首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The underlying pathomechanisms in prion infections of the central nervous system are still insufficiently understood. The identification of genes with altered expression patterns in the diseased brain may provide insight into the disease development on the molecular level, which ultimately leads to neuronal loss. To provide a detailed analysis of changes in the molecular level in prion disease pathology we used a large-scale gene array based approach, which covers more than 11,000 functionally characterised sequences and expressed sequence tags, for the analysis of gene expression profile alterations in the cortex, medulla, and pons of scrapie-infected mice. The study identified in total 114 genes with altered mRNA levels, the majority of which were previously not known to be affected by the disease. Overall the gene array data demonstrate the presence of a strong inflammatory reaction and stress response, and show similarities to gene expression patterns found in brains affected by Alzheimer's disease and aging, respectively.  相似文献   

2.
The mevalonate/isoprenoids/cholesterol pathway has a fundamental role in the brain. Increasing age could be associated with specific changes in mevalonate downstream products. Other than age differences in brain cholesterol and dolichol levels, there has been little if any evidence on the short-chain isoprenoids farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP), as well as downstream lipid products. The purpose of the present study was to determine whether brain levels of FPP, GGPP and sterol precursors and metabolites would be altered in aged mice (23?months) as compared to middle-aged mice (12?months) and young mice (3?months). FPP and GGPP levels were found to be significantly higher in brain homogenates of 23-months-old mice. The ratio of FPP to GGPP did not differ among the three age groups suggesting that increasing age does not alter the relative distribution of the two isoprenoids. Gene expression of FPP synthase and GGPP synthase did not differ among the three age groups. Gene expression of HMG-CoA reductase was significantly increased with age but in contrast gene expression of squalene synthase was reduced with increasing age. Levels of squalene, lanosterol and lathosterol did not differ among the three age groups. Desmosterol and 7-dehydroxycholesterol, which are direct precursors in the final step of cholesterol biosynthesis were significantly lower in brains of aged mice. Levels of cholesterol and its metabolites 24S- and 25S-hydroxycholesterol were similar in all three age groups. Our novel find ings on increased FPP and GGPP levels in brains of aged mice may impact on protein prenylation and contribute to neuronal dysfunction observed in aging and certain neurodegenerative diseases.  相似文献   

3.
Senescence-accelerated mice (SAMP8) have a short life span, whereas SAMR1 mice are resistant to accelerated senescence. Previously it has been reported that the Akv strain of ecotropic murine leukemia virus (E-MuLV) was detected in brains of SAMP8 mice but not in brains of SAMR1 mice. In order to determine the change of MuLV levels following scrapie infection, we analyzed the E-MuLV titer and the RNA expression levels of E-MuLV, xenotropic MuLV, and polytropic MuLV in brains and spinal cords of scrapie-infected SAM mice. The expression levels of the 3 types of MuLV were increased in scrapie-infected mice compared to control mice; E-MuLV expression was detected in infected SAMR1 mice, but only in the terminal stage of scrapie disease. We also examined incubation periods and the levels of PrPSc in scrapie-infected SAMR1 (sR1) and SAMP8 (sP8) mice. We confirmed that the incubation period was shorter in sP8 (210+/-5 days) compared to sR1 (235+/-10 days) after intraperitoneal injection. The levels of PrPSc in sP8 were significantly greater than sR1 at 210+/-5 days, but levels of PrPSc at the terminal stage of scrapie in both SAM strains were virtually identical. These results show the activation of MuLV expression by scrapie infection and suggest acceleration of the progression of scrapie pathogenesis by MuLV.  相似文献   

4.
Bile acids and cholesterol metabolism exhibits distinct daily rhythms and uridine closely associated with bile acids has been well documented. However, how dynamic oral administration of uridine affects bile acid and cholesterol metabolism has not been studied. We conducted the present study to investigate effects of oral administration of uridine in the daytime and nighttime (D-UR and N-UR) on bile acid and cholesterol metabolism-related genes expression in liver and ileum of mice. The results showed that oral administration of uridine in the nighttime (N-UR) reduced serum CHOL and ALT levels at Zeitgeber time (ZT) 4, ZT22, respectively. Compared with D-UR group, the mRNA expression of FXR and SHP genes of liver decreased in N-UR group at ZT10, ZT16, respectively. In addition, oral administration of uridine in the nighttime rhythmically increased the mRNA expression of bile acid transport, cholesterol excretion and decreased the mRNA expression of cholesterol absorption in ileum. Moreover, the expression of nucleotide transport and synthesis genes were also explored in duodenum. Oral administration of uridine in the nighttime rhythmically up-regulated nucleotide transport and synthesis genes expression. In conclusion, these results indicated dynamic oral administration of uridine has effects on the rhythmic fluctuation of cholesterol, bile acid and nucleotide metabolism-related genes. These findings have important physiological and pathophysiological implications, since bile acid and cholesterol metabolism are essential for cell function and closely involved in the development of metabolic syndrome.  相似文献   

5.
6.
7.
PrPSc is formed from a normal glycosylphosphatidylinositol (GPI)-anchored prion protein (PrPC) by a posttranslational modification. Most GPI-anchored proteins have been shown to be cleaved by GPI phospholipases. Recently, GPI-phospholipase D (GPI-PLD) was shown to be a strictly specific enzyme for GPI anchors. To investigate the involvement of GPI-PLD in the processes of neurodegeneration in prion diseases, we examined the mRNA and protein expression levels of GPI-PLD in the brains of a prion animal model (scrapie), and in both the brains and cerebrospinal fluids (CSF) of sporadic and familial Creutzfeldt-Jakob disease (CJD) patients. We found that compared with controls, the expression of GPI-PLD was dramatically down-regulated in the brains of scrapie-infected mice, especially in the caveolin-enriched membrane fractions. Interestingly, the observed decrease in GPI-PLD expression levels began at the same time that PrPSc began to accumulate in the infected brains and this decrease was also observed in both the brain and CSF of CJD patients; however, no differences in expression were observed in either the brains or CSF specimens from Alzheimer’s disease patients. Taken together, these results suggest that the down-regulation of GPI-PLD protein may be involved in prion propagation in the brains of prion diseases.  相似文献   

8.
9.
PrP(Sc), the only identified component of the scrapie prion, is a conformational isoform of PrPc. The physiological role of PrPc, a glycolipid-anchored glycoprotein, is still unknown. We have shown previously that neuronal nitric oxide synthase (nNOS) activity is impaired in the brains of mice sick with experimental scrapie as well as in scrapie-infected neuroblastoma cells. In this work we investigated the cell localization of nNOS in brains of wild-type and scrapie-infected mice as well as in mice in which the PrP gene was ablated. We now report that whereas in wild-type mice, nNOS, like PrPc, is associated with detergent-insoluble cholesterol-rich membranous microdomains (rafts), this is not the case in brains of scrapie-infected or in those of adult PrP(0/0) mice. Also, adult PrP(0/0), like scrapie-infected mice, show reduced nNOS activity. We suggest that PrPc may play a role in the targeting of nNOS to its proper subcellular localization. The similarities of nNOS properties in PrP(0/0) as compared with scrapie-infected mice suggest that at least this role of PrPc may be impaired in scrapie-infected brains.  相似文献   

10.
Distinct biphasic mRNA changes in response to Asian soybean rust infection   总被引:4,自引:0,他引:4  
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is now established in all major soybean-producing countries. Currently, there is little information about the molecular basis of ASR-soybean interactions, which will be needed to assist future efforts to develop effective resistance. Toward this end, abundance changes of soybean mRNAs were measured over a 7-day ASR infection time course in mock-inoculated and infected leaves of a soybean accession (PI230970) carrying the Rpp2 resistance gene and a susceptible genotype (Embrapa-48). The expression profiles of differentially expressed genes (ASR-infected compared with the mock-inoculated control) revealed a biphasic response to ASR in each genotype. Within the first 12 h after inoculation (hai), which corresponds to fungal germination and penetration of the epidermal cells, differential gene expression changes were evident in both genotypes. mRNA expression of these genes mostly returned to levels found in mock-inoculated plants by 24 hai. In the susceptible genotype, gene expression remained unaffected by rust infection until 96 hai, a time period when rapid fungal growth began. In contrast, gene expression in the resistant genotype diverged from the mock-inoculated control earlier, at 72 h, demonstrating that Rpp2-mediated defenses were initiated prior to this time. These data suggest that ASR initially induces a nonspecific response that is transient or is suppressed when early steps in colonization are completed in both soybean genotypes. The race-specific resistance phenotype of Rpp2 is manifested in massive gene expression changes after the initial response prior to the onset of rapid fungal growth that occurs in the susceptible genotype.  相似文献   

11.
Gene expression in atherosclerotic lesion of ApoE deficient mice   总被引:3,自引:0,他引:3  
BACKGROUND: Atherosclerosis, the major cause of mortality and invalidity in industrialized countries, is a multifactorial disease associated with high plasma cholesterol levels and inflammation in the vessel wall. Many different genes have previously been demonstrated in atherosclerosis, although limited numbers of genes are dealt with in each study. In general, data on dynamic gene expression during disease progress is limited and large-scale evaluation of gene expression patterns during atherogenesis could lead to a better understanding of the key events in the pathogenesis of atherosclerosis. We have therefore applied a mouse gene filter array to analyze gene expression in atherosclerotic ApoE-deficient mice. MATERIALS AND METHODS: ApoE-deficient mice were fed atherogenic western diet for 10 or 20 weeks and aortas isolated. C57BL/6 mice on normal chow were used as controls. The mRNAs of 15 animals were pooled and hybridized onto commercially available Clontech mouse gene array filters. RESULTS: The overall gene expression in the ApoE-deficient and control mice correlated well at both time points. Gene expression profiling showed varying patterns including genes up-regulated at 10 or 20 weeks only. At 20 weeks of diet, an increasing number of up-regulated genes were found in ApoE-deficient mice. CONCLUSIONS: The gene expression in atherogenesis is not a linear process with a maximal expression at advanced lesion stage. Instead, several genes demonstrate a dynamic expression pattern with peaks at the intermediate lesions stage. Thus, detailed evaluation of gene expression at several time points should help understanding the development of atherosclerosis and establishment of preventive intervention.  相似文献   

12.
To assess the correlation between hyperglycemia and glucose catabolic gene levels in diabetic and healthy mice, we determined mRNA levels of pivotal proteins such as glucose transporters, hexokinase II, glycogen synthase, glutamine:fructose-6-phosphate amidotransferase and uncoupling proteins. Both KK and KKAy mice showed marked decreases of Glut1 and Glut4 mRNA levels in soleus compared to C57BL; db/db and ob/ob mice exhibited significantly decreased Glut4 mRNA levels, but not Glut1, in soleus. KK and KKAy mice showed a decrease of soleus HKII gene level, which may indicate decreased intracellular catabolism of glucose. Likewise, GS mRNA level was decreased in soleus muscle tissue in KK and KKAy mice. GFAT mRNA levels was no different between hyperglycemic and normoglycemic mice. In contrast, UCP2 and UCP3 mRNA levels were higher in KK and KKAy mice. Conversely, db/db and ob/ob mice showed a significant decrease in UCP3 mRNA. Individual correlation analysis indicated that the decrease in Glut4 gene levels was only observed in hyperglycemic mice. The more important observation is that the glucose catabolic genes do not exhibit any clear coordinate expression. Abnormal expression of glucose catabolic genes may contribute to hyperglycemia and muscle insulin resistance in these four strains.  相似文献   

13.
14.
15.
Comprehensive analysis of the changes in gene expression during liver regeneration was carried out by using an in-house microarray composed of 2,304 distinct mouse liver cDNA clones. Mice were subjected to partial two-thirds hepatectomy, and changes in mRNA levels were monitored up to 48 h. Of the 2,304 genes analyzed, 496 genes showed expression levels measurable at all time points after the partial hepatectomy. 317 genes were up- or down-regulated 2-fold or more at least at one time point during liver regeneration and were classified into eight clusters based on their expression patterns. With a more stringent cut-off value of +/-2 S.D., 68 genes were listed and were classified into five clusters. In these two analyses with different clustering criteria, functionally categorized genes showed similar cluster distributions. Genes involved in protein synthesis and posttranslational processing were significantly enriched in the cluster characterized by rapid gene activation and subsequent persistence. This suggests the importance of modulating the efficiency of protein supply and/or altering the composition of protein population from the early phase of hepatocyte proliferation. Genes for two major liver functions, i.e. plasma protein secretion and intermediate metabolism were enriched in distinct clusters exhibiting the features of gradual gene activation and sustained repression, respectively. Therefore, these genes are differentially regulated during the regeneration, possibly leading to changes in the flow of amino acids and energy from enzyme proteins to plasma proteins in their synthesis. Thus, clustering analysis of expression patterns of functionally classified genes gave insights into mechanism and pathophysiology of liver regeneration.  相似文献   

16.
Despite considerable progress understanding genes that affect the HDL particle, its function, and cholesterol content, genes identified to date explain only a small percentage of the genetic variation. We used N-ethyl-N-nitrosourea mutagenesis in mice to discover novel genes that affect HDL cholesterol levels. Two mutant lines (Hlb218 and Hlb320) with low HDL cholesterol levels were established. Causal mutations in these lines were mapped using linkage analysis: for line Hlb218 within a 12 Mbp region on Chr 10; and for line Hlb320 within a 21 Mbp region on Chr 7. High-throughput sequencing of Hlb218 liver RNA identified a mutation in Pla2g12b. The transition of G to A leads to a cysteine to tyrosine change and most likely causes a loss of a disulfide bridge. Microarray analysis of Hlb320 liver RNA showed a 7-fold downregulation of Hpn; sequencing identified a mutation in the 3' splice site of exon 8. Northern blot confirmed lower mRNA expression level in Hlb320 and did not show a difference in splicing, suggesting that the mutation only affects the splicing rate. In addition to affecting HDL cholesterol, the mutated genes also lead to reduction in serum non-HDL cholesterol and triglyceride levels. Despite low HDL cholesterol levels, the mice from both mutant lines show similar atherosclerotic lesion sizes compared to control mice. These new mutant mouse models are valuable tools to further study the role of these genes, their affect on HDL cholesterol levels, and metabolism.  相似文献   

17.
Several different mammalian neurotropic viruses produce an age-dependent encephalitis characterized by more severe disease in younger hosts. To elucidate potential factors that contribute to age-dependent resistance to lethal viral encephalitis, we compared central nervous system (CNS) gene expression in neonatal and weanling mice that were either mock infected or infected intracerebrally with a recombinant strain, dsTE12Q, of the prototype alphavirus Sindbis virus. In 1-day-old mice, infection with dsTE12Q resulted in rapidly fatal disease associated with high CNS viral titers and extensive CNS apoptosis, whereas in 4-week-old mice, dsTE12Q infection resulted in asymptomatic infection with lower CNS virus titers and undetectable CNS apoptosis. GeneChip expression comparisons of mock-infected neonatal and weanling mouse brains revealed developmental regulation of the mRNA expression of numerous genes, including some apoptosis regulatory genes, such as the proapoptotic molecules caspase-3 and TRAF4, which are downregulated during development, and the neuroprotective chemokine, fractalkine, which is upregulated during postnatal development. In parallel with increased neurovirulence and increased viral replication, Sindbis virus infection in 1-day-old mice resulted in both a greater number of host inflammatory genes with altered expression and greater changes in levels of host inflammatory gene expression than infection in 4-week-old mice. Only one inflammatory response gene, an expressed sequence tag similar to human ISG12, increased by a greater magnitude in infected 4-week-old mouse brains than in infected 1-day-old mouse brains. Furthermore, we found that enforced neuronal ISG12 expression results in a significant delay in Sindbis virus-induced death in neonatal mice. Together, our data identify genes that are developmentally regulated in the CNS and genes that are differentially regulated in the brains of different aged mice in response to Sindbis virus infection.  相似文献   

18.
脑是富含胆固醇的器官,机体大约有25%的胆固醇集中在脑组织中.ATP结合盒超家族转运蛋白对脑组织中胆固醇的膜外转运和动态平衡起着重要的调节作用.研究发现,ATP结合盒超家族转运蛋白亚体ABCG1、ABCG4和ABCA1在成体脑组织中存在不同程度的表达,一种或多种亚体的缺失可以导致神经退行性病变.然而,ATP结合盒超家族转运蛋白亚体对脑发育过程中脑胆固醇动态变化的调节缺乏相关性的报道.在本研究中,从低胆固醇饮食喂养的C57BL/6J小鼠中获取出生后不同发育时期的脑组织,对ABCG1、ABCG4和ABCA1的mRNA与蛋白质表达水平进行测定,并对脑组织和血清中ATP结合盒超家族转运蛋白的表达水平与胆固醇水平的相关性进行研究.同时,使用ABCG1、ABCG4单一基因敲除鼠和ABCG1、ABCG4双基因敲除鼠,研究ATP结合盒超家族转运蛋白对与胆固醇合成的相关基因表达的影响以及对脑组织胆固醇代谢的调节作用.结果发现,ABCG1、ABCG4和ABCA1在机体多个器官中均有表达,但ABCG1和ABCG4在小鼠脑组织中表达量最高.在脑组织发育过程中,ABCG1和ABCG4mRNA水平呈现明显的表达时效性,小鼠于出生后42天达到峰值,而ABCA1 mRNA的表达水平无明显变化.血清和脑组织中中酯化型胆固醇水平呈双高峰分布,也于出生后42天达到最高.基因敲除鼠模型显示,单一敲除ABCG1或者ABCG4基因对脑组织胆固醇水平无明显影响,而ABCG1和ABCG4基因的同时缺失导致脑胆固醇水平显著升高,并明显降低胆固醇合成相关基因的表达水平.本研究表明,在脑发育成熟过程中,ATP结合盒超家族转运蛋白亚体ABCG1和ABCG4,而非ABCA1,以调节脑胆固醇的膜外转运;ABCG1和ABCG4互补调控脑胆固醇的动态平衡.  相似文献   

19.
The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is the rate-limiting enzyme in the biosynthesis of cholesterol. We have studied the role of the HMGCR gene in pig lipid metabolism by means of expression and structural analysis. We describe here the complete coding region of this gene in pigs and report two synonymous single nucleotide polymorphisms in the coding region. We have, additionally, studied the association of one of these polymorphisms (HMGCR:c.807A>C) with several lipid deposition- and cholesterol-related traits in a half-sib population generated from a commercial Duroc line, showing in some families a positive relationship of HMGCR:c.807A allele with serum low-density lipoprotein (LDL)-bound cholesterol and triglyceride levels, and also with intramuscular fat (IMF) content of gluteus medius muscle. We have also assessed the expression levels in muscle and in liver from 68 Duroc individuals corresponding to the most extreme animals for the analysed traits. Liver HMGCR expression correlated negatively with the serum high-density lipoprotein (HDL) levels, carcass lean percentage and stearic acid content, while muscle expression correlated also negatively with the carcass lean percentage, stearic and linoleic acids content, but showed a positive correlation with the serum lipid cholesterol (HDL, LDL and total cholesterol), IMF and muscle oleic and palmitic fatty acid content. With this information, we have performed an association analysis of expression data with lipid metabolism phenotypic levels and the HMGCR genotype. The results indicate that HMGCR expression levels in muscle are different in the two groups of pigs with extreme values for fat deposition and total cholesterol levels, and also between animals with the different HMGCR genotypes.  相似文献   

20.
Yang PY  Rui YC  Lu L  Li TJ  Liu SQ  Yan HX  Wang HY 《Life sciences》2005,77(20):2529-2539
An increasing number of studies have focused on the expressions of growth factors and adhesion molecules in atherosclerotic lesions, which are confirmed to play central roles in angiogenesis and endothelial dysfunction, including vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 (ICAM-1). However, the difference of growth factor and adhesion molecule expression time courses has not been determined in vivo. This study aimed to determine the expression patterns and expression curves of ICAM-1 and VEGF in atherosclerotic rats during the time course. An experiment atherosclerotic model in rats was established by combining the high fat/cholesterol diets with injection of vitamin D3. In situ hybridization was used to determine the expression patterns of VEGF and ICAM-1 in aortas of normal or atherosclerotic rats in 8 weeks. There was a massive increase in reactivity for both ICAM-1 and VEGF in atherosclerotic plaques. Northern blot, Western blot and ELISA analysis were used to quantify VEGF and ICAM-1 expressions in time course. In rat aorta, the expression curves in time course showed that ICAM-1, not VEGF, was up-regulated in mRNA levels significantly in 2 weeks; while VEGF expression was hysteresis than ICAM-1, which showed maximum expression level in 8 weeks. Our results provide the evidence of VEGF and ICAM-1 expression curves in time course in atherosclerotic rats, which indicated different regulatory mechanisms of VEGF and ICAM-1 expression in atherogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号