell cycle. The first described CSBP has subunits of 35.6 (CSBPA) and 42 kDa (CSBPB). A second distinct binding protein termed CSBP II has been purified from CSBPA null mutant cells, lacking both CSBPA and CSBPB proteins, and contains three major polypeptides with predicted molecular masses of 63, 44.5, and 33 kDa. Polypeptides of identical size were radiolabeled in UV cross-linking assays performed with purified CSBP II and 32P-labeled RNA probes containing six copies of the cycling sequence. The CSBP II binding activity was found to cycle in parallel with target mRNA levels during progression through the cell cycle. We have cloned genes encoding these three CSBP II proteins, termed RBP63, RBP45, and RBP33, and characterized their binding properties. The RBP63 protein is a member of the poly(A) binding protein family. Homologs of RBP45 and RBP33 proteins were found only among the kinetoplastids. Both RBP45 and RBP33 proteins and their homologs have a conserved carboxy-terminal half that contains a PSP1-like domain. All three CSBP II proteins show specificity for binding the wild-type cycling sequence in vitro. RBP45 and RBP33 are phosphoproteins, and RBP45 has been found to bind in vivo specifically to target mRNA containing cycling sequences. The levels of phosphorylation of both RBP45 and RBP33 were found to cycle during the cell cycle.  相似文献   

18.
Several studies based on the known three-dimensional (3-D) structures of proteins show that two homologous proteins with insignificant sequence similarity could adopt a common fold and may perform same or similar biochemical functions. Hence, it is appropriate to use similarities in 3-D structure of proteins rather than the amino acid sequence similarities in modelling evolution of distantly related proteins. Here we present an assessment of using 3-D structures in modelling evolution of homologous proteins. Using a dataset of 108 protein domain families of known structures with at least 10 members per family we present a comparison of extent of structural and sequence dissimilarities among pairs of proteins which are inputs into the construction of phylogenetic trees. We find that correlation between the structure-based dissimilarity measures and the sequence-based dissimilarity measures is usually good if the sequence similarity among the homologues is about 30% or more. For protein families with low sequence similarity among the members, the correlation coefficient between the sequence-based and the structure-based dissimilarities are poor. In these cases the structure-based dendrogram clusters proteins with most similar biochemical functional properties better than the sequence-similarity based dendrogram. In multi-domain protein families and disulphide-rich protein families the correlation coefficient for the match of sequence-based and structure-based dissimilarity (SDM) measures can be poor though the sequence identity could be higher than 30%. Hence it is suggested that protein evolution is best modelled using 3-D structures if the sequence similarities (SSM) of the homologues are very low.  相似文献   

19.
Structural biology of the Bcl-2 family of proteins   总被引:29,自引:0,他引:29  
The proteins of the Bcl-2 family are important regulators of programmed cell death. Structural studies of Bcl-2 family members have provided many important insights into their molecular mechanism of action and how members of this family interact with one another. To date, structural studies have been performed on six Bcl-2 family members encompassing both anti- (Bcl-x(L), Bcl-2, KSHV-Bcl-2, Bcl-w) and pro-apoptotic (Bax, Bid) members. They all show a remarkably similar fold despite an overall divergence in amino acid sequence and function (pro-apoptotic versus anti-apoptotic). The three-dimensional structures of Bcl-2 family members consist of two central, predominantly hydrophobic alpha-helices surrounded by six or seven amphipathic alpha-helices of varying lengths. A long, unstructured loop is present between the first two alpha-helices. The structures of the Bcl-2 proteins show a striking similarity to the overall fold of the pore-forming domains of bacterial toxins. This finding led to experiments which demonstrated that Bcl-x(L), Bcl-2, and Bax all form pores in artificial membranes. A prominent hydrophobic groove is present on the surface of the anti-apoptotic proteins. This groove is the binding site for peptides that mimic the BH3 region of various pro-apoptotic proteins such as Bak and Bad. Structures of Bcl-x(L) in complex with these BH3 peptides showed that they bind as an amphipathic alpha-helix and make extensive hydrophobic contacts with the protein. These data have not only helped to elucidate the interactions important for hetero-dimerization of Bcl-2 family members but have also been used to guide the discovery of small molecules that block Bcl-x(L) and Bcl-2 function. In the recently determined structure of the anti-apoptotic Bcl-w protein, the protein was also found to have a hydrophobic groove on its surface capable of binding BH3-containing proteins and peptides. However, in the native protein an additional carboxy-terminal alpha-helix interacts with the hydrophobic groove. This is reminiscent of how the carboxy-terminal alpha-helix of the pro-apoptotic protein Bax binds into its hydrophobic groove. This interaction may play a regulatory role and for Bax may explain why it is found predominately in the cytoplasm prior to activation. The hydrophobic groove of the pro-apoptotic protein, Bid protein, is neither as long nor as deep as that found in Bcl-x(L), Bcl-2, or Bax. In addition, Bid contains an extra alpha-helix, which is located between alpha1 and alpha2 with respect to Bcl-x(L), Bcl-2, and Bax. Although there are still many unanswered questions regarding the exact mechanism by which the Bcl-2 family of proteins modulates apoptosis, structural studies of these proteins have deepened our understanding of apoptosis on the molecular level.  相似文献   

20.
H Du  R J Simpson  R L Moritz  A E Clarke    A Bacic 《The Plant cell》1994,6(11):1643-1653
Arabinogalactan-proteins (AGPs) from the styles of Nicotiana alata were isolated by ion exchange and gel filtration chromatography. After deglycosylation by anhydrous hydrogen fluoride, the protein backbones were fractionated by reversed-phase HPLC. One of the protein backbones, containing mainly hydroxyproline, alanine, and serine residues (53% of total residues), was digested with proteases, and the peptides were isolated and sequenced. This sequence information allowed the cloning of a 712-bp cDNA, AGPNa1. AGPNa1 encodes a 132-amino acid protein with three domains: an N-terminal secretion signal sequence, which is cleaved from the mature protein; a central sequence, which contains most of the hydroxyproline/proline residues; and a C-terminal hydrophobic region. AGPNa1 is expressed in many tissues of N. alata and related species. The arrangement of domains and amino acid composition of the AGP encoded by AGPNa1 are similar to that of an AGP from pear cell suspension culture filtrate, although the only sequence identity is at the N termini of the mature proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号