首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynactin is a multisubunit protein complex required for the activity of dynein in diverse intracellular motility processes, including membrane transport. Dynactin can bind to vesicles and liposomes containing acidic phospholipids, but general properties such as this are unlikely to explain the regulated recruitment of dynactin to specific sites on organelle membranes. Additional factors must therefore exist to control this process. Candidates for these factors are the Rab GTPases, which function in the tethering of vesicles to their target organelle prior to membrane fusion. In particular, Rab27a tethers melanosomes to the actin cytoskeleton. Other Rabs have been implicated in microtubule-dependent organelle motility; Rab7 controls lysosomal transport, and Rab6 is involved in microtubule-dependent transport pathways through the Golgi and from endosomes to the Golgi. We demonstrate that dynactin binds to Rab6 and shows a Rab6-dependent recruitment to Golgi membranes. Other Golgi Rabs do not bind to dynactin and are unable to support its recruitment to membranes. Rab6 therefore functions as a specificity or tethering factor controlling the recruitment of dynactin to membranes.  相似文献   

2.
Membrane fusion at eukaryotic organelles is initiated by Rab GTPases and tethering factors. Rabs in their GDP-bound form are kept soluble in the cytoplasm by the GDP dissociation inhibitor (GDI) chaperone. Guanine nucleotide exchange factors (GEFs) are found at organelles and are critical for Rab function. Here, we surveyed the overall role of GEFs in Rab localization. We show that GEFs, but none of the proposed GDI displacement factors, are essential for the correct membrane localization of yeast Rabs. In the absence of the GEF, Rabs lost their primary localization to the target organelle. Several Rabs, such as vacuolar Ypt7, were found at the endoplasmic reticulum and thus were still membrane-bound. Surprisingly, a Ypt7 mutant that undergoes facilitated nucleotide exchange localized to vacuoles independently of its GEF Mon1-Ccz1 and rescued vacuole morphology. In contrast, wild-type Ypt7 required its GEF for localization and to counteract the extraction by GDI. Our data agree with the emerging model that GEFs are critical for Rab localization but raise the possibility that additional factors can contribute to this process.  相似文献   

3.
4.
Wang C  Liu Z  Huang X 《PloS one》2012,7(2):e32086
Lipids are essential components of all organisms. Within cells, lipids are mainly stored in a specific type of organelle, called the lipid droplet. The molecular mechanisms governing the dynamics of lipid droplets have been little explored. The protein composition of lipid droplets has been analyzed in numerous proteomic studies, and a large number of lipid droplet-associated proteins have been identified, including Rab small GTPases. Rab proteins are known to participate in many intracellular membranous events; however, their exact role in lipid droplets is largely unexplored. Here we systematically investigate the roles of Drosophila Rab family proteins in lipid storage in the larval adipose tissue, fat body. Rab32 and several other Rabs were found to affect the size of lipid droplets as well as lipid levels. Further studies showed that Rab32 and Rab32 GEF/Claret may be involved in autophagy, consequently affecting lipid storage. Loss-of-function mutants of several components in the autophagy pathway result in similar effects on lipid storage. These results highlight the potential functions of Rabs in regulating lipid metabolism.  相似文献   

5.
Rab GTPases are crucial regulators of organelle biogenesis, maintenance, and transport. Multiple Rabs are expressed in all cells, and each is localized to a distinct set of organelles, but little is known regarding the mechanisms by which Rabs are targeted to their resident organelles. Integral membrane proteins have been postulated to serve as receptors that recruit Rabs from the cytosol in a complex with the Rab chaperone, GDI, to facilitate the dissociation of Rab and GDI, hence facilitating loading of Rabs on membranes. We show here that the yeast (Saccharomyces cerevisiae) Golgi Rab GTPase Ypt1p can be copurified with the integral membrane protein Yip3p from detergent cell extracts. In addition, a member of the highly conserved reticulon protein family, Rtn1p, is also associated with Yip3p in vivo. However, Ypt1p did not copurify with Rtn1p, indicating that Yip3p is a component of at least two different protein complexes. Yip3p and Rtn1p are only partially colocalized in cells, with Yip3p localized predominantly to the Golgi and secondarily to the endoplasmic reticulum, whereas Rtn1p is localized predominantly to the endoplasmic reticulum and secondarily to the Golgi. Surprisingly, the intracellular localization of Rabs was not perturbed in yip3Delta or rtn1Delta mutants, suggesting that these proteins do not play a role in targeting Rabs to intracellular membranes. These data indicate that Yip3p may have multiple functions and that its interaction with Rabs is not critical for their recruitment to organelle membranes.  相似文献   

6.
Rab proteins are a large family of monomeric GTPases with 60 members identified in the human genome. Rab GTPases require an isoprenyl modification to their C-terminus for membrane association and function in the regulation of vesicular trafficking pathways. This reaction is catalysed by Rab geranylgeranyl transferase, which recognises as protein substrate any given Rab in a 1:1 complex with Rab Escort Protein (REP). REP is therefore able to bind many distinct Rab proteins but the molecular basis for this activity is still unclear. We recently identified conserved motifs in Rabs termed RabF motifs, which we proposed to mediate a conserved mode of interaction between Rabs and REPs. Here, we tested this hypothesis. We first used REP1 as a bait in the yeast two-hybrid system and isolated strictly full-length Rabs, suggesting that REP recognises multiple regions within and properly folded Rabs. We introduced point mutations in Rab3a as a model Rab and assessed the ability of the mutants to interact with REP using the yeast two-hybrid system and an in vitro prenylation assay. We identified several residues that affect REP:Rab binding in the RabF1, RabF3, and RabF4 regions (which include parts of the switch I and II regions), but not other RabF regions. These results support the hypothesis that Rabs bind REP via conserved RabF motifs and provide a molecular explanation for the preferential recognition of the GDP-bound conformation of Rab by REP.  相似文献   

7.
Rab GTPases: specifying and deciphering organelle identity and function   总被引:31,自引:0,他引:31  
Ten years ago, 20 Rab proteins had been identified as organelle-specific GTPases, and two were known to be essential for vesicle targeting in yeast. Today, more than 60 mammalian Rab proteins have been identified. While Rabs were always viewed as key regulatory factors, no one could have anticipated their diversity of functions and multitude of effectors. Rabs organize distinct protein scaffolds within a single organelle and act in a combinatorial manner with their effectors to regulate all stages of membrane traffic.  相似文献   

8.
Post-translational modification by protein prenylation is required for membrane targeting and biological function of monomeric GTPases. Ras and Rho proteins possess a C-terminal CAAX motif (C is cysteine, A is usually an aliphatic residue, and X is any amino acid), in which the cysteine is prenylated, followed by proteolytic cleavage of the AAX peptide and carboxyl methylation by the Rce1 CAAX protease and Icmt methyltransferase, respectively. Rab GTPases usually undergo double geranylgeranylation within CC or CXC motifs. However, very little is known about processing and membrane targeting of Rabs that naturally contain a CAAX motif. We show here that a variety of Rab-CAAX proteins undergo carboxyl methylation, both in vitro and in vivo, with one exception. Rab38(CAKS) is not methylated in vivo, presumably because of the inhibitory action of the lysine residue within the AAX motif for cleavage by Rce1. Unlike farnesylated Ras proteins, we observed no targeting defects of overexpressed Rab-CAAX proteins in cells deficient in Rce1 or Icmt, as reported for geranylgeranylated Rho proteins. However, endogenous geranylgeranylated non-methylated Rab-CAAX and Rab-CXC proteins were significantly redistributed to the cytosol at steady-state levels and redistribution correlates with higher affinity of RabGDI for non-methylated Rabs in Icmt-deficient cells. Our data suggest a role for methylation in Rab function by regulating the cycle of Rab membrane recruitment and retrieval. Our findings also imply that those Rabs that undergo post-prenylation processing follow an indirect targeting pathway requiring initial endoplasmic reticulum membrane association prior to specific organelle targeting.  相似文献   

9.
Endocytic pathways are highly dynamic gateways for molecules to enter cells. Functionality and specificity is in part controlled by a number of small GTPases called Rabs. In defined cellular locations, Rabs mediate multiple functions in membrane trafficking via their specific interaction with organelle membranes and a host of affector and effector molecules. On endocytic pathways, Rabs have been shown to control the formation of vesicles on the plasma membrane and the downstream delivery of internalized molecules to a number of cellular locations. As numerous Rabs are located to endocytic pathways, an internalized molecule may traverse a number of Rab specific substations or subdomains en route to its final destination. Rabs 5, 21 and 22 have all been localized to the early endocytic pathway and have been shown to share a number of characteristics to merit their segregation into a single functional endocytic group. In this review, we compare experiments that describe similarities and differences in endosome morphology and function that is mediated by their expression in cells.  相似文献   

10.
Rab GTPases are key proteins that determine organelle identity and operate at the center of fusion reactions. Like Ras, they act as switches that are connected to a diverse network of tethering factors, exchange factors and GTPase activating proteins. Recent studies suggest that Rabs are linked to each other via their effectors, thus coordinating protein transport in the endomembrane system. Within this review, we will focus on selected examples that highlight these issues.  相似文献   

11.
Rab GTPases are regulators of membrane traffic. Rabs specifically associate with target membranes via the attachment of (usually) two geranylgeranyl groups in a reaction involving Rab escort protein and Rab geranylgeranyl transferase. In contrast, related GTPases are singly prenylated by CAAX prenyl transferases. We report that di-geranylgeranyl modification is important for targeting of Rab5a and Rab27a to endosomes and melanosomes, respectively. Transient expression of EGFP-Rab5 mutants containing two prenylatable cysteines (CGC, CC, CCQNI, and CCA) in HeLa cells did not affect endosomal targeting or function, whereas mono-cysteine mutants (CSLG, CVLL, or CVIM) were mistargeted to the endoplasmic reticulum (ER) and were nonfunctional. Similarly, Rab27aCVLL mutant is also mistargeted to the ER and transgenic expression on a Rab27a null background (Rab27aash) did not rescue the coat color phenotype, suggesting that Rab27aCVLL is not functional in vivo. CAAX prenyl transferase inhibition and temperature-shift experiments further suggest that Rabs, singly or doubly modified are recruited to membranes via a Rab escort protein/Rab geranylgeranyl transferase-dependent mechanism that is distinct from the insertion of CAAX-containing GTPases. Finally, we show that both singly and doubly modified Rabs are extracted from membranes by RabGDIalpha and propose that the mistargeting of Rabs to the ER results from loss of targeting information.  相似文献   

12.
Rab small GTPases are crucial regulators of the membrane traffic that maintains organelle identity and morphology. Several Rab isoforms are present in the Golgi, and it has been suggested that they regulate the compacted morphology of the Golgi in mammalian cells. However, the functional relationships among the Golgi-resident Rabs, e.g. whether they are functionally redundant or different, are poorly understood. In this study, we used specific siRNAs to perform genome-wide screening for human Rabs that are involved in Golgi morphology in HeLa-S3 cells. The results showed that knockdown of any one of the six Rab isoforms (Rab1A/1B/2A/2B/6B/8A) induced fragmentation of the Golgi in HeLa-S3 cells and that its phenotype was rescued by re-expression of their respective siRNA-resistant construct. We then performed systematic knockdown-rescue experiments in relation to each of the six Rabs. Interestingly, with the exception of the Rab8A knockdown, the Golgi fragmentation phenotype induced by knockdown of a single Rab isoform, e.g. Rab2B, was efficiently rescued by re-expression of its siRNA-resistant Rab alone, not by any of the other five Rabs, e.g. Rab2A, which is highly homologous to Rab2B, indicating that these Rab isoforms non-redundantly regulate Golgi morphology possibly through interaction with isoform-specific effector molecules. In addition, we identified Golgi-associated Rab2B interactor-like 4 (GARI-L4) as a novel Golgi-resident Rab2B-specific binding protein whose knockdown also induced fragmentation of the Golgi. Our findings suggest that the compacted Golgi morphology of mammalian cells is finely tuned by multiple sets of Rab (or Rab-effector complexes) that for the most part function independently.  相似文献   

13.
Recent studies indicate that lipid droplets isolated from a variety of different cells are rich in proteins known to regulate membrane traffic. Among these proteins are multiple Rab GTPases. Rabs are GTP switches that regulate intracellular membrane traffic through an ability to control membrane-membrane docking as well as vesicle motility. Here we present evidence that the multiple Rabs associated with droplets have a function in regulating membrane traffic. Droplet Rabs are removed by Rab GDP-dissociation inhibitor (RabGDI) in a GDP-dependent reaction, and are recruited to Rab-depleted droplets from cytosol in a GTP-dependent reaction. Rabs also control the recruitment of the early endosome (EE) marker EEA1 from cytosol. We use an in vitro reconstitution assay to show that transferrin receptor positive EEs bind to the droplet in a GTP/Rab-dependent reaction that appears not to lead to membrane fusion. This docking reaction is insensitive to ATP(gamma s) but is blocked by ATP. Finally, we show that when GTP bound active or GDP bound inactive Rab5 is targeted to the droplet, the active form recruits EEA1. We conclude that the Rabs associated with droplets may be capable of regulating the transient interaction of specific membrane systems, probably to transport lipids between membrane compartments.  相似文献   

14.
Rab GTPases regulate discrete steps in vesicular transport pathways. Rabs require activation by specific guanine nucleotide exchange factors (GEFs) that stimulate the exchange of GDP for GTP. Rab27a controls motility and regulated exocytosis of secretory granules and related organelles. In melanocytes, Rab27a regulates peripheral transport of mature melanosomes by recruiting melanophilin and myosin Va. Here, we studied the activation of Rab27a in melanocytes. We identify Rab3GEP, previously isolated as a GEF for Rab3a, as the non-redundant Rab27a GEF. Similar to Rab27a-deficient ashen melanocytes, Rab3GEP-depleted cells show both clustering of melanosomes in the perinuclear area and loss of the Rab27a effector Mlph. Consistent with a role as an activator, levels of Rab27a-GTP are decreased in cells lacking Rab3GEP. Recombinant Rab3GEP exhibits guanine nucleotide exchange activity against Rab27a and Rab27b in vitro, in addition to its previously documented activity against Rab3. Our results indicate promiscuity in Rab GEF action and suggest that members of related but functionally distinct Rab subfamilies can be controlled by common activators.  相似文献   

15.
Membrane fusion at late endosomes and vacuoles depends on a conserved machinery, which includes Rab GTPases, their binding to tethering complexes and SNAREs. Fusion is initiated by the interaction of Rabs with tethering complexes. At the endosome, the CORVET complex interacts with the Rab5 GTPase Vps21, whereas the homologous HOPS complex binds the Rab7-like Ypt7 at the late endosome and vacuole. Activation of Ypt7 requires the recruitment of the Mon1-Ccz1 complex to the late endosome, which occurs via the CORVET complex. The interaction of Rab and the tethering complex is followed by the assembly of SNAREs, which leads to bilayer mixing. In this review, we will summarize our current knowledge on the mechanisms and regulation of endosome and vacuole membrane dynamics, and their role in organelle physiology.  相似文献   

16.
Rabs are the largest family of small GTPases and are master regulators of membrane trafficking. Following activation by guanine‐nucleotide exchange factors (GEFs), each Rab binds a specific set of effector proteins that mediate the various downstream functions of that Rab. Then, with the help of GTPase‐activating proteins, the Rab converts GTP to GDP, terminating its function. There are over 60 Rabs in humans and only a subset has been analyzed in any detail. Recently, Rab35 has emerged as a key regulator of cargo recycling at endosomes, with an additional role in regulation of the actin cytoskeleton. Here, we will focus on the regulation of Rab35 activity by the connecdenn/DENND1 family of GEFs and the TBC1D10/EPI64 family of GTPase‐activating proteins. We will describe how analysis of these proteins, as well as a plethora of Rab35 effectors has provided insights into Rab35 function. Finally, we will describe how Rab35 provides a novel link between the Rab and Arf family of GTPases with implications for tumor formation and invasiveness .   相似文献   

17.
Protein prenylation is a widespread post-translational modification in eukaryotes that plays a crucial role in membrane targeting and signal transduction. RabGTPases is the largest group of post-translationally C-terminally geranylgeranylated. All Rabs are processed by Rab geranylgeranyl-transferase and Rab escort protein (REP). Human genetic defects resulting in the loss one of two REP isoforms REP-1, lead to underprenylation of RabGTPases that manifests in retinal degradation and blindness known as choroideremia. In this study we used a combination of microinjections and chemo-enzymatic tagging to establish whether Rab GTPases are prenylated and delivered to their target cellular membranes with the same rate. We demonstrate that although all tested Rab GTPases display the same rate of membrane delivery, the extent of Rab prenylation in 5 hour time window vary by more than an order of magnitude. We found that Rab27a, Rab27b, Rab38 and Rab42 display the slowest prenylation in vivo and in the cell. Our work points to possible contribution of Rab38 to the emergence of choroideremia in addition to Rab27a and Rab27b.  相似文献   

18.
Myosin Va is a widely expressed actin-based motor protein that binds members of the Rab GTPase family (3A, 8A, 10, 11A, 27A) and is implicated in many intracellular trafficking processes. To our knowledge, myosin Va has not been tested in a systematic screen for interactions with the entire Rab GTPase family. To that end, we report a yeast two-hybrid screen of all human Rabs for myosin Va-binding ability and reveal 10 novel interactions (3B, 3C, 3D, 6A, 6A′, 6B, 11B, 14, 25, 39B), which include interactions with three new Rab subfamilies (Rab6, Rab14, Rab39B). Of interest, myosin Va interacts with only a subset of the Rabs associated with the endocytic recycling and post-Golgi secretory systems. We demonstrate that myosin Va has three distinct Rab-binding domains on disparate regions of the motor (central stalk, an alternatively spliced exon, and the globular tail). Although the total pool of myosin Va is shared by several Rabs, Rab10 and Rab11 appear to be the major determinants of its recruitment to intracellular membranes. We also present evidence that myosin Va is necessary for maintaining a peripheral distribution of Rab11- and Rab14-positive endosomes.  相似文献   

19.
《Autophagy》2013,9(8):1271-1272
Organization of membrane micro-domains by Ypt/Rab GTPases is key for all membrane trafficking events in eukaryotic cells. Since autophagy is a membrane trafficking process, it was expected that these GTPases would play a role in autophagy as well. While evidence about participation of Ypt/Rabs in autophagy is beginning to emerge, the mechanisms by which they act in this process are still not clear. Moreover, it is still questionable if and how Ypt/Rabs coordinate autophagy with other cellular trafficking processes. Yeast Ypt1 and its mammalian homolog Rab1 are required for both endoplasmic reticulum (ER)-to-Golgi transport and autophagy, suggesting that they coordinate these two processes. In our recent paper, we identify Atg11, a bona fide phagophore assembly site (PAS) component, as a downstream effector of Ypt1. Moreover, we show that three components of a GTPase module—the Ypt1 activator, Trs85-containing TRAPP complex, Ypt1, and the Atg11 effector—interact on the PAS and are required for PAS formation during selective autophagy. We propose that Ypt/Rabs coordinate the secretory and the autophagic pathways by recruiting process-specific effectors.  相似文献   

20.
Prenylation (or geranylgeranylation) of Rab GTPases is catalysed by RGGT (Rab geranylgeranyl transferase) and requires REP (Rab escort protein). In the classical pathway, REP associates first with unprenylated Rab, which is then prenylated by RGGT. In the alternative pathway, REP associates first with RGGT; this complex then binds and prenylates Rab proteins. In the present paper we show that REP mutants defective in RGGT binding (REP1 F282L and REP1 F282L/V290F) are unable to compete with wild-type REP in the prenylation reaction in vitro. When over-expressed in cells, REP wild-type and mutants are unable to form stable cytosolic complexes with endogenous unprenylated Rabs. These results suggest that the alternative pathway may predominate in vivo. We also extend previous suggestions that GGPP (geranylgeranyl pyrophosphate) acts as an allosteric regulator of the prenylation reaction. We observed that REP-RGGT complexes are formed in vivo and are unstable in the absence of intracellular GGPP. RGGT increases the ability of REP to extract endogenous prenylated Rabs from membranes in vitro by stabilizing a soluble REP-RGGT-Rab-GG (geranylgeranylated Rab) complex. This effect is regulated by GGPP, which promotes the dissociation of RGGT and REP-Rab-GG to allow delivery of prenylated Rabs to membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号