首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Properties so far studied of the 125-kDa 14C-arginylated protein from rat brain show remarkable similarities with those of the STOP (stable tubule only polypeptide) protein. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the 125-kDa 14C-arginylated protein moves to the same position as the STOP protein. The 125-kDa 14C-arginylated protein was immunoprecipitated by the monoclonal Mab 296 antibody specific for neuronal STOP protein. The 125-kDa 14C-arginylated protein was retained by a calmodulin column like STOP protein. As occurs with the STOP protein, the 125-kDa 14C-arginylated protein is found in higher proportion in cold-stable than in cold-labile microtubules. However, the modified protein associates with microtubules in a lower proportion than the STOP protein. We conclude that the STOP protein incorporates arginine by a posttranslational reaction but that only a small fraction of the STOP protein shows acceptor capacity in vitro.  相似文献   

2.
Stable microtubules (as defined by resistance to Ca2+, drug or cold temperature induced disassembly) form in abundance during tubulin assembly in brain crude extracts. We have previously shown that, in rat brain crude extracts, all microtubule stabilizing activity could be ascribed to a single Ca(2+)-calmodulin binding and Ca(2+)-calmodulin regulated protein, called "stable tubule only polypeptide", STOP145 [Pirollet, F., Rauch, C. T., Job, D., & Margolis, R. L. (1989) Biochemistry 28, 835-842]. We have now performed an exhaustive study of STOP-like effectors in bovine brain high-speed supernatants. All activity binds to cation exchangers and to Ca(2+)-calmodulin affinity columns. The activity can be resolved into two peaks on sizing columns. The first eluted peak contains a prominent 220-kDa protein. The second peak contains an apparently homogeneous 20-kDa polypeptide. A monoclonal antibody specific to rat brain STOP145 recognizes the 220-kDa protein, but not the 20-kDa species. The 220-kDa protein can be purified on a STOP antibody column and accounts for the bulk of stabilizing activity in the first peak. The 20-kDa protein does not bind to STOP antibody affinity columns. Sequence analysis of oligopeptide fragments of the 20-kDa protein shows 100% homology with bovine myelin basic protein (MBP). Anti-MBP antibodies recognize the 20-kDa, but not the 220-kDa species. We conclude that the 220-kDa protein is the bovine equivalent to rat brain STOP145 and that the 20-kDa species is MBP. Microtubule stabilization by MBP and STOP220 is abolished in the presence of Ca(2+)-calmodulin, and inhibition curves are similar for both proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
STOP proteins     
Microtubules assembled from pure tubulin in vitro are labile, rapidly depolymerized upon exposure to the cold. In contrast, in a number of cell types, cytoplasmic microtubules are stable, resistant to prolonged cold exposure. During the past years, the molecular basis of this microtubule stabilization in cells has been elucidated. Cold stability is due to polymer association with different variants of a calmodulin-regulated protein, STOP protein. The dynamic and hence the physiological consequences of STOP association with microtubules vary in different tissues. In neurons, STOP seems almost permanently associated with microtubules. STOP is apparently a major determinant of microtubule turnover in such cells and is required for normal neuronal differentiation. In cycling cells, only minor amounts of STOP are associated with interphase microtubules and STOP does not measurably affects microtubule dynamics. However, STOP is associated with mitotic microtubules in the spindle. Recent results indicate that such an association could be vital for meiosis and for the long-term fidelity of the mitotic process.  相似文献   

4.
Neuronal differentiation and function require extensive stabilization of the microtubule cytoskeleton. Neurons contain a large proportion of microtubules that resist the cold and depolymerizing drugs and exhibit slow subunit turnover. The origin of this stabilization is unclear. Here we have examined the role of STOP, a calmodulin-regulated protein previously isolated from cold-stable brain microtubules. We find that neuronal cells express increasing levels of STOP and of STOP variants during differentiation. These STOP proteins are associated with a large proportion of microtubules in neuronal cells, and are concentrated on cold-stable, drug-resistant, and long-lived polymers. STOP inhibition abolishes microtubule cold and drug stability in established neurites and impairs neurite formation. Thus, STOP proteins are responsible for microtubule stabilization in neurons, and are apparently required for normal neurite formation.  相似文献   

5.
R L Margolis  C T Rauch  F Pirollet    D Job 《The EMBO journal》1990,9(12):4095-4102
STOP (Stable Tubule Only Polypeptide) is a neuronal microtubule associated protein of 145 kd that stabilizes microtubules indefinitely to in vitro disassembly induced by cold temperature, millimolar calcium or by drugs. We have produced monoclonal antibodies against STOP. Using an antibody affinity column, we have produced a homogeneously pure 145 kd protein which has STOP activity as defined by its ability to induce cold stability and resistance to dilution induced disassembly in microtubules in vitro. Western blot analysis, using a specific monoclonal antibody, demonstrates that STOP recycles quantitatively with microtubules through three assembly cycles in vitro. Immunofluorescence analysis demonstrates that STOP is specifically associated with microtubules of mitotic spindles in neuronal cells. Further, and most interestingly, STOP at physiological temperature appears to be preferentially distributed on the distinct microtubule subpopulations that display cold stability; kinetochore-to-pole microtubules and telophase midbody microtubules. The observed distribution suggests that STOP induces the observed cold stability of these microtubule subpopulations in vivo.  相似文献   

6.
STOP proteins are microtubule-associated, calmodulin-regulated proteins responsible for the high degree of stabilization displayed by neuronal microtubules. STOP suppression in mice induces synaptic defects affecting both short and long term synaptic plasticity in hippocampal neurons. Interestingly, STOP has been identified as a component of synaptic structures in neurons, despite the absence of microtubules in nerve terminals, indicating the existence of mechanisms able to induce a translocation of STOP from microtubules to synaptic compartments. Here we have tested STOP phosphorylation as a candidate mechanism for STOP relocalization. We show that, both in vitro and in vivo, STOP is phosphorylated by the multifunctional enzyme calcium/calmodulin-dependent protein kinase II (CaMKII), which is a key enzyme for synaptic plasticity. This phosphorylation occurs on at least two independent sites. Phosphorylated forms of STOP do not bind microtubules in vitro and do not co-localize with microtubules in cultured differentiating neurons. Instead, phosphorylated STOP co-localizes with actin assemblies along neurites or at branching points. Correlatively, we find that STOP binds to actin in vitro. Finally, in differentiated neurons, phosphorylated STOP co-localizes with clusters of synaptic proteins, whereas unphosphorylated STOP does not. Thus, STOP phosphorylation by CaMKII may promote STOP translocation from microtubules to synaptic compartments where it may interact with actin, which could be important for STOP function in synaptic plasticity.  相似文献   

7.
The STOP protein (stable tubule-only polypeptide) is a calmodulin-regulated protein which associates with microtubules and induces cold stabilization. There are different isoforms of this protein that arise from alternative splicing of STOP mRNA. Neurons express two major variants N-STOP (125 kDa) and E-STOP (84 kDa). NIH 3T3 fibroblasts contain a major F-STOP isoform (42 kDa) and two minor STOP variants (48 and 89 kDa). Previously, we demonstrated the presence of N-STOP in the cytoskeleton associated with myelin isolated from animals injected with apotransferrin. Since this protein was only described as a neuronal protein we decided to further investigate the expression of this protein in oligodendrocyte cultures. The analysis of the STOP protein expression in oligodendrocyte shows that STOP protein is expressed in the soma and processes of oligodendrocyte precursors, as well as in immature and mature oligodendroglial cells. In addition, we found that MBP shows a high degree of colocalization with STOP protein. By Western blot analysis, it was found that these cells express a major STOP variant (89 kDa). When the cultures were exposed to cold temperature we found that STOP protein associates with microtubules and induces microtubule cold stabilization. Under these experimental conditions, we found that MBP associates with microtubules too, and maintains its colocalization with STOP protein. At present, we are doing new assays directed to further characterize STOP (89 kDa) protein and to elucidate how this protein participates in the formation of myelin by oligodendrocytes.  相似文献   

8.
Microtubules, ordinarily cold-labile structures, are made entirely resistant to cold temperature by the presence of substoichiometric amounts of STOP (stable tubule only polypeptide), a microtubule-associated protein. We have produced a monoclonal antibody which specifically recognizes a 145-kDa protein previously implicated in STOP activity in rat brain extracts. An antibody affinity column removes both the 145-kDa protein and STOP activity from solution. A urea eluate from the affinity column contains the 145-kDa protein and exhibits substantial STOP activity. We conclude the 145-kDa protein accounts for all measurable STOP activity in rat neuronal extracts. For this work, we have developed an assay of microtubule cold stability which is generally applicable to the detection of STOP activity in various tissues. Using this assay, we show STOP activity is most abundant in neuronal tissue but is detectable in all tissues tested, with the exception of heart muscle. In all tissues that we have examined, STOP activity elutes as a single peak from heparin affinity columns, and in common with brain STOP, all activity is Ca2+-calmodulin sensitive. The monoclonal antibody recognizes the 145-kDa STOP in rat neuronal extracts but reacts with no protein in active fractions from other tissue. A similar, but not identical, analogue of brain STOP thus appears to be widespread in mammalian tissues.  相似文献   

9.
Sliding of STOP proteins on microtubules   总被引:5,自引:0,他引:5  
M Pabion  D Job  R L Margolis 《Biochemistry》1984,23(26):6642-6648
Microtubules are stabilized against cold temperature disassembly by 145-kilodalton proteins [stable tubule only polypeptides (STOPs)] that block the end-wise dissociation of subunits from the polymers. We describe here several kinetic parameters of the interaction of STOPs with microtubules. STOPs will bind to microtubules either during assembly of the polymer or at steady state. The addition appears random on the polymers and does not require the mediation of tubulin subunits. Tubulin subunits compete with microtubules for STOP binding, but binding to the polymers is apparently irreversible. We demonstrate that STOPs do not exchange measurably between polymers at steady state. Nonetheless, a displacement of STOPs within a single polymer is readily demonstrable. We have determined that the displacement is apparently due to a surface translocation, or "sliding", of STOPs on microtubules.  相似文献   

10.
《The Journal of cell biology》1985,101(5):1680-1689
We have developed a method to distinguish microtubule associated protein (MAP)-containing regions from MAP-free regions within a microtubule, or within microtubule sub-populations. In this method, we measure the MAP-dependent stabilization of microtubule regions to dilution-induced disassembly of the polymer. The appropriate microtubule regions are identified by assembly in the presence of [3H]GTP, and assayed by filter trapping and quantitation of microtubule regions that contain label. We find that MAPs bind very rapidly to polymer binding sites and that they do not exchange from these sites measurably once bound. Also, very low concentrations of MAPs yield measurable stabilization of local microtubule regions. Unlike the stable tubule only polypeptide (STOP) proteins, MAPs do not exhibit any sliding behavior under our assay conditions. These results predict the presence of different stability subclasses of microtubules when MAPs are present in less than saturating amounts. The data can readily account for the observed "dynamic instability" of microtubules through unequal MAP distributions. Further, we report that MAP dependent stabilization is quantitatively reversed by MAP phosphorylation, but that calmodulin, in large excess, has no specific influence on MAP protein activity when MAPs are on microtubules.  相似文献   

11.
F-STOP is a microtubule-associated protein that stabilizes microtubules in a calmodulin (CaM)-dependent manner. All members of the stable tubule only polypeptide (STOP) family have a central domain that contains nearly identical multiple repeats, and a CaM binding motif is present in multiple copies within this domain. We present here an analysis of this CaM binding interaction and find that it is highly unusual in nature. For this work, we synthesized two model peptides of a single STOP central repeat motif and analyzed their binding to CaM by fluorescence, circular dichroism, infrared and NMR spectroscopy. Both peptides bind to CaM with an affinity of 4 microM, similar to that of the native protein. Results indicate that the peptides bind CaM in an atypical manner. Binding is highly dependent on the concentration of cations, indicating that it is to some extent electrostatic. Further, IR and CD analysis shows that, in contrast to typical CaM binding reactions, CaM does not change in helical structure on binding. NMR mapping confirms that CaM remains in extended conformation on binding a single STOP peptide. Binding of a single peptide to CaM occurs principally in the CaM C-terminal region, and the C-terminal domain of CaM effectively competes for STOP binding. Our results establish that CaM binds STOP in an unusual manner, involving mainly the C-terminus of CaM, thus leaving CaM potentially accessible for another binding partner at the N-terminus. This intriguing possibility could be of physiological importance in F-STOP mediated CaM regulation of microtubule dynamics or stability, specifically during mitosis where CaM and STOP colocalize.  相似文献   

12.
In general, microtubules are labile structures which depolymerize at low temperature and are sensitive to Ca2+. However, in brain tissue, axonal microtubules are disassembly-resistant and can exist without attachment to a microtubule organizing center. Stable microtubules cannot be purified by usual recycling procedures and this has made the elucidation of the molecular mechanisms involved in their stabilization difficult. This paper summarizes previous work in our laboratories, aimed at the identification of brain microtubule stabilizing proteins. We present assay methods which allow the detection of microtubule stability effectors in complex extracts and in chromatographic column fractions. Applied to brain crude extracts, they result in the isolation of Ca(2+)-calmodulin binding and Ca(2+)-calmodulin regulated proteins. One, called STOP, appears to account for microtubule stabilization in neurons. A second protein with similar activity is myelin basic protein. Non-neuronal tissues also contain Ca(2+)-calmodulin-regulated effectors which appear to differ in structure from their neuronal counterparts. Thus, in all tissues examined, microtubule stability seems to be accounted for by unique Ca(2+)-calmodulin regulated proteins, showing tissue specificity.  相似文献   

13.
Axonal microtubules consist of two distinct domains that differ in tyrosinated-tubulin staining. One domain stains weakly for tyrosinated-tubulin, while the other stains strongly, and the transition between these domains is abrupt; the tyrosinated-tubulin-poor domain is at the minus end of the microtubule, and the tyrosinated-tubulin-rich domain extends from the plus end of the tyrosinated-tubulin-poor domain to the end of the microtubule. The tyrosinated-tubulin-poor domain is drug- and cold-stable, whereas the tyrosinated-tubulin-rich domain is drug-labile, but largely cold-stable. STOP (stable-tubule-only-polypeptide) has potent microtubule stabilizing activity, and may contribute to the cold and drug stability of axonal microtubules. To evaluate this possibility, we examined STOP association with the different types of microtubule polymer in cultured sympathetic neurons. By immunofluorescence, STOP is present in the cell body and throughout the axon; axonal staining declines progressively in the distal portion of the axon, and reaches lowest levels in the growth cone. Growth cone microtubules, which are drug and cold labile, do not stain detectably for STOP. To examine individual axonal microtubules for STOP, we used a procedure that causes microtubules to splay out from the main axonal array so that they can be visualized for relatively long distances along their length. Both tyrosinated-tubulin-rich and tyrosinated-tubulin-poor polymer stain for STOP, but STOP is several-fold more concentrated on tyrosinated-tubulin-poor polymer than on tyrosinated-tubulin-rich polymer. These results are consistent with STOP dependent stabilization of axonal microtubules, with the difference between cold-stable polymer versus cold- + drug-stable polymer determined by the amount of STOP on the polymer.  相似文献   

14.
Although microtubules are intrinsically labile tubulin assemblies, many cell types contain stable polymers, resisting depolymerizing conditions such as exposure to the cold or the drug nocodazole. This microtubule stabilization is largely due to polymer association with STOP proteins. There are several STOP variants, some with capacity to induce microtubule resistance to both the cold and nocodazole, others with microtubule cold stabilizing activity only. These microtubule-stabilizing effects of STOP proteins are inhibited by calmodulin and we now demonstrate that they are determined by two distinct kinds of repeated modular sequences (Mn and Mc), both containing a calmodulin-binding peptide, but displaying different microtubule stabilizing activities. Mn modules induce microtubule resistance to both the cold and nocodazole when expressed in cells. Mc modules, which correspond to the STOP central repeats, have microtubule cold stabilizing activity only. Mouse neuronal STOPs, which induce both cold and drug resistance in cellular microtubules, contain three Mn modules and four Mc modules. Compared with neuronal STOPs, the non-neuronal F-STOP lacks multiple Mn modules and this corresponds with an inability to induce nocodazole resistance. STOP modules represent novel bifunctional calmodulin-binding and microtubule-stabilizing sequences that may be essential for the generation of the different patterns of microtubule stabilization observed in cells.  相似文献   

15.
In eukaryotes, the coordinated progress of the various cellular tasks along with the assembly of adapted cytoskeletal networks requires a tight regulation of the interactions between microtubules and their associated proteins. Polyglutamylation is the major post-translational modification of neuronal tubulin. Due to its oligomeric structure, polyglutamylation can serve as a potentiometer to modulate binding of diverse MAPs. In addition, it can exert a differential mode of regulation towards distinct microtubule protein partners. To find out to what extent polyglutamylation is a general regulator, we have analyzed its ability to affect the binding of STOPs, the major factors that confer cold- and nocodazole-resistance to microtubules. We have shown by blot overlay experiments that binding of STOP does not depend on the length of the polyglutamyl chains carried by tubulins. And contrary to the other microtubule-associated proteins tested so far, STOP can bind quantitatively to any tubulin isoform whatever its degree of polyglutamylation.  相似文献   

16.
Neuronal microtubules are stabilized by two calmodulin-regulated microtubule-associated proteins, E-STOP and N-STOP, which when suppressed in mice induce severe synaptic and behavioral deficits. Here we show that mature neurons also contain a 21-kDa STOP-like protein, SL21, which shares calmodulin-binding and microtubule-stabilizing homology domains with STOP proteins. Accordingly, in different biochemical or cellular assays, SL21 has calmodulin binding and microtubule stabilizing activity. However, in cultured hippocampal neurons, SL21 antibodies principally stain the somatic Golgi and punctate Golgi material in neurites. In cycling cells, transfected SL21 decorates microtubules when expressed at high levels but is otherwise principally visible at the Golgi. The Golgi targeting of SL21 depends on the presence of cysteine residues located within the SL21 N-terminal domain, suggesting that Golgi targeting may require SL21 palmitoylation. Accordingly we find that SL21 is palmitoylated in vivo. N-STOP and E-STOP, which contain the Golgi targeting sequences present in SL21, also display distinct Golgi staining when expressed at low level in cycling cells. Thus neuronal proteins of the STOP family have the capacity to associate with Golgi material, which could be important for STOP synaptic functions.  相似文献   

17.
The BCH (BNIP2 and Cdc42GAP Homology) domain-containing protein Bmcc1/Prune2 is highly enriched in the brain and is involved in the regulation of cytoskeleton dynamics and cell survival. However, the molecular mechanisms accounting for these functions are poorly defined. Here, we have identified Bmcc1s, a novel isoform of Bmcc1 predominantly expressed in the mouse brain. In primary cultures of astrocytes and neurons, Bmcc1s localized on intermediate filaments and microtubules and interacted directly with MAP6/STOP, a microtubule-binding protein responsible for microtubule cold stability. Bmcc1s overexpression inhibited MAP6-induced microtubule cold stability by displacing MAP6 away from microtubules. It also resulted in the formation of membrane protrusions for which MAP6 was a necessary cofactor of Bmcc1s. This study identifies Bmcc1s as a new MAP6 interacting protein able to modulate MAP6-induced microtubule cold stability. Moreover, it illustrates a novel mechanism by which Bmcc1 regulates cell morphology.  相似文献   

18.
The deletion of microtubule-associated protein stable tubule only polypeptide (STOP) leads to neuroanatomical, biochemical and severe behavioral alterations in mice, partly alleviated by antipsychotics. Therefore, STOP knockout (KO) mice have been proposed as a model of some schizophrenia-like symptoms. Preliminary data showed decreased brain serotonin (5-HT) tissue levels in STOP KO mice. As literature data demonstrate various interactions between microtubule-associated proteins and 5-HT, we characterized some features of the serotonergic neurotransmission in STOP KO mice. In the brainstem, mutant mice displayed higher tissue 5-HT levels and in vivo synthesis rate, together with marked increases in 5-HT transporter densities and 5-HT1A autoreceptor levels and electrophysiological sensitivity, without modification of the serotonergic soma number. Conversely, in projection areas, STOP KO mice exhibited lower 5-HT levels and in vivo synthesis rate, associated with severe decreases in 5-HT transporter densities, possibly related to reduced serotonergic terminals. Mutant mice also displayed a deficit of adult hippocampal neurogenesis, probably related to both STOP deletion and 5-HT depletion. Finally, STOP KO mice exhibited a reduced anxiety- and, probably, an increased helpness-status, that could be because of the strong imbalance of the serotonin neurotransmission between somas and terminals. Altogether, these data suggested that STOP deletion elicited peculiar 5-HT disconnectivity.  相似文献   

19.
Taxol-induced bundling of brain-derived microtubules   总被引:5,自引:4,他引:1       下载免费PDF全文
Taxol has two obvious effects in cells. It stabilizes microtubules and it induces microtubule bundling. We have duplicated the microtubule- bundling effect of taxol in vitro and report preliminary characterization of this bundling using electron microscopy, sedimentation, and electrophoretic analyses. Taxol-bundled microtubules from rat brain crude extracts were seen as massive bundles by electron microscopy. Bundled microtubules sedimented through sucrose five times faster than control microtubules. Electrophoretic analysis of control and taxol-bundled microtubules pelleted through sucrose revealed no striking differences between the two samples except for a protein doublet of approximately 100,000 daltons. Taxol-induced microtubule bundling was not produced by using pure tubulin or recycled microtubule protein; this suggested that taxol-induced microtubule bundling was mediated by a factor present in rat brain crude extracts. Taxol cross- linked rat brain crude extract microtubules were entirely labile to ATP in the millimolar range. This ATP-dependent relaxation was also demonstrated in a more purified system, using taxol-bundled microtubules pelleted through sucrose and gently resuspended. Although the bundling factor did not recycle with microtubule protein, it was apparently retained on isolated taxol-stabilized microtubules. The bundling factor was salt extracted from taxol-stabilized microtubules and its retained activity was demonstrated in an add-back experiment with assembled phosphocellulose-purified tubulin.  相似文献   

20.
Intersectin 1 (ITSN1) is a multidomain adaptor protein that functions in clathrin-mediated endocytosis and signal transduction. This protein is highly abundant in neurons and is implicated in Down syndrome, Alzheimer's disease and, possibly, other neurodegenerative disorders. Here we used an in vitro binding assay combined with MALDI-TOF mass spectrometry to identify novel binding partners of ITSN1. We found that the neuron-specific isoform of the stable tubule-only polypeptide (STOP) interacts with SH3A domain of ITSN1. STOP and ITSN1 were shown to form a complex in vivo and to partially co-localize in rat primary hippocampal neurons. As STOP is a microtubule-stabilizing protein that is required for several forms of synaptic plasticity in the hippocampus, identification of this interaction raises the possibility of ITSN1 participation in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号