首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tree root systems, which play a major role in below-ground carbon (C) dynamics, are one of the key research areas for estimating long-term C cycling in forest ecosystems. In addition to regulating major C fluxes in the present conditions, tree root systems potentially hold numerous controls over forest responses to a changing environment. The predominant contribution of tree root systems to below-ground C dynamics has been given little emphasis in forest models. We developed the TRAP model, i.e. Tree Root Allocation of Photosynthates, to predict the partitioning of photosynthates between the fine and coarse root systems of trees among series of soil layers. TRAP simulates root system responses to soil stress factors affecting root growth. Validation data were obtained from two Belgian experimental forests, one mostly composed of beech (Fagus sylvatica L.) and the other of Scots pine (Pinus sylvestris L.). TRAP accurately predicted (R = 0.88) night-time CO2 fluxes from the beech forest for a 3-year period. Total fine root biomass of beech was predicted within 6% of measured values, and simulation of fine root distribution among soil layers was accurate. Our simulations suggest that increased soil resistance to root penetration due to reduced soil water content during summer droughts is the major mechanism affecting the distribution of root growth among soil layers of temperate Belgian forests. The simulated annual rate of C input to soil litter due to the fine root turnover of the Scots pine was 207 g C m–2 yr–1. The TRAP model predicts that fine root turnover is the single most important source of C to the temperate forest soils of Belgium.  相似文献   

2.
Leuschner  Christoph  Hertel  Dietrich  Schmid  Iris  Koch  Oliver  Muhs  Annette  Hölscher  Dirk 《Plant and Soil》2004,258(1):43-56
Only very limited information exists on the plasticity in size and structure of fine root systems, and fine root morphology of mature trees as a function of environmental variation. Six northwest German old-growth beech forests (Fagus sylvatica L.) differing in precipitation (520 – 1030 mm year–1) and soil acidity/fertility (acidic infertile to basic fertile) were studied by soil coring for stand totals of fine root biomass (0–40 cm plus organic horizons), vertical and horizontal root distribution patterns, the fine root necromass/biomass ratio, and fine root morphology (root specific surface area, root tip frequency, and degree of mycorrhizal infection). Stand total of fine root biomass, and vertical and horizontal fine root distribution patterns were similar in beech stands on acidic infertile and basic fertile soils. In five of six stands, stand fine root biomass ranged between 320 and 470 g m–2; fine root density showed an exponential decrease with soil depth in all profiles irrespective of soil type. An exceptionally small stand fine root biomass (<150 g m–2) was found in the driest stand with 520 mm year–1 of rainfall. In all stands, fine root morphological parameters changed markedly from the topsoil to the lower profile; differences in fine root morphology among the six stands, however, were remarkably small. Two parameters, the necromass/biomass ratio and fine root tip density (tips per soil volume), however, were both much higher in acidic than basic soils. We conclude that variation in soil acidity and fertility only weakly influences fine root system size and morphology of F. sylvatica, but affects root system structure and, probably, fine root mortality. It is hypothesized that high root tip densities in acidic infertile soils compensate for low nutrient supply rates, and large necromasses are a consequence of adverse soil chemical conditions. Data from a literature survey support the view that rainfall is another major environmental factor that influences the stand fine root biomass of F. sylvatica.  相似文献   

3.
Arah  Jonathan 《Plant and Soil》2001,232(1-2):119-127
Three different strategies for incorporating rhizosphere processes within field-scale models are compared, taking triple-cropped irrigated rice production as a common system and CH4 emission as a common focus of interest. The strategies may be characterised as homogeneous (model I; root C deposition is added to the bulk soil compartment), areal (model II; roots contribute via aerenchymatous exchange to an increased soil–atmosphere interfacial surface area), and volumetric (model III; roots create around themselves a specific rhizosphere compartment). Model I is simpler than model II, which is simpler than model III. With identical parameters all models lead to similar seasonally integrated CH4 emissions, but when the pattern of emission and the simulated CH4 concentration in the soil is brought into the reckoning, the following order of precedence (greater is better) becomes clear: model IIImodel II>model I. Current field-scale models of soil organic matter (SOM) transformation, especially in rice soils, could be improved by taking explicit account of the rhizosphere and the processes which occur within it.  相似文献   

4.
The objective of this study was to determine the effects of soil water and soil strength on root growth in situations where the individual effects of both of these factors were important. Three grain legumes were grown from pre-germinated seeds for five days on 50-mm compacted columns of two major soils of Sri Lanka. Four or five levels of bulk density (1.1 to 1.8 Mg.m–3) and five or six levels of matric potential (–0.02 to–2.0 MPa) were used.Soil strength and matric potential effects on root growth were independently significant for most crop and soil combinations. Under high (wet) matric potential (>–0.77 MPa) soil conditions, the effect of soil water on root growth was evident only in its effect on soil strength. Bulk density had a significant effect on root growth independent of soil strength and matric potential in three cases.For all crops and soils, root penetration was 80% of the maximum or greater when the average soil strength (soil water not limiting) was 0.75 MPa or less, and when the average matric potential (soil strength not limiting) was –0.77 MPa or greater (wetter). Root penetration was 20% of the maximum or less when the soil strength was greater than 3.30 MPa (soil water not limiting), and when matric potential (soil strength not limiting) was less than –3.57 MPa. The use of pre-germinated seeds, which contained imbibed water, combined with a lack of water loss from the closed chambers containing the plants is the probable cause for the very low (–3.57 MPa) matric potential that allowed root growth at 20% of the maximum.  相似文献   

5.
A dynamic 3D model of root system development was adapted to young sessile oak seedlings, in order to evaluate the effects of grass competition on seedling root system development. The model is based on a root typology and the implementation of a series of developmental processes (axial and radial growth, branching, reiteration, decay and abscission). Parameters describing the different processes are estimated for each root type. Young oak seedlings were grown for 4 years in bare soil or with grass competition and were periodically excavated for root system observation and measurements (topology of the root system, length and diameter of all roots with a diameter greater than 0.3 mm). In the fourth year, 40 cm×20 cm×20 cm soil monoliths were excavated for fine root measurement (root density and root length). Root spatial development was analysed on a sub-sample of roots selected on four seedlings. The model was a guideline that provided a complete and consistent set of parameters to represent root system development. It gave a comprehensive view of the root systems and made it possible to quantify the effects of competition on the different root growth processes. The same root typology was used to describe the seedlings in bare soil and in grass. Five root types were defined, from large tap roots to fine roots. Root system size was considerably reduced by grass competition. Branching density was not affected but the branch roots were always smaller for the seedlings grown in competition. Reiteration capacity was also reduced by competition. Cross sectional areas before and after branching were linearly related with a scaling coefficient close to 1, as predicted by the pipe model theory. This relationship was not affected by grass competition.  相似文献   

6.
Improving the water capturing capacity of its large and deep root system is required to stabilize the yield of upland rice in drought-prone areas in the tropics. For the improvement of the root system through breeding and soil management, it is critical to understand the relative importance of genotypic and environmental effect and their interaction on the root development under various soil conditions and agronomic management. This study aimed to quantify and characterize the effect of genotype and environment, soils and N application levels (0 and 90 kg N ha–1) in the variations of the traits related to the size and distribution of the root system at the flowering stage using 11 rice genotypes in upland fields in southern Luzon in the Philippines. The results indicated that, among the root traits, the genotypic factor accounted for the largest portion of variation for the number of nodal roots, specific root weight (SRW), and R/S ratio, whereas the environmental effect was relatively large for deep root length ratio (DRR) and total root dry weight (RDW). Especially, the DRR, the ratio of root length at deeper than 30 cm per unit area to the RDW, was strongly affected by the site. Nitrogen application increased RDW without a substantial change in the R/S ratio and DRR. On the other hand, significant genotypic variations of RDW and DRR were obtained, which may imply the opportunity for the genetic improvement. Japonica upland varieties showed a large RDW (90–111 g m–2) associated with high R/S ratio (0.18–0.23) and a high SRW (0.26–0.27 mg cm–1), whereas aus (Dular) and indica (Vandana) upland varieties had a large DRR (12.5–13.8 m g–1) with a medium R/S ratio (0.14–0.17), suggesting an efficient formation of a deep root system with a limited biomass allocation to the roots. In addition, the analysis of G × E interaction term for RDW by an Additive Main Effects and Multiplicative Interaction (AMMI) model indicated that the response to soil conditions also differed between these groups. This indicated that proper deployment of genotype to the given soil conditions is also important to maximize the expression of genotypic potentials.  相似文献   

7.
Above-canopy sprinkler irrigation with saline water favours the absorption of salts by wetted leaves and this can cause a yield reduction additional to that which occurs in salt-affected soils. Outdoor pot experiments with both sprinkler and drip irrigation systems were conducted to determine foliar ion accumulation and performance of maize and barley plants exposed to four treatments: nonsaline control (C), salt applied only to the soil (S), salt applied only to the foliage (F) and salt applied to both the soil and to the foliage (F+S). The EC of the saline solution employed for maize in 1993 was 4.2 dS m–1 (30 mM NaCl and 2.8 mM CaCl2) and for barley in 1994, 9.6 dS m–1 (47 mM NaCl and 23.5 mM CaCl2). The soil surface of all pots was covered so that in the F treatment the soil was not salinized by the saline sprinkling and drip irrigation supplied nutrients in either fresh (treatments C and F) or saline water (treatments S and F+S).Saline sprinkling increased leaf sap Na+ concentrations much more than did soil salinity, especially in maize, even though the saline sprinkling was given only two or three times per week for 30 min, whereas the roots of plants grown in saline soil were continuously exposed to salinity. By contrast, leaf sap Cl concentrations were increased similarly by saline sprinkling and soil salinity in maize, and more by saline sprinkling than saline soil in barley. It is concluded that barley leaves, and to a greater extent maize leaves, lack the ability to selectively exclude Na+ when sprinkler irrigated with saline water. Moreover, maize leaves selectively absorbed Na+ over Cl whereas barley leaves showed no selectivity. When foliar and root absorption processes were operating together (F+S treatment) maize and barley leaves accumulated 11–14% less Na+ and Cl than the sum of individual absorption processes (treatment F plus treatment S) indicating a slight interaction between the absorption processes. Vegetative biomass at maturity and cumulative plant water use were significantly reduced by saline sprinkling. In maize, reductions in biomass and plant water use relative to the control were of similar magnitude for plants exposed only to saline sprinkling, or only to soil salinity; whereas in barley, saline sprinkling was more detrimental than was soil salinity. We suggest that crops that are salt tolerant because they possess root systems which efficiently restrict Na+ and Cl transport to the shoot, may not exhibit the same tolerance in sprinkler systems which wet the foliage with saline water. ei]T J Flowers  相似文献   

8.
Ozier-Lafontaine  H.  Lafolie  F.  Bruckler  L.  Tournebize  R.  Mollier  A. 《Plant and Soil》1998,204(2):183-201
A knowledge of plant interactions above and below ground with respect to water is essential to understand the performance of intercrop systems. In this study, a physically based framework is proposed to analyse the competition for soil water in the case of intercropped plants. A radiative transfer model, associated with a transpiration-partitioning model based on a modified form of the Penman-Monteith equation, was used to estimate the evaporative demand of maize (Zea mays L.) and sorghum ( Sorghum vulgare R.) intercrops. In order to model soil–root water transport, the root water potential of each species was calculated so as to minimise the difference between the evaporative demand and the amount of water taken up by each species. A characterisation of the micrometeorological conditions (net radiation, photosynthetically active radiation, air temperature and humidity, rain), plant water relations (leaf area index, leaf water potential, stomatal conductance, sap flow measurements), as well as the two-component root systems and water balance (soil–root impacts, soil evaporation) was carried out during a 7-day experiment with densities of about 4.2 plant m-2 for both maize and sorghum. Comparison of the measured and calculated transpiration values shows that the slopes of the measured versus predicted regression lines for hourly transpiration were 0.823 and 0.778 for maize and sorghum, respectively. Overall trends in the variation of volumetric water content profiles are also reasonably well described. This model could be useful for analysing competition where several root systems are present under various environmental conditions.  相似文献   

9.
A mechanistic model on methane oxidation in a rice rhizosphere   总被引:3,自引:1,他引:2  
A mechanistic model is presented onthe processes leading to methane oxidation inrice rhizosphere. The model is driven byoxygen release from a rice root into anaerobicrice soil. Oxygen is consumed by heterotrophicand methanotrophic respiration, described bydouble Monod kinetics, and by iron oxidation,described by a second order reaction.Substrates for these reactions – ferrous iron,acetate and methane – are produced by anexponential time dependent organic mattermineralisation in combination with modifiedMichaelis Menten kinetics for competition foracetate and hydrogen. Compounds diffusebetween rhizosphere, root and atmosphere. Adiffusion resistance between the rice root andshoot is included. Active transport across theroot surface occurs for root exudation andplant nutrient uptake. Iron adsorption isdescribed dependent on pH. The model predictswell root oxygen release, compound gradientsand compound concentrations in a ricerhizosphere. Methane oxidation estimates arecomparable to experimental estimates. Asensitivity analysis showed however thatmethane oxidation is highly dependent on modelinitialisation and parameterisation, which ishighly dependent on the history of therhizosphere and root growth dynamics.Equilibrium is not obtained within the periodthat a single root influences a soil micrositeand results in a large change in methanestorage. Equilibrium is moreover dependentupon the diffusion resistance across the rootsurface. These factors make methane oxidationdynamics highly variable in space and time anddependent on root dynamics. The increasedunderstanding of methane oxidation does notdirectly lead to increased predictiveabilities, given this high variability and theuncertainties involved in rhizospheredynamics.  相似文献   

10.
Spatial distributions of root systems of Larix gmelinii (Rupr.) Rupr. trees were examined in two stands in central Siberia: an even-aged stand (ca. 100 yrs-old) and a mature, uneven-aged (240–280 yrs-old) stand. Five larch trees of different sizes were sampled by excavating coarse roots (diameter > 5 mm) in each stand. Dimensions and ages of all first-order lateral roots were measured. Micro-scale conditions of soil temperature and soil water suction (each 10 cm deep) were also examined in relation to earth hummock topography (mound vs. trough) and/or ground floor vegetation types (moss vs. lichens). All larch trees developed superficial root systems, consisting of the aborted short tap root (10–40 cm in soil depth) and some well-spread lateral roots (n= 4-13). The root network of each tree was asymmetric, and its rooting area reached about four times the crown projection area. Lateral roots generally expanded into the upper soil layers of the mounds where summer soil temperature was 1–6°C higher than inside nearby troughs. Chronological analysis indicated that lateral root expansion started successively from lower to upper parts of each aborted tap root, and some lateral roots occurred simultaneously at several decades after tree establishment. The process of root system development was likely to be primarily linked with post-fire dynamics of rhizosphere environment of the permafrost soils.  相似文献   

11.

Background and Aims

Live imaging methods have become extremely important for the exploration of biological processes. In particular, non-invasive measurement techniques are key to unravelling organism–environment interactions in close-to-natural set-ups, e.g. in the highly heterogeneous and difficult-to-probe environment of plant roots: the rhizosphere. pH and CO2 concentration are the main drivers of rhizosphere processes. Being able to monitor these parameters at high spatio-temporal resolution is of utmost importance for relevant interpretation of the underlying processes, especially in the complex environment of non-sterile plant–soil systems. This study introduces the application of easy-to-use planar optode systems in different set-ups to quantify plant root–soil interactions.

Methods

pH- and recently developed CO2-sensors were applied to rhizobox systems to investigate roots with different functional traits, highlighting the potential of these tools. Continuous and highly resolved real-time measurements were made of the pH dynamics around Triticum turgidum durum (durum wheat) roots, Cicer arietinum (chickpea) roots and nodules, and CO2 dynamics in the rhizosphere of Viminaria juncea.

Key Results

Wheat root tips acidified slightly, while their root hair zone alkalized their rhizosphere by more than 1 pH unit and the effect of irrigation on soil pH could be visualized as well. Chickpea roots and nodules acidified the surrounding soil during N2 fixation and showed diurnal changes in acidification activity. A growing root of V. juncea exhibited a large zone of influence (mm) on soil CO2 content and therefore on its biogeochemical surrounding, all contributing to the extreme complexity of the root–soil interactions.

Conclusions

This technique provides a unique tool for future root research applications and overcomes limitations of previous systems by creating quantitative maps without, for example, interpolation and time delays between single data points.  相似文献   

12.
Miniature heat balance-sap flow gauges were used to measure water flows in small-diameter roots (3–4 mm) in the undisturbed soil of a mature beech–oak–spruce mixed stand. By relating sap flow to the surface area of all branch fine roots distal to the gauge, we were able to calculate real time water uptake rates per root surface area (Js) for individual fine root systems of 0.5–1.0 m in length. Study aims were (i) to quantify root water uptake of mature trees under field conditions with respect to average rates, and diurnal and seasonal changes of Js, and (ii) to investigate the relationship between uptake and soil moisture θ, atmospheric saturation deficit D, and radiation I. On most days, water uptake followed the diurnal course of D with a mid-day peak and low night flow. Neighbouring roots of the same species differed up to 10-fold in their daily totals of Js (<100–2000 g m−2 d−1) indicating a large spatial heterogeneity in uptake. Beech, oak and spruce roots revealed different seasonal patterns of water uptake although they were extracting water from the same soil volume. Multiple regression analyses on the influence of D, I and θ on root water uptake showed that D was the single most influential environmental factor in beech and oak (variable selection in 77% and 79% of the investigated roots), whereas D was less important in spruce roots (50% variable selection). A comparison of root water uptake with synchronous leaf transpiration (porometer data) indicated that average water fluxes per surface area in the beech and oak trees were about 2.5 and 5.5 times smaller on the uptake side (roots) than on the loss side (leaves) given that all branch roots <2 mm were equally participating in uptake. Beech fine roots showed maximal uptake rates on mid-summer days in the range of 48–205 g m−2 h−1 (i.e. 0.7–3.2 mmol m−2 s−1), oak of 12–160 g m−2 h−1 (0.2–2.5 mmol m−2 s−1). Maximal transpiration rates ranged from 3 to 5 and from 5 to 6 mmol m−2 s−1 for sun canopy leaves of beech and oak, respectively. We conclude that instantaneous rates of root water uptake in beech, oak and spruce trees are above all controlled by atmospheric factors. The effects of different root conductivities, soil moisture, and soil hydraulic properties become increasingly important if time spans longer than a week are considered.  相似文献   

13.
Tomato root growth and distribution were related to inorganic nitrogen (N) availability and turnover to determine 1) if roots were located in soil zones where N supply was highest, and 2) whether roots effectively depleted soil N so that losses of inorganic N were minimized. Tomatoes were direct-seeded in an unfertilized field in Central California. A trench profile/monolith sampling method was used. Concentrations of nitrate (NO3 -) exceeded those of ammonium (NH4 +) several fold, and differences were greater at the soil surface (0–15 cm) than at lower depths (45–60 cm or 90–120 cm). Ammonium and NO3 - levels peaked in April before planting, as did mineralizable N and nitrification potential. Soon afterwards, NO3 - concentrations decreased, especially in the lower part of the profile, most likely as a result of leaching after application of irrigation water. Nitrogen pool sizes and rates of microbial processes declined gradually through the summer.Tomato plants utilized only a small percentage of the inorganic N available in the large volume of soil explored by their deep root systems; maximum daily uptake was approximately 3% of the soil pool. Root distribution, except for the zone around the taproot, was uniformly sparse (ca. 0.15 mg dry wt g-1 soil or 0.5 cm g-1 soil) throughout the soil profile regardless of depth, distance from the plant stem, or distance from the irrigation furrow. It bore no relation to N availability. Poor root development, especially in the N-rich top layer of soil, could explain low fertilizer N use by tomatoes.  相似文献   

14.
A two-dimensional trickle-irrigated soil model was examined in order to determine its aeration regime. Oxygen diffusion rate (O.D.R.) was used as an index of the soil aeration regime, and its influence on the development of root systems was determined. Volumetric soil air content was calculated from soil water tension data, using a retention curve.The root system was markedly concentrated at the periphery of the trickle-irrigated soil volume, while in the center there were few roots. An exponential correlation was found between root distribution and O.D.R., in which 20×10–8g O2×cm–2×min–1 was the critical value for root growth. There was a linear correlation between O.D.R. and volumetric air content which was affected by diffusion distance.  相似文献   

15.
Volume Contents   总被引:5,自引:1,他引:4  
Rasse  Daniel P.  Smucker  Alvin J.M. 《Plant and Soil》1998,204(2):203-212
Distribution of root systems through soils and recolonization of root channels by successive crops are fundamental, though difficult to study, processes of soil ecology. This article reports a minirhizotron (MR) study of corn and alfalfa root systems throughout the soil profile of Kalamazoo loam (fine-loamy, mixed, mesic Typic Hapludalf) monolith lysimeters for a three-year succession of corn, alfalfa and corn. Multiple-date comparisons within and between years were conducted to estimate total root densities in each soil horizon. Root recolonization was assessed by comparing every video frame of paired minirhizotrons, from recordings conducted one growing season apart. Distributions of corn root systems were modified by tillage practices. In 1994, root populations of corn in the Bt1 horizon peaked 75–90 days after planting (DAP). Numbers of corn roots per m2 in the Bt1 horizon were consistently higher for no-tillage (NT) than for conventional tillage (CT) lysimeters, in 1994 and 1996. Distribution of alfalfa roots within the soil profile was not significantly modified by tillage. However, alfalfa root decomposition rates responded to conventional and no-tillage practices and were specific for each soil horizon. Corn root systems growing in soils previously cropped with alfalfa presented similar patterns of root distribution by horizons as that of the previous alfalfa crop. Successive corn root systems did not display similar distribution patterns throughout the soil profile from one growing season to the next. Proportions of roots of the current crop recolonizing root induced macropores (RIMs) of the previous crop averaged 18% for corn after corn, 22% for alfalfa after corn and 41% for corn after alfalfa, across Bt horizons and tillage treatments. In conclusion, distribution of corn root systems appeared to be modified by tillage practices and root recolonization of RIMs was controlled by the preceding crop.  相似文献   

16.
We review methods and models that help to assess how root activity changes soil properties and affects the fluxes of matter in the soil. Subsections discuss (1) experimental systems including plant treatments in artificial media, studying the interaction of model root and microbial exudates with soil constituents, and microcosms to distinguish between soil compartments differing in root influence, (2) the sampling and characterization of rhizosphere soil and solution, focusing on the separation of soil at different distances from roots and the spatially resolved sampling of soil solution, (3) cutting-edge methodologies to study chemical effects in soil, including the estimation of bioavailable element or ion contents (biosensors, diffusive gradients in thin-films), studying the ultrastructure of soil components, localizing elements and determining their chemical form (microscopy, diffractometry, spectroscopy), tracing the compartmentalization of substances in soils (isotope probing, autoradiography), and imaging gradients in-situ with micro electrodes or gels or filter papers containing dye indicators, (4) spectroscopic and geophysical methods to study the plants influence on the distribution of water in soils, and (5) the modeling of rhizosphere processes. Macroscopic models with a rudimentary depiction of rhizosphere processes are used to predict water or nutrient requirements by crops and forests, to estimate biogeochemical element cycles, to calculate soil water transport on a profile scale, or to simulate the development of root systems. Microscopic or explanatory models are based on mechanistic or empirical relations that describe processes on a single root or root system scale and/or chemical reactions in soil solution. We conclude that in general we have the tools at hand to assess individual processes on the microscale under rather artificial conditions. Microscopic, spectroscopic and tracer methods to look at processes in small “aliquots” of naturally structured soil seem to step out of their infancy and have become promising tools to better understand the complex interactions between plant roots, soil and microorganisms. On the field scale, while there are promising first results on using non-invasive geophysical methods to assess the plant’s influence on soil moisture, there are no such tools in the pipeline to assess the spatial heterogeneity of chemical properties and processes in the field. Here, macroscopic models have to be used, or model results on the microscopic level have to be scaled up to the whole plant or plot scale. Upscaling is recognized as a major challenge.  相似文献   

17.
There are several studies in the literature dealing with the effect of metal-humic complexes on plant metal uptake, but none of them correlate the physicochemical properties of the complexes with agronomic results. Our study covers both aspects under various experimental conditions. A humic extract (SHE) obtained from a sapric peat was selected for preparing the metal–humic complexes used in plant experiments. Fe–, Zn– and Cu–humic complexes with a reaction stoichiometry of 2:0.25 (humic:metal, w/w) were chosen after studying their stability and solubility with respect to pH (6–9) and the humic:metal reaction stoichiometry. Wheat and alfalfa plants were greenhouse cultured in pots containing one of three model soils: an acid, sandy soil and two alkaline, calcareous soils. Treatments were: control (no additions), SHE (53 mg kg–1 of SHE), and metal (Cu, Zn and Fe)–SHE complexes (2.5 and 5 mg kg–1 of metal rate and a SHE concentration to make 53 mg kg –1). Cu- and Zn–humic complexes significantly (p0.05) increased the plant uptake and the DTPA-extractable soil fraction of complexed micronutrients in most plant–soil systems. However, these effects were associated with significant increases (p0.05) of shoot and root dry weight only in alfalfa plants. In wheat, significant increases of root and shoot dry matter were only observed in the Cu–humic treated plants growing in the acid soil, where Cu deficiency was more intense. The Fe–humic complex did not increase Fe plant assimilation in any plant–soil system, but SHE increased Fe-uptake and/or DTPA-extractable soil Fe in the wheat–calcareous soil systems. These results, taken together with those obtained from the study of the pH- and SHE:metal ratio-dependent SHE complex solubility and stability, highlight the importance of the humic:Fe complex stoichiometry on iron bioavailability as a result of its influence on complex solubility.  相似文献   

18.
Ekblad A  Boström B  Holm A  Comstedt D 《Oecologia》2005,143(1):136-142
Soil respiration, a key component of the global carbon cycle, is a major source of uncertainty when estimating terrestrial carbon budgets at ecosystem and higher levels. Rates of soil and root respiration are assumed to be dependent on soil temperature and soil moisture yet these factors often barely explain half the seasonal variation in soil respiration. We here found that soil moisture (range 16.5–27.6% of dry weight) and soil temperature (range 8–17.5°C) together explained 55% of the variance (cross-validated explained variance; Q2) in soil respiration rate (range 1.0–3.4 mol C m–2 s–1) in a Norway spruce (Picea abies) forest. We hypothesised that this was due to that the two components of soil respiration, root respiration and decomposition, are governed by different factors. We therefore applied PLS (partial least squares regression) multivariate modelling in which we, together with below ground temperature and soil moisture, used the recent above ground air temperature and air humidity (vapour pressure deficit, VPD) conditions as x-variables. We found that air temperature and VPD data collected 1–4 days before respiration measurements explained 86% of the seasonal variation in the rate of soil respiration. The addition of soil moisture and soil temperature to the PLS-models increased the Q2 to 93%. 13C analysis of soil respiration supported the hypotheses that there was a fast flux of photosynthates to root respiration and a dependence on recent above ground weather conditions. Taken together, our results suggest that shoot activities the preceding 1–6 days influence, to a large degree, the rate of root and soil respiration. We propose this above ground influence on soil respiration to be proportionally largest in the middle of the growing season and in situations when there is large day-to-day shifts in the above ground weather conditions. During such conditions soil temperature may not exert the major control on root respiration.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants and contribute to the pollution of aquatic and terrestrial environments. In soil, their fate may be affected by interactions with the soil biological community and soil colloids. This study was conducted to investigate the fate of phenanthrene (Phe), selected as a representative PAH, in simplified model systems, which simulate processes naturally occurring in soil. Phe was interacted with catechol (Cat), an orthodiphenol, and common intermediate in the microbial degradation of PAHs, and birnessite (Bir), an abiotic strong oxidative catalyst abundant in soil. Two experimental conditions were investigated: Cat (5 mM)+Bir (1 mg ml–1)+Phe (0.05 mg ml–1) mixed at the same time and incubated for 24 h at 25°C (Cat–Bir–Phe) and Cat+Bir incubated for 24 h at 25°C before Phe addition and then incubated for a further 24 h (Cat–Bir+Phe). After incubation, the systems were analysed for residual Cat and Phe, supplied with a selected Phe-degrading mixed bacterial culture, and then the microbial degradation of Phe and the growth of cells were monitored. Complex phenomena simultaneously occurred. Cat was completely removed after a 24-h incubation with Bir, and no interference by Phe in the Bir-mediated transformation of Cat was observed. Elemental analysis and UV–Vis and Fourier transfer infrared spectra showed that Cat transformation by Bir produced soluble and insoluble polymeric aggregates involving Phe. The hydrocarbon also interacted with the surfaces of Bir either previously coated (Cat–Bir+Phe sample) or not by Cat polymers. When a Phe-degrading bacterial culture was added to the systems after Bir-mediated Cat polymerisation, a different behaviour was observed in terms of Phe consumption and bacterial growth, thus suggesting differentiated availability of Phe to the microbial cells. The hydrocarbon was completely transformed in the presence of Bir and/or Bir covered by Cat polymers. By contrast a reduced degradation was measured when the Phe was involved in the polymerisation of Cat and entrapped in the Cat polymers (Cat–Bir–Phe). Although Cat showed a toxic, lethal effect on the bacterial cells, microbial growth was observed in the presence of Cat and Cat polymers, as the only C source. The mechanism leading to the different availability of Phe in the presence of Cat and Bir is still not clear. Further investigations are requested to provide more insight into such a complex phenomenon.  相似文献   

20.
Sogbedji  J.M.  van Es  H.M.  Hutson  J.L.  Geohring  L.D. 《Plant and Soil》2001,229(1):71-82
Testing of existing agronomic models is needed to ensure their validity and applicability to different soils, cropping systems and environments. Data collected from a 3-year field experiment of maize (zea mays L.) on a loamy sand and a clay loam soil were used to validate the research version of the LEACHMN model for water flow and N fate and transport. Three calibration scenarios with increasing levels of generalization for transformation rate coefficients were used based on: (i) each year, treatment and soil type (ii) 3-year average values for each treatment and soil type, and (iii) average over years and soil types. Model accuracy was tested using both graphical and statistical methods including 1:1 scale plot, root mean square error and normalized root mean square error, and correlation coefficient values. The model accurately predicted drainage water flow rate and volume under both sites. Calibrated N transformation rate constants for each treatment, year and soil type provided satisfactory predictions of growing season cumulative NO3–N leaching losses, and accurate predictions of growing season cumulative maize N uptake at both sites. The use of 3-year average rate constant values for each site resulted in fairly satisfactory predictions of NO3–N leaching losses on the clay loam site, but inaccurate predictions on the loamy sand site. The model provided accurate predictions of cumulative maize N uptake for both sites. Using the rate constant values averaged over years and soil types resulted mostly in inaccurate predictions. Use of year and soil type-specific N rate coefficients results in accurate LEACHMN predictions of N leaching and maize N uptake. When rate coefficients are generalized over years for each soil type, satisfactory model predictions may be expected when N dynamics are not strongly affected by yearly variations in organic N inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号