首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrogen gas can be produced electrochemically by leading a current through two electrodes immersed in a NaCl solution. Bacteriorhodopsin (BR) a protein found in the purple membrane of Halobacterium halobium, is known to pump protons across the membrane upon illumination. In this study, the effect of BR on photoelectrochemical hydrogen production was investigated. A batch type bio-photoelectrochemical reactor was designed and constructed. The photoelectrochemical hydrogen production experiments were performed with free H. halobium packed cells or immobilised H. halobium cells. The cells were either immobilised in polyacrylamide gel (PAG) or on cellulose acetate membrane (CAM). Experiments were also performed with purple membrane fragments of H. halobium immobilised on cellulose acetate membrane. It was found that the presence of bacteriorhodopsin (BR) in the reactor enhances the hydrogen production rate upon illumination. Immobilisation increased the amount of hydrogen produced per mole of BR. Compared to control experiments without BR, the power requirement of the photoelectrochemical reactor per amount of hydrogen produced decreased fourfold when purple membrane fragments immobilised on CAM were used. The presence of BR regulates the pH of the system, increases the hydrogen production rate and causes light-induced proton dissociation, which lowers the electrical power requirement for the electrochemical conversion.  相似文献   

2.
Summary A new halobacterial insertion element, ISH26, is described which occurs in the genome of Halobacterium halobium NRC817 in at least seven copies. A copy of ISH26 was isolated from the bacterio-opsin gene (bop) of the Bop mutant M140 of strain H. halobium R1 and characterized in more detail. It shows typical structural features of a transposable element with 16 pb terminal inverted repeat sequences and an 11 bp duplication of the target site. Two partially overlapping open reading frames (ORFs) are contained in the sequence of ISH26 on one strand. The terminal 16 bp inverted repeat of ISH26 is almost identical to the first 16 bp of the terminal inverted repeat of the ISH2 insertion element. The remaining sequences of ISH26 and ISH2 are entirely different. Two size variants of ISH26, 1,384 bp and 1,705 bp in size, are found in the H. halobium genome. The larger one (ISH26-1) contains an imperfect duplication of 321 bp at one end of ISH26.  相似文献   

3.
T1 nuclear relaxation measurements of 1H and 17O of water have been applied to study the kinetics of the diffusional transport of water across the cytoplasmic cell membrane of Dunaliella salina and Dunaliella bardawil. The water permeability coefficients at 25°C were found to be 1.5·10−3 cm/s and 1.8·10−3 cm/s, respectively, with an activation energy of 3.7 kcal/mol. The results indicate that the cell membrane of Dunaliella exhibits high diffusional permeability to water, similar in magnitude to that found for other cells and model membranes, and a relatively low activation energy. This regularity is in contrast to the exceptionally low glycerol permeability of the membrane (Brown, F.F., Sussman, I., Avron, M. and Degani, H. (1982) Biochim. Biophys. Acta 690, 165–173).  相似文献   

4.
The binding of methylmercury, CH3Hg(II), by small molecules in the intracellular region of human erythrocytes has been studied by 1H-NMR spectroscopy. To suppress or completely eliminate interfering resonances from the much more abundant hemoglobin protons, spectra were measured by a technique based on the transfer of saturation throughout the envelope of hemoglobin resonances following a selective presaturation pulse or by the spin-echo Fourier transform method. With these techniques, 1H-NMR spectra were measured for the more abundant intracellular small molecules, including glycine, alanine, creatine, lactic acid, ergothioneine and glutathione, in both intact and hemolyzed erythrocytes to which CH3Hg(II) had been added. The results for intact erythrocytes indicate that part of the CH3Hg(II) is complexed by intracellular glutathione. These results also indicate that exchange of CH3Hg(II) among glutathione molecules is fast, with the average lifetime of a CH3Hg(II)-glutathione complex estimated to be less than 0.01 s. From exchange-averaged chemical shifts of the resonance for the proton on the α-carbon of the cysteine residue of glutathione, it is shown that, in hemolyzed erythrocytes, the sulfhydryl group of glutathione binds CH3Hg(II) more strongly than the sulfhydryl groups of hemoglobin.  相似文献   

5.
In order to study the intracellular polyamine distribution in Escherichia coli, 13C-NMR spectra of [1,4-13C]putrescine were obtained after addition of the latter to intact bacteria. The 13C-enriched methylene signal underwent line broadening. When the cells were centrifuged after 90 min the cell-bound putrescine peak had a linewidth of 23 Hz, while the supernatant liquid showed an unbound putrescine signal with a linewidth smaller than 1 Hz. By using 13C-enriched internal standards it could be shown that the linewidening was not due to the heterogeneity of the medium or to an in vivo paramagnetic effect. Cell-bound putrescine was liberated by addition of trichloroacetic acid and was therefore non-covalently linked to macromolecular cell structures. Cell-bound [13C]putrescine could be displaced by addition of an excess of [12C]putrescine. When samples of membranes, soluble protein, DNA, tRNA and ribosomes from E. coli were incubated with [1,4-13C]putrescine, strong binding was detected only in the ribosomal and membrane fractions. The ribosome-putrescine complex showed properties similar to those determined with the intact cells. By measuring the nuclear Overhauser enhancements η, it was possible to estimate that only about 50% of the polyamine was linked to the macromolecules. Determination of the T1 values of free and ribosomal-bound putrescine allowed the calculation of a correlation time, τc = 4·10−7 s for the latter. T1 and τc value for the ribosome-putrescine complex were those expected for a motional regime of slowly tumbling molecules.  相似文献   

6.
7.
Intact lipopolysaccharide antigens isolated from seven different immunotypes of Pseudomonas aeruginosa have been examined by 31P-NMR spectroscopy. These macromolecular complexes contain phosphorus covalently attached to the carbohydrate residues present in the lipid A moiety and the ‘core’ oligosaccharide region. The spectral signals for various ortho- and pyro-phosphoric esters were observed. All phosphate groups appeared to be mono-esterified. Certain shifts characteristic for phosphate diester groups, observed in lipopolysaccharide complexes from other Gram-negative bacteria, were absent. Furthermore, no evidence was found to indicate that phosphate groups are involved in the covalent linkage of individual lipopolysaccharide complexes to form dimers or trimers.  相似文献   

8.
In order to study the intracellular polyamine distribution in Escherichia coli, 13C-NMR spectra of [1,4-13C]putrescine were obtained after addition of the latter to intact bacteria. The 13C-enriched methylene signal underwent line broadening. When the cells were centrifuged after 90 min the cell-bound putrescine peak had a linewidth of 23 Hz, while the supernatant liquid showed an unbound putrescine signal with a linewidth smaller than 1 Hz. By using 13C-enriched internal standards it could be shown that the linewidening was not due to the heterogeneity of the medium or to an in vivo paramagnetic effect. Cell-bound putrescine was liberated by addition of trichloroacetic acid and was therefore non-covalently linked to macromolecular cell structures. Cell-bound [13C]putrescine could be displaced by addition of an excess of [12C]putrescine. When samples of membranes, soluble protein, DNA, tRNA and ribosomes from E. coli were incubated with [1,4-13C]putrescine, strong binding was detected only in the ribosomal and membrane fractions. The ribosome-putrescine complex showed properties similar to those determined with the intact cells. By measuring the nuclear Overhauser enhancements η, it was possible to estimate that only about 50% of the polyamine was linked to the macromolecules. Determination of the T1 values of free and ribosomal-bound putrescine allowed the calculation of a correlation time, τc = 4·10?7 s for the latter. T1 and τc value for the ribosome-putrescine complex were those expected for a motional regime of slowly tumbling molecules.  相似文献   

9.
Arrhenius parameters for formation and decay of phototransients in suspensions of purple membrane fragments in H2O and 2H2O have been determined in the temperature range 0–60 °C. Kinetic isotope effects are found which show that proton transfer steps are involved in both formation and decay of the two longest-lived transients absorbing at 410 nm and 660 nm, respectively. The results also suggest that these transients do not occupy a single pathway in the spontaneous deexcitation of bacteriorhodopsin within the purple membrane. Purple membrane undergoes a phase transition at 25–30 °C in both H2O and 2H2O.  相似文献   

10.
The light-dependent uptake of triphenylmethylphosphonium (TPMP+) and of 5,5-dimethyloxazolidine-2,4-dione (DMO) by starved purple cells of Halobacterium halobium was investigated. DMO uptake was used to calculate the pH difference (ΔpH) across the membrane, and TPMP+ was used as an index of the electrical potential difference, Δψ.Under most conditions, both in the light and in the dark, the cells are more alkaline than the medium. In the light at pH 6.6, ΔpH amounts to 0.6–0.8 pH unit. Its value can be increased to 1.5–2.0 by either incubating the cells with TPMP+ (10?3 M) or at low external pH (5.5). — ΔpH can be lowered by uncoupler or by nigericin. The TPMP+ uptake by the cells indicates a large Δψ across the membrane, negative inside. It was estimated that in the light, at pH 6.6, Δψ might reach a value of about 100 mV and that consequently the electrical equivalent of the proton electrochemical potential difference, ΔuH+F, amounts under these conditions to about 140 mV.The effects of different ionophores on the light-driven proton extrusion by the cells were in agreement with the effects of these compounds on — ΔpH.  相似文献   

11.
In the present study, structural aspects of the two soluble transducers, HtrX and HtrXI, from the archaeon H. salinarum have been examined using UV circular dichroism and steady-state fluorescence spectroscopies. Circular dichroism (CD) data indicate that both HtrX and HtrXI exhibit salt-dependent protein folding. Under low-ionic-strength conditions (0.2 M NaCl or KCl) the CD spectra of HtrXI is similar to that of the Gdn-HCl- or urea-denatured forms and is indicative of random coil structure. In contrast, the CD spectrum of HtrX under low-ionic-strength conditions contains roughly 85% -helical character, indicating a significant degree of folding. Addition of NaCl or KCl to solutions of HtrX or HtrXI results in CD features consistent with predominately -helical character (>95%) for both proteins. In addition, the transition points (i.e., ionic strengths at which the protein converts from random coil to -helical character) are quite distinct and dependent upon the type of salt present (i.e., either NaCl or KCl). Accessibility of tryptophan residues to the solvent was also examined for both HtrX and HtrXI in both folded and unfolded states using Kl quenching. The Stern–Volmer constants obtained suggest that the tryptophans (Trp35 in HtrX and both Trp47 and Trp74 in HtrXI) are partially exposed to the solvent, indicating that they are located near the surface of the protein in all three cases. Furthermore, fluorescence quenching with the single Trp mutants Trp74AIa and Trp47AIa of HtrXI indicates different environments for these two residues.  相似文献   

12.
The identification of metal-binding ligands in metalloproteins is an important step in gaining detailed information regarding the environment of the active site. Traditionally, techniques such as 13Cd-substitution for the active metal followed by isotope-filtered NMR techniques have been used to this end. However, for medium to high molecular weight proteins (>20 kDa), these experiments may not be beneficial due to extensive 1H spectral overlap. Here, we describe an alternative approach, where metal-binding ligands such as histidine and cysteine are specifically 15N backbone labeled, excess EDTA is added and changes to (1H-15N) HSQC spectra are followed. Under these conditions, the amide groups of all 15N labeled histidine and cysteine residues, which were either ligands or residues close to the active site, were identified unambiguously for metallo-beta-lactamase from Bacteroides fragilis.  相似文献   

13.
14.
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful analytical techniques available to biology. This review is an introduction to the potential of this method and is aimed at readers who have little or no experience in acquiring or analyzing NMR spectra. We focus on spectroscopic applications of the magnetic resonance effect, rather than imaging ones, and explain how various aspects of the NMR phenomenon make it a versatile tool with which to address a number of biological problems. Using detailed examples, we discuss the use of 1H NMR spectroscopy in mixture analysis and metabolomics, the use of 13C NMR spectroscopy in tracking isotopomers and determining the flux through metabolic pathways (‘fluxomics’) and the use of 31P NMR spectroscopy in monitoring ATP generation and intracellular pH homeotasis in vivo. Further examples demonstrate how NMR spectroscopy can be used to probe the physical environment of a cell by measuring diffusion and the tumbling rates of individual metabolites and how it can determine macromolecular structures by measuring the bonds and distances which separate individual atoms. We finish by outlining some of the key challenges which remain in NMR spectroscopy and we highlight how recent advances—such as increased magnet field strengths, cryogenic cooling, microprobes and hyperpolarisation—are opening new avenues for today's biological NMR spectroscopists.  相似文献   

15.
Intact lipopolysaccharide antigens isolated from seven different immunotypes of Pseudomonas aeruginosa have been examined by 31P-NMR spectroscopy. These macromolecular complexes contain phosphorus covalently attached to the carbohydrate residues present in the lipid A moiety and the ‘core’ oligosaccharide region. The spectral signals for various ortho- and pyro-phosphoric esters were observed. All phosphate groups appeared to be mono-esterified. Certain shifts characteristic for phosphate diester groups, observed in lipopolysaccharide complexes from other Gram-negative bacteria, were absent. Furthermore, no evidence was found to indicate that phosphate groups are involved in the covalent linkage of individual lipopolysaccharide complexes to form dimers or trimers.  相似文献   

16.
Large populations of potential cellulosic biomass feedstocks are currently being screened for fuel and chemical applications. The monomeric sugar content, released through hydrolysis, is of particular importance and is currently measured with time‐consuming HPLC methods. A method for sugar detection is presented here that employs 1H NMR spectra regressed against primary HPLC sugar concentration data to build partial least squares (PLS) models. The PLS2 model is able to predict concentrations of both major sugar components, like glucose and xylose, and minor sugars, such as arabinose and mannose, in biomass hydrolysates. The model was built with 65 samples from a variety of different biomass species and covers a wide range of sugar concentrations. Model predictions were validated with a set of 15 samples which were all within error of both HPLC and NMR integration measurements. The data collection time for these NMR measurements is less than 20 min, offering a significant improvement to the 1 h acquisition time that is required for HPLC. Biotechnol. Bioeng. 2013; 110: 721–728. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
NMR spectroscopy combined with principal component analysis was applied to Arabidopsis thaliana treated with methyl jasmonate in order to obtain macroscopic metabolic changes caused by the treatment. As the first step several chromatographic and NMR spectroscopic techniques were utilized to identify metabolites of Arabidopsis. Sephadex LH-20 showed a high efficiency in the separation of phenolic metabolites in the plant. For identification of minor metabolites two-dimensional J-resolved NMR technique was directly applied to the plant extract and results in a number of elucidation of the metabolites of which signals overlap in 1H NMR spectra. The chemical structure of the identified metabolites were confirmed by various two-dimensional NMR spectroscopy including correlated spectroscopy, heteronuclear single quantum coherence, and heternuclear multiple bond correlation. As next step, a statistical approach, principal component analysis based on projected J-resolved NMR spectra was performed for metabolic alteration of methyl jasmonate-treated Arabidopsis. The results show that methyl jasmonate caused an increase of flavonoids, fumaric acid, sinapoyl malate, sinigrin, tryptophan, valine, threonine, and alanine and a decrease of malic acid, feruloyl malate, glutamine, and carbohydrates after 24 h treatment.  相似文献   

18.
Determination of the concentration of biochemical samples often yields values with uncertainties of 10-20% or more. This paper details a protocol for use with 500- to 600-MHz NMR spectrometers to measure approximately 1mM concentrations within +/-1-3% accuracy. With suitable precautions, all compounds have equal NMR "absorption coefficients" for protons. About 2mg of sample are needed for proteins and nucleic acids with MW=5000, although less accurate determinations could be made with smaller amounts. The technique utilizes standardized internal reference reagent compounds, cacodylic acid or 3-(trimethylsilyl)propionic-2,2,3,3-d(4) acid sodium salt. Spectra were signal-averaged using long interpulse delays so that integrals of nonexchangeable protons could be quantified relative to the reference standard. Accurate determinations require careful optimization of the homogeneity of the magnetic field and meticulous attention to sample preparation and spectral processing. The main source of error is usually the accuracy of micropipets. If sample preparation errors could be eliminated, the lower limit of accuracy with the current generation of NMR spectrometers is probably near 0.4%. However, this would require >99.5% sample purity. Methods are described to establish the concentration of the standards, and applications are illustrated with DNA mono- and oligonucleotides. Similar procedures should apply to proteins, polysaccharides, and other biomolecules, with about the same accuracy and precision.  相似文献   

19.
The segment 32-47 of the N-terminal extracellular domain of the type A cholecystokinn receptor, CCK(A)-R(32-47), was synthesized and structurally characterized in a membrane mimicking environment by CD, NMR and molecular dynamics calculations. The region of CCK(A)-R(32-47) encompassing residues 39-46 adopted a well-defined secondary structure in the presence of DPC micelles, whereas the conformation of the N-terminal region (segment 32-37) could not be uniquely defined by the NOE derived distance constraints because of local flexibility. The conformation of the binding domain of CCK(A)-R(32-47) was different from that found for the Intact N-terminal receptor tail, CCK(A)-R(1-47). To assess whether CCK(A)-R(32-47) was still able to bind the nonsulfated cholecystokinin C-terminal octapeptide, CCK8, a series of titrations was carried out in SDS and DPC micelles, and the binding interaction was followed by fluorescence spectroscopy. These titrations gave no evidence for complex formation, whereas a high binding affinity was found between CCK(A)-R(1-47) and CCK8. The different affinities for the ligand shown by CCK(A)-R(32-47) and CCK(A)-R(1-47) were paralleled by different interaction modes between the receptor segments and the micelles.The interaction of CCK(A)-R(32-47) with DPC micelles was much weaker than that of CCK(A)-R(1-47), because the former receptor segment lacks proper stabilizing contacts with the micelle surface. In the case of SDS micelles CCK(A)-R(32-47] was found to form non-micellar adducts with the detergent that prevented the onset of a functionally significant Interaction between the receptor segment and the micelle. It is concluded that tertiary structure interactions brought about by the 1-31 segment play a key role in the stabilization of the membrane bound, biologically active conformation of the N-terminal extracellular tail of the CCKA receptor.  相似文献   

20.
The effect of an aqueous dispersion of succinylphosphatidylcholine on an aqueous suspension of phosphatidylcholine vesicles was studied by gel chromatography, freeze-fracture electron microscopy and proton nuclear magnetic resonance with Mn2+ (broadening paramagnetic reagent). Total phospholipid concentrations were in the range 10–20 mM.Succinylphosphatidylcholine is in micellar form and behaves as a detergent. The structures obtained depend on the molar percentage of succinylphosphatidylcholine.Above a succinylphosphatidylcholine molar percentage of 60%, mixed micelles are formed, assumed to be essentially spherical.Below a succinylphosphatidylcholine molar percentage of 30%, principally mixed vesicles are observed, with an external diameter of 215–240 Å, and an almost constant internal volume.Between 30 and 60% of succinylphosphatidylcholine, a mixture of these structures is obtained; rod-shaped profiles are also observed in electron microscopy, which may correspond to sections of leaky vesicles or to a new kind of cylindrical micelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号