首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitriles have been shown to be potent inducers of aneuploidy in yeast and Drosophila test systems. Haloacetonitriles are by-products of water chlorination that have been shown to be mutagenic and carcinogenic following topical application. In this report we show that dichloroacetonitrile, but not dibromoacetonitrile, is an effective inducer of aneuploidy in oocytes of Drosophila melanogaster. Following inhalation exposure of ZESTE adult females, dichloroacetonitrile (8.6 ppm) induced highly significant increments in the frequencies of sex chromosome loss and gain. Sodium cyanide was also found to be a highly effective inducer of germline aneuploidy, suggesting that cyanide toxicity may contribute to potency of nitriles as inducers of aneuploidy.  相似文献   

2.
Asbestos toxicity is a problem of considerable public concern and debate, however little is known regarding the biological targets of asbestos fibers. Prompted by reports that asbestos induces aneuploidy in cultured mammalian cells, we have investigated whether asbestos induces germ-line aneuploidy in Drosophila melanogaster. Using the ZESTE genetic test system, we have shown that both chrysotile and amosite asbestos induce sex-chromosome aneuploidy in Drosophila oocytes. Chrysotile appeared to be the more effective agent because it induced approximately equal frequencies of chromosome gain and chromosome loss, while amosite induced chromosome loss only. Two other asbestiform minerals, crocidolite and tremolite, were ineffective in this assay system. These results suggest that possible germ-line effects of asbestos should be considered in evaluating its potential impact on human health.  相似文献   

3.
Twenty-three aprotic polar solvents - 3 nitriles, 8 organic esters, 10 ketones and 2 lactones - and LiCl were tested in combination with propionitrile alone or a mixture of ethyl acetate and propionitrile for the induction of mitotic chromosome loss in the D61.M strain of the yeast Saccharomyces cerevisiae. Propionitrile and ethyl acetate are very potent inducers of chromosome loss. Mixtures of propionitrile and ethyl acetate induced chromosome loss at much higher frequencies than was observed with the pure chemicals. To test the potentiating effects of propionitrile or mixtures of propionitrile with ethyl acetate on other chemicals, they were used in concentrations that were at or below the level for induction of chromosome loss. Twenty chemicals when tested in pure form were negative or only marginally active in the test for chromosome loss. Except for amyl propionate and benzyl acetate, the same chemicals showed strong induction in combination treatments with the potentiating chemicals. All the ketones including the neurotoxic methyl ethyl ketone, 2-hexanone and 2.5-hexanedione induced high frequencies of chromosome loss. Only methyl ethyl ketone is capable of inducing high levels of chromosome loss when tested in the pure form at much higher concentrations. 1-Methyl-2-pyrrolidinone and gamma-valerolactone had previously been shown to induce chromosome loss only when the treatment at a growth-supporting temperature was interrupted by a cold shock within a narrow range of low temperatures which prevented growth. Both gave very strong induction in combination treatment performed at a continuous growth-supporting temperature. LiCl is a weak inducer of chromosome loss: strong induction can be achieved in combination treatments.  相似文献   

4.
The diploid yeast strain BR1669 was used to study induction of mitotic and meiotic chromosome gain by selected chemical agents. The test relies on a gene dosage selection system in which hyperploidy is detected by the simultaneous increase in copy number of two alleles residing on the right arm of chromosome VIII: arg4-8 and cup1S (Rockmill and Fogel. 1988; Whittaker et al., 1988). Methyl methanesulfonate (MMS) induced mitotic, but not meiotic, chromosome gain. Methyl benzimidazol-2-yl carbamate (MBC) and ethyl methanesulfonate (EMS) induced both mitotic and meiotic chromosome gain. Propionitrile, a polar aprotic solvent, induced only mitotic chromosome gain; a reliable response was only achieved by overnight incubation of treated cultures at 0 degrees C. MBC is postulated to act by binding directly to tubulin. The requirement for low-temperature incubation suggests that propionitrile also induces aneuploidy by perturbation of microtubular dynamics. The alkylating agents MMS and EMS probably induce recombination which might in turn perturb chromosome segregation. Cyclophosphamide monohydrate and dimethyl sulfoxide (DMSO) failed to induce mitotic or meiotic chromosome gain.  相似文献   

5.
Two sensitive genetic systems for the detection of germline aneuploidy employing Drosophila melanogaster females were described in the first paper of this series (Zimmering et al., submitted to Mutation Research). Designated FIX and ZESTE, these systems permit the rapid and efficient detection of exceptional offspring derived from aneuploid female germ cells. The current report presents test results from a survey of 8 additional chemicals that have been analyzed in both systems. The tested chemicals include: acetonitrile, cadmium chloride, carbendazim, dimethylsulfoxide (DMSO), methylmercury(II) chloride, methoxyethyl acetate, propionitrile and water. Excluding the negative control, water, only the fungicide carbendazim failed to induce aneuploidy in either test system. Of the remaining 6 chemicals one, methylmercury(II) chloride, was positive in the FIX system but not in ZESTE, while MEA was positive in ZESTE and borderline in FIX. The results provide little evidence of germ-cell stage specificity of response to the tested chemicals. Comparison of the induced rates of aneuploidy i indicates that these can exhibit departures from simple additivity to the spontaneous rates: induced rates in the ZESTE system are generally higher and more variable than those from FIX. Possible reasons for the difference in responsiveness between FIX and ZESTE flies are discussed as is the question of the classification of those chemicals which induce chromosome loss events but not chromosome gains.  相似文献   

6.
Errors in chromosome segregation in mammalian oocytes increase in number with advancing maternal age, and are a major cause of pregnancy loss. Why chromosome segregation errors are more common in oocytes from older females remains poorly understood. In mitosis, accurate chromosome segregation is enabled by attachment of kinetochores to microtubules from appropriate spindle poles, and erroneous attachments increase the likelihood of mis-segregation. Whether attachment errors are responsible for age-related oocyte aneuploidy is unknown. Here we report that oocytes from naturally aged mice exhibit substantially increased chromosome misalignment, and fewer kinetochore pairs that make stable end-on attachments to the appropriate spindle poles compared with younger oocytes. The profile of mis-attachments exhibited is consistent with the types of chromosome segregation error observed in aged oocytes. Loss of chromosome cohesion, which is a feature of oocytes from older females, causes altered kinetochore geometry in meiosis-I. However, this has only a minor impact upon MT attachment, indicating that cohesion loss is not the primary cause of aneuploidy in meiosis-I. In meiosis-II, on the other hand, age-related cohesion loss plays a direct role in errors, since prematurely individualized sister chromatids misalign and misattach to spindle MTs. Thus, whereas cohesion loss leading to precocious sister chromatid separation is a direct cause of errors in meiosis-II, cohesion loss plays a more minor role in the etiology of aneuploidy in meiosis-I. Our data introduce altered MT-kinetochore interactions as a lesion that explains aneuploidy in meiosis-I in older females.  相似文献   

7.
The TX; Y test is a short-term assay for the detection of sex-chromosome nondisjunction and chromosome breakage in Drosophila melanogaster. It has been used in previous work following the exposure of males. In this work, females are exposed. When females are the exposed parent, only chromosome gain can be detected. Positive results for the induction of aneuploidy were obtained following exposures of females to X-rays, 10 degrees C cold shock, and colchicine. No increase in aneuploidy was obtained following exposures of females to DMSO and trifluralin. Comparison with similar work in males reveals no consistent pattern concerning the more appropriate sex to use for aneuploidy testing in Drosophila, as colchicine was found to be positive in females only and DMSO and trifluralin were effective in males only. Further work is necessary to validate the TX; Y test and to understand the relative efficacy of female and male exposures to aneuploidy inducing agents in Drosophila.  相似文献   

8.
A short-term assay utilizing a human/mouse monochromosomal hybrid cell line R3-5, to detect chemically induced aneuploidy in mammalian cells is described. A single human chromosome transferred into mouse cells was used as a cytogenetic marker to quantitate abnormal chromosome segregation following chemical treatment. The human chromosome present in the mouse cells can be readily identified by differential staining procedures. The frequency of cells containing 0 or 2 human chromosomes in the progeny of chemically treated monochromosomal hybrid cells provided a direct measure of aneuploidy. We tested the sensitivity of the proposed system with 3 model chemicals (colcemid, cyclophosphamide and benomyl) known to induce numerical or structural changes in chromosomes. The frequency of an abnormal segregation of the human chromosome was found to be dose dependent and consistently higher than controls. This system has the capability to detect gain as well as loss of a chromosome resulting from nondisjunction or other mechanisms leading to aneuploidy.  相似文献   

9.
It is generally accepted that mammalian oocytes are frequently suffering from chromosome segregation errors during meiosis I, which have severe consequences, including pregnancy loss, developmental disorders and mental retardation. In a search for physiologically more relevant model than rodent oocytes to study this phenomenon, we have employed comparative genomic hybridization (CGH), combined with whole genome amplification (WGA), to study the frequency of aneuploidy in porcine oocytes, including rare cells obtained from aged animals. Using this method, we were able to analyze segregation pattern of each individual chromosome during meiosis I. In contrast to the previous reports where conventional methods, such as chromosome spreads or FISH, were used to estimate frequency of aneuploidy, our results presented here show, that the frequency of this phenomenon was overestimated in porcine oocytes. Surprisingly, despite the results from human and mouse showing an increase in the frequency of aneuploidy with advanced maternal age, our results obtained by the most accurate method currently available for scoring the aneuploidy in oocytes indicated no increase in the frequency of aneuploidy even in oocytes from animals, whose age was close to the life expectancy of the breed.  相似文献   

10.
A new semiselective screen (only female progeny survive) for induced aneuploidy in germ cells of Drosophila melanogaster (referred to as 20/Q56 for the X-chromosome mutation markers in the parental females) has been validated by recovering cold, colchicine and N,N-dimethylnitrosamine (DMN) induced chromosome gain and loss events in females that contain structurally normal chromosomes. In addition, the spontaneous and induced results from the 20/Q56 assay, which identifies gain events at division I and loss events at divisions I and II of meiosis, were compared with a nonselective (all progeny survive) modified mating scheme that identifies gains and losses at both divisions of oogenesis. Females with the same genotypes are treated in the two mating schemes and are then mated with males that contain different marked Y chromosomes. The spontaneous rates of chromosome gains and losses were not significantly different in the two mating schemes (these rates ranged from 0.008 to 0.022%), supporting previous reports that spontaneous aneuploidy occurs at a higher frequency at division I of meiosis in females of D. melanogaster than at division II. Both the 20/Q56 and modified screens were able to identify significant increases in aneuploidy after adult treatments with cold shock (10 degrees C and 5 degrees C), colchicine (5 ppm and 10 ppm), and DMN (100 ppm). Brood analysis (five 2-day or five 3-day broods) showed that the largest increases in aneuploidy after cold treatment occurred in the first brood, which contains a high proportion of stage 14 oocytes, whereas colchicine induced the highest frequencies in the latter broods and DMN was effective in all but the last brood. Although the 20/Q56 mating scheme identifies gain events only in division I of meiosis whereas the modified mating scheme identifies gains in both divisions, the 20/Q56 scheme is just as effective in identifying induced aneuploidy as is the modified scheme. There were no significant differences in the frequencies of induced gains or losses in the two schemes. These results also suggest that the 3 treatments induced chromosome gain events mainly at division I of oogenesis. Taken together, the results from this study suggest that the 20/Q56 mating scheme in D. melanogaster, which is semiselective and therefore less expensive and time-consuming to perform, is an appropriate test system to screen for chemical induced aneuploidy in germ cells of a higher organism.  相似文献   

11.
The influence of sterol metabolism upon mutagenesis in Drosophila melanogaster was investigated using ecological-genetic yeast - drosophila system. Sterol deficiency in the organism of Drosophila was caused by using the strain of Saccharomyces cerevisiae 9-2P712 with a mutation in the nysr1 locus which blocks synthesis of ergosterol as a nutrition substrate for flies. It was concluded that maintenance of females on the mutant yeast strain causes an increase of radiation-induced X-chromosome loss in mature oocytes. Resistance of oocytes to X-ray irradiation is restored, reaching the control level, when 0,1% cholesterol solution in 10% ethanol is added to the yeast biomass. The possible membrane and hormonal mechanisms of elevation of induced aneuploidy and the role of sterol metabolism in ensuring resistance of insects to damaging factors are discussed.  相似文献   

12.
13.
A high frequency of parthenogenetic activation occurs when ovulated mouse oocytes are briefly exposed to a dilute solution of ethanol in vitro. Cytogenetic analyses of parthenogenones at metaphase of the first cleavage division have confirmed that parthenogenetic activation, per se, does not increase the incidence of chromosome segregation errors during the completion of the second meiotic division. Ethanol-induced activation, however, significantly increases the incidence of aneuploidy. The ultrastructural changes that occur in the morphology and organization of the second meiotic spindle apparatus in ethanol- and hyaluronidase-activated oocytes is reported here. Abnormalities in the arrangement of microtubule arrays and chromosome position were principally observed in ethanol-activated oocytes at anaphase and telophase of the second meiotic division, but were only rarely observed in hyaluronidase-activated oocytes. It is proposed that the abnormalities in spindle morphology and chromosome displacement observed in ethanol-activated oocytes represent the initial events that lead to chromosome segregation errors following exposure to this agent.  相似文献   

14.
Errors in chromosome segregation during meiotic division in gametes can lead to aneuploidy that is subsequently transmitted to the embryo upon fertilization. The resulting aneuploidy in developing embryos is recognized as a major cause of pregnancy loss and congenital birth defects such as Down’s syndrome. Accurate chromosome segregation is critically dependent on the formation of the microtubule spindle apparatus, yet this process remains poorly understood in mammalian oocytes. Intriguingly, meiotic spindle assembly differs from mitosis and is regulated, at least in part, by unique microtubule organizing centers (MTOCs). Assessment of MTOC-associated proteins can provide valuable insight into the regulatory mechanisms that govern meiotic spindle formation and organization. Here, we describe methods to isolate mouse oocytes and deplete MTOC-associated proteins using a siRNA-mediated approach to test function. In addition, we describe oocyte fixation and immunofluorescence analysis conditions to evaluate meiotic spindle formation and organization.  相似文献   

15.
Ageing severely affects the chromosome segregation process in human oocytes resulting in aneuploidy, infertility and developmental disorders. A considerable amount of segregation errors in humans are introduced at the second meiotic division. We have here compared the chromosome segregation process in young adult and aged female mice during the second meiotic division. More than half of the oocytes in aged mice displayed chromosome segregation irregularities at anaphase II, resulting in dramatically increased level of aneuploidy in haploid gametes, from 4% in young adult mice to 30% in aged mice. We find that the post‐metaphase II process that efficiently corrects aberrant kinetochore‐microtubule attachments in oocytes in young adult mice is approximately 10‐fold less efficient in aged mice, in particular affecting chromosomes that show small inter‐centromere distances at the metaphase II stage in aged mice. Our results reveal that post‐metaphase II processes have critical impact on age‐dependent aneuploidy in mammalian eggs.  相似文献   

16.
The translocation X; Y test is a selective system in Drosophila melanogaster designed to detect and distinguish among sex chromosome nondisjunction, chromosome breakage, and X-Y interchange. In the test, only exceptional progeny survive. This enables the investigator to score thousands of progeny with relative ease. The distribution of spontaneous events occurring in individual TX; Y males are analyzed in this paper. Evidence is obtained suggesting that the clusters of two products arising from a single nondisjunction can significantly affect the distribution of recovered chromosome gain or chromosome loss events. Non-parametric statistical methods are therefore recommended for the analysis of TX; Y data. In addition, use of the TX; Y test following exposures of pre-adult males to X-rays, heat shock, cold shock, colchicine, dimethyl sulfoxide (DMSO), and trifluralin are presented. Significant increases in nondisjunction (both gain and loss) were obtained following exposures to heat shock, cold shock, DMSO and trifluralin. Significant increases in chromosome breakage and X-Y interchange were obtained after exposures to X-rays and heat shock. These results indicate that the TX; Y test is an efficient method for detecting aneuploidy. Further work is needed, however, to fully validate this system for the routine screening of aneuploidy-inducing agents.  相似文献   

17.
Yeast strains from the genera Candida, Debaryomyces, Aureobasidium, Geotrichum, Pichia, Rhodotorula, Tremella, Hanseniaspora, and Cryptococcus were isolated from samples of a gold mine from liquid extraction circuit. These strains were tested for their ability to utilize acetonitrile at 12 mM as the sole nitrogen source. The yeasts that grew using acetonitrile at 12 mM were tested in the presence of acetonitrile, isobutyronitrile, methacrylnitrile, and propionitrile at concentrations of 12, 24, 48, 97, and 120 mM. One strain was selected for each nitrile and the concentration of nitrile in which the best growth occurred. Cryptococcus sp. strain UFMG-Y28 had a better growth on 120 mM propionitrile and 97 mM acetonitrile, Rhodotorula glutinis strain UFMG-Y5 on 48 mM methacrylnitrile, and Cryptococcus flavus strain UFMG-Y61 on 120 mM isobutyronitrile. The utilization of different nitriles and amides by yeast strains involves hydrolysis in a two-step reaction mediated by both inducible and intracellular nitrile hydratase and amidase.  相似文献   

18.
Oocytes cryopreservation as an important part of assisted reproductive technologies, which should ensure after warming not only intact oocyte morphological characteristics, but also their genetic apparatus stability. However, the meiotic spindle is very sensitive to the temperature fluctuations that can lead to unequal chromosome segregation during meiosis and as a consequence can cause embryo aneuploidy after oocyte fertilization. The aim of the study was to estimate the oocytes cryopreservation impact on human embryo chromosome aneuploidy. It has been shown that fertilization rate of the cryopreserved oocytes did not differ from fresh ones (83.1% vs 84% respectively). The number of blastocysts obtained from cryopreserved oocytes was less than that obtained from fresh oocytes, however, their morphological characteristics were better if compared the fresh oocytes. Our results showed different cryopreservation impact on aneuploidy rates of certain chromosomes in embryos obtained from cryopreserved oocytes. They had an increased aneuploidy of chromosome 13 and a decreased nondisjunction of chromosome 18 and sex chromosomes.  相似文献   

19.
Aneuploidy is the most frequent aberration observed in tumor cells, and underlies many debilitating and cancer-prone congenital disorders. Aneuploidy most often arises as a consequence of chromosomal non-disjunction, however, little is known about the genetic and epigenetic factors that affect the chromosomal segregation process. As many cancer-prone syndromes are associated with defects in DNA repair pathways we decided to investigate the relationship between DNA repair in mutation avoidance pathways, namely base and nucleotide excision, and mismatch repair (MMR), and aneuploidy in the yeast Saccharomyces cerevisiae. Isogenic haploid and diploid DNA repair deficient yeast strains were constructed, and spontaneous levels of intra- and inter-chromosomal recombination, forward mutation, chromosome gain, and loss were measured. We show that the nucleotide excision repair (NER) pathway is required for accurate chromosomal disjunction. In the absence of Rad1, Rad2, or Rad4, spontaneous levels of chromosome XV gain were significantly elevated in both haploid and diploid mutant strains. Thus, chromosome gain may be an additional cancer predisposing event in NER deficient patients.  相似文献   

20.
To detect age-related alterations in the formation and function of the spindle apparatus, we examined in vitro maturing oocytes obtained from young (2-4 mo) and aged (greater than 9 mo) diestrous CBA/Ca mice. Observation of cells processed for antitubulin immunofluorescence revealed that oocytes from aged females progress faster through first maturation division than those from young animals. They are also more prone to nondisjunction, as shown by a significantly higher level of aneuploidy in C-banded cells arrested at metaphase II. The ability of oocytes to recover from treatment with a microtubule inhibitor, nocodazole, and the effect of the drug on spindle integrity and chromosome segregation were also studied. In both age groups, treatment of metaphase I oocytes with 10 microM nocodazole caused rapid and complete microtubule depolymerization and chromosome scattering. Upon recovery, oocytes from both age groups were able to reestablish a spindle apparatus, proceed through anaphase, and extrude a first polar body. However, nocodazole treatment led to a dramatic increase of aneuploidy. Unexpectedly, the relative rise in hyperploids was greater in oocytes from young mice than in those from aged mice, so that the absolute percentage of hyperploid metaphase II cells was similar in both age groups after drug treatment. Concomitantly, nocodazole exposure abolished or, at least, diminished intrinsic differences in the cell cycle and anaphase trigger present in the controls (e.g., the earlier onset of chromosome separation in oocytes from aged females). It shortened the period available for spindle formation before chromosome segregation in all oocytes. Therefore, our study implies that temporal differences in the progression of oocytes through maturation, in particular, the shortening of the time available for alignment of bivalents before chromosome separation occurs in oocytes of old females, are mainly responsible for age-related rises in aneuploidy. There is no indication that (1) the spindle apparatus of oocytes from aged mammals is more labile or susceptible to disturbances than the spindle apparatus of oocytes from young individuals or that (2) an increase in the number of univalents makes oocytes from aged mammals particularly prone to nondisjunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号