首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arachidonate 5-lipoxygenase purified from porcine leukocytes transformed arachidonic acid to 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid. By the leukotriene A synthase activity of the same enzyme the product was further metabolized to leukotriene A4 (actually detected as 6-trans-leukotriene B4, 12-epi-6-trans-leukotriene B4, abd 5,6-duhydroxy-7,9,11,14-eicosatetraenoic acids). The enzyme was incubated with [10-DR-3H]- or [10-LS-3H]- labeled arachidonic acid, and 6-trans-LTB4 and its 12-epimer were analyzed. More than 90% of 10-DR-hydrogen was lost while about 100% of 10-LS-hydrogen was retained, indicating a stereospecific hydrogen elimination from C-10 during the formation of leukotriene A4.  相似文献   

2.
Eubacterium lentum (33 strains) isomerized the 12-cis double bond of C18 fatty acids with cis double bonds at C-9 and C-12 into an 11-trans double bond before reduction of the 9-cis double bond. The 14-cis double bond of homo-γ-linolenic acid was isomerized by 29 strains into a 13-trans double bond. The same strains isomerized the 14-cis double bond of arachidonic acid into a 13-trans double bond and then isomerized the 8-cis double bond into a 7-trans double bond; the 13-cis double bond of 10-cis, 13-cis-nonadecadienoic acid was isomerized into a 12-trans double bond. None of these isomerization products was further reduced. Studies with resting cells showed optimal isomerization velocity at a linoleic acid concentration of 37.5 μM; higher concentrations were inhibitory. The pH optimum for isomerization was 7.5 to 8.5. The isomerase was inhibited by the sulfhydryl reagents iodoacetamide, bromoacetate, and N-ethylmaleimide and by the chelators EDTA and 1,10-phenanthroline.  相似文献   

3.
The resonance Raman spectrum of the reaction center of Rhodopseudomonas sphaeroides G1C as well as those of the cis-trans isomers of β-carotene (all-trans, 9-cis, 13-cis, 15-cis and 9-cis, 13-cis- (or 9-cis, 13′-cis)) have been recorded at liquid N2 temperature by use of the 457.9, 488.0 and 514.5 nm excitation lines. Comparison of the spectra indicated that the carotenoid in the reaction center takes the 15-cis configuration.  相似文献   

4.
The metabolism of 13-cis-[11-3H]retinoic acid has been examined in vitamin A-normal rats. Within 24 h after intravenous administration of the parent retinoid (15 μg/kg) to animals with biliary fistulas, 69 ± 9% of the dose was detected in the bile with 9 ± 6% being found in the urine. Analysis of the bile by reverse-phase high-pressure liquid chromatography demonstrated that the retinoic acid was being metabolized to several more polar compounds. A number of these compounds were sensitive to incubation with β-glucuronidase as evidenced by a change in their chromatographic behavior after treatment with the enzyme. Two of the metabolites have been identified as 13-cis-4-oxoretinoyl-β-glucuronide (8.1 ± 1.0% of the dose during the first 4 h after administration of the parent compound) and 13-cis-retinoyl-β-glucuronide (7.0 ± 4.4% of the dose). A comparison of the chromatographic profiles of bile from 13-cis- versus all-trans-retinoic acid-treated rats indicated a difference in their metabolism, with a greater proportion of the all-trans-retinoic acid being converted to compounds that eluted in the more polar regions of the column effluent.  相似文献   

5.
To assign the observed vibrationsl modes in the resonance Raman spectrum of the retinylidene chromophore of rhodopsin, we have studied chemically modified retinals. The series of analogs investigated are the n-butyl retinals substituted at C9 and C13. The results obtained for the 11-cis isomer have clearly assigned the CCH3 vibrational frequencies observed in the spectrum of the retinylidene chromophore. The data show that the C(9)CH3 stretching vibration can be assigned to the vibrational mode observed in the 1017 cm?1 region, and the vibration detected at 997 cm?1 can be assigned to the C(13CH3 vibration. The C(5)CH3 stretching mode does not contribute to the vibrations observed in this region. The splitting in the C(n)CH3 (n = 9, 13) vibration is characteristic of the 11-cis conformation. The results on the modified retinals do not support the hypothesis that the splitting arises from equilibrium mixtures of 11-cis, 12-s-cis and 11-cis, 12-s-trans in solution. Thus, this splitting cannot be used to determine whether the chromophore in rhodopsin is in a 12-s-cis or 12-s-trans conformation. However, our results demonstrate that there are other vibrational modes in the spectra which are sensitive to this conformational equilibrium and we use the presence of a strong ~ 1271 cm?1 mode in bovine and squid rhodopsin spectra as an indication that the chromophore in these pigments is 11-cis, 12-s-trans.  相似文献   

6.
Protein tyrosine phosphatase (PTP) targeted, peptide based chemical probes are valuable tools for studying this important family of enzymes, despite the inherent difficulty of developing peptides targeted towards an individual PTP. Here, we have taken a rational approach to designing a SHP-2 targeted, fluorogenic peptide substrate based on information about the potential biological substrates of SHP-2. The fluorogenic, phosphotyrosine mimetic phosphocoumaryl aminopropionic acid (pCAP) provides a facile readout for monitoring PTP activity. By optimizing the amino acids surrounding the pCAP residue, we obtained a substrate with the sequence Ac-DDPI-pCAP-DVLD-NH2 and optimized kinetic parameters (kcat = 0.059 ± 0.008 s−1, Km = 220 ± 50 µM, kcat/Km of 270 M−1s−1). In comparison, the phosphorylated coumarin moiety alone is an exceedingly poor substrate for SHP-2, with a kcat value of 0.0038 ± 0.0003 s−1, a Km value of 1100 ± 100 µM and a kcat/Km of 3 M−1s−1. Furthermore, this optimized peptide has selectivity for SHP-2 over HePTP, MEG1 and PTPµ. The data presented here demonstrate that PTP-targeted peptide substrates can be obtained by optimizing the sequence of a pCAP containing peptide.  相似文献   

7.
The degradation of fatty acids having cis- or trans-unsaturated bond at an even carbon was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanaote is synthesized by the polymerization of the β-oxidation intermediates 3-hydroxy-acyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The synthesis of polyhydroxyalkanoate in cells grown in media containing 10-cis-heptadecenoic acid was dependent on the presence of 2,4-dienoyl-CoA reductase activity as well as on Δ32-enoyl-CoA isomerase activity. The synthesis of polyhydroxyalkanoate from 10-trans-heptadecenoic acid in mutants devoid of 2,4-dienoyl-CoA reductase revealed degradation of the trans fatty acid directly via the enoyl-CoA hydratase II activity of the multifunctional enzyme (MFE), although the level of polyhydroxyalkanoate was 10–25% to that of wild type cells. Polyhydroxyalkanoate produced from 10-trans-heptadecenoic acid in wild type cells showed substantial carbon flux through both a reductase-dependent and a direct MFE-dependent pathway. Flux through β-oxidation was more severely reduced in mutants devoid of Δ32-enoyl-CoA isomerase compared to mutants devoid of 2,4-dienoyl-CoA reductase. It is concluded that the intermediate 2-trans,4-trans-dienoyl-CoA is metabolized in vivo in yeast by both the enoyl-CoA hydratase II activity of the multifunctional protein and the 2,4-dienoyl-CoA reductase, and that the synthesis of the intermediate 3-trans-enoyl-CoA in the absence of the Δ32-enoyl-CoA isomerase leads to the blockage of the direct MFE-dependent pathway in vivo.  相似文献   

8.
The storage triacylglycerols of meadowfoam (Limnanthes alba) seeds are composed essentially of C20 and C22 fatty acids, which contain an unusual Δ5 double bond. When [1-14C]acetate was incubated with developing seed slices, 14C-labeled fatty acids were synthesized with a distribution similar to the endogenous fatty acid profile. The major labeled product was cis-5-eicosenoate, with smaller amounts of palmitate, stearate, oleate, cis-5-octadecenoate, eicosanoate, cis-11-eicosenoate, docosanoate, cis-5-docosenoate, cis-13-docosenoate, and cis-5,cis-13-docosadienoate. The label from [14C]acetate and [14C]malonate was used preferentially for the elongation of endogenous oleate to produce cis-[14C]11-eicosenoate, cis-13-[14C]docosenoate, and cis-5,cis-13-[14C]docosadienoate and for the elongation of endogenous palmitate to produce the remaining C20 and C22 acyl species. The Δ5 desaturation of the preformed acyl chain and chain elongation of oleate and palmitate were demonstrated in vivo by incubation of the appropriate 1-14C-labeled free fatty acids. Using [1-14C]acyl-CoA thioesters as substrates, these enzyme activities were also demonstrated in vitro with a cell-free homogenate.  相似文献   

9.
Leukotriene A4 hydrolase/aminopeptidase (LTA4H) (EC 3.3.2.6) is a bifunctional zinc metalloenzyme with both an epoxide hydrolase and an aminopeptidase activity. LTA4H from the African claw toad, Xenopus laevis (xlLTA4H) has been shown to, unlike the human enzyme, convert LTA4 to two enzymatic metabolites, LTB4 and another biologically active product Δ6-trans8-cis-LTB4 (5(S),12R-dihydroxy-6,10-trans-8,14-cis-eicosatetraenoic acid). In order to study the molecular aspect of the formation of this product we have characterized the structure and function of xlLTA4H. We solved the structure of xlLTA4H to a resolution of 2.3 Å. It is a dimeric structure where each monomer has three domains with the active site in between the domains, similar as to the human structure. An important difference between the human and amphibian enzyme is the phenylalanine to tyrosine exchange at position 375. Our studies show that mutating F375 in xlLTA4H to tyrosine abolishes the formation of the LTB4 isomeric product Δ6-trans8-cis-LTB4. In an attempt to understand how one amino acid exchange leads to a new product profile as seen in the xlLTA4H, we performed a conformer analysis of the triene part of the substrate LTA4. Our results show that the Boltzmann distribution of substrate conformers correlates with the observed distribution of products. We suggest that the observed difference in product profile between the human and the xlLTA4H arises from different level of discrimination between substrate LTA4 conformers.  相似文献   

10.
NMR titration curves have been recorded for all the 13C resonances of cis and transN-acetyl-dl-proline in 2H2O. the measured pK2H values are 3.4 ± 0.8 and 4.13 ± 0.08 respectively; the free energy of ionization for the trans isomer being (3.8 kJ/mole) greater than for the cis. The ionization shifts of the two isomers differ significantly only at the acetyl carbonyl and Cγ positions. It is suggested that these are related to conformational changes which stabilize the trans form at low p2H.  相似文献   

11.
When trans, trans-farnesol [4,8,12-14C3,1-3H2] is isomerized to cis, trans-farnesol by soluble enzymes from Andrographis paniculata tissue cultures, 50% of the tritium label is lost. The same loss is observed when isomerization occurs in the opposite direction. This is in accordance with the proposed mechanism for isomerization via aldehydes.  相似文献   

12.
In this study, dienelactone hydrolases (TfdEI and TfdEII) located on plasmid pJP4 of Cupriavidus necator JMP134 were cloned, purified, characterized and three dimensional structures were predicted. tfdEI and tfdEII genes were cloned into pET21b vector and expressed in E. coli BL21(DE3). The enzymes were purified by applying ultra-membrane filtration, anion-exchange QFF and gel-filtration columns. The enzyme activity was determined by using cis-dienelactone. The three-dimensional structure of enzymes was predicted using SWISS-MODEL workspace and the biophysical properties were determined on ExPASy server. Both TfdEI and TfdEII (Mr 25 kDa) exhibited optimum activity at 37°C and pH 7.0. The enzymes retained approximately 50% of their activity after 1 h of incubation at 50°C and showed high stability against denaturing agents. The TfdEI and TfdEII hydrolysed cis-dienelactone at a rate of 0.258 and 0.182 µMs−1, with a Km value of 87 µM and 305 µM, respectively. Also, TfdEI and TfdEII hydrolysed trans-dienelactone at a rate of 0.053 µMs−1 and 0.0766 µMs−1, with a Km value of 84 µM and 178 µM, respectively. The TfdEI and TfdEII kcat/Km ratios were 0.12 µM−1s−1and 0.13 µM−1s−1 and 0.216 µM−1s−1 and 0.094 µM−1s−1 for for cis- and trans-dienelactone, respectively. The kcat/Km ratios for cis-dienelactone show that both enzymes catalyse the reaction with same efficiency even though Km value differs significantly. This is the first report to characterize and compare reaction kinetics of purified TfdEI and TfdEII from Cupriavidus necator JMP134 and may be helpful for further exploration of their catalytic mechanisms.  相似文献   

13.
The PUFAs include many bioactive lipids. The microbial metabolism of C18 PUFAs is known to produce their bioactive isomers, such as conjugated FAs and hydroxy FAs, but there is little information on that of C20 PUFAs. In this study, we aimed to obtain anaerobic bacteria with the ability to produce novel PUFAs from C20 PUFAs. Through the screening of ∼100 strains of anaerobic bacteria, Clostridium bifermentans JCM 1386 was selected as a strain with the ability to saturate PUFAs during anaerobic cultivation. This strain converted arachidonic acid (cis-5,cis-8,cis-11,cis-14-eicosatetraenoic acid) and EPA (cis-5,cis-8,cis-11,cis-14,cis-17-EPA) into cis-5,cis-8,trans-13-eicosatrienoic acid and cis-5,cis-8,trans-13,cis-17-eicosatetraenoic acid, giving yields of 57% and 67% against the added PUFAs, respectively. This is the first report of the isolation of a bacterium transforming C20 PUFAs into corresponding non-methylene-interrupted FAs. We further investigated the substrate specificity of the biohydrogenation by this strain and revealed that it can convert two cis double bonds at the ω6 and ω9 positions in various C18 and C20 PUFAs into a trans double bond at the ω7 position. This study should serve to open up the development of novel potentially bioactive PUFAs.  相似文献   

14.
Leukotriene A: stereochemistry and enzymatic conversion to leukotriene B   总被引:13,自引:0,他引:13  
Leukotriene A was assigned the structure 5(S)-trans-5,6-oxido-7,9-trans-11,14-cis-eicosatetraenoic acid by the enzymatic conversion of a synthetic product of known stereochemistry into the naturally occurring isomer of 5(S),12(R)-dihydroxy-6,8,10,14-eicosatetraenoic acid in human polymorphonuclear leukocytes.  相似文献   

15.
The camphor-degrading Baeyer?CVilliger monooxygenases (BVMOs) from Pseudomonas putida NCIMB 10007 have been of interest for over 40?years. So far the FMN- and NADH-dependent type II BVMO 3,6-diketocamphane 1,6-monooxygenase (3,6-DKCMO) and the FAD- and NADPH-dependent type I BVMO 2-oxo-?3-4,5,5-trimethylcyclopentenylacetyl-CoA monooxygenase (OTEMO) have not been entirely studied, since it was not possible to produce those enzymes in satisfactory amounts and purity. In this study, we were able to clone and recombinantly express both enzymes and subsequently use them as biocatalysts for various mono- and bicyclic ketones. Full conversion could be reached with both enzymes towards (±)-cis-bicyclo[3.2.0]hept-2-en-6-one and with 3,6-DKCMO towards (?)-camphor. Further OTEMO gave full conversion with norcamphor. OTEMO was found to have a pH optimum of 9 and a temperature optimum of 20?°C and converted (±)-cis-bicyclo[3.2.0]hept-2-en-6-one with a k cat/K M value of 49.3?mM?1?s?1.  相似文献   

16.
The qualitative separation performance of a C18, C8 and C4 reversed-phase column was investigated for the separation of histidine and its metabolites histamine, 1-methyihistamine and trans- and cis-urocanic acid. Trans- and cis-urocanic acid were baseline separated from their precursor histidine on all three columns using isocratic elution with a mobile phase composed of 0.01 M aqueous TEAP pH 3.0 and acetonitrile at a ratio of 98:2 (v/v). However, histidine was not separated from histamine and 1-methyihistamine. Selecting the C8 column and introducing 0.005 M of the ion pairing reagent 1-octanesulfonic acid sodium salt into the aqueous solution and acetonitrile at a ratio of 90:10 (v/v), significantly improved the separation. The separation was also followed by a change in the retention times and the order of elution. The sequence of elution was histidine, cis-urocanic acid, trans-urocanic acid, histamine and 1-methylhistamine with retention times of 5.58±0.07, 7.03±0.15, 7.92±0.18, 18.77±0.24 and 20.79±0.21 min (mean±SD; n=5). The separation on the C8 column in the presence of the ion-pairing reagent was further improved with gradient elution that resulted in a reduction in the retention times and elution volumes of histamine and 1-methylhistamine. The detection limits of histidine and trans-urocanic acid at a wavelength of 210 nm and an injection volume of 0.05 ml were 5×10−8 mol l−1 (n=3). The kinetic of the in-vitro conversion of trans- into the cis-isomer after UV irradiation was depending on the time of exposure and the energy of the light source. UVB light induced a significantly faster conversion than UVA light. TUCA and cUCA samples kept at −25°C were stable for up to 50 weeks. Samples, eluted from human skin showed various concentrations of histidine and trans- and cis-urocanic acid with an average of 1.69±0.33×10−5 mol l−1, 1.17±0.43×10−5 mol l−1 and 1.67±0.33×10−5 mol l−1, respectively (n=8).  相似文献   

17.
Mixed-ligand complexes of the type cis- and trans-Pt(Ypy)(pm)Cl2 where Ypy = pyridine derivative and pm = pyrimidine were synthesized and characterized by IR spectroscopy and by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. The cis compounds were prepared from the reaction of K[Pt(Ypy)Cl3] with pyrimidine (1:1 proportion) in water, while most of the trans isomers were synthesized from the isomerization of the cis compounds. The cis isomers could not be isolated with the Ypy ligands containing two -CH3 groups in ortho positions. When the aqueous reaction of K[Pt(Ypy)Cl3] with pyrimidine was performed in a Pt:pm ratio = 2:1, the pyrimidine-bridged dinuclear species were formed. Only the most stable trans-trans isomers could be isolated pure. In IR spectroscopy, the cis monomers showed two ν(Pt-Cl) bands, while the trans monomers and dimers showed only one ν(Pt-Cl) band. The 195Pt NMR signals of the cis monomers were found at slightly higher fields than those of the corresponding trans isomers. The δ(195Pt) of the dimers were found close to those of the trans monomers. The NMR results were interpreted in relation to the solvent effect, which seems important in these complexes. The coupling constants J(195Pt-1H) and J(195Pt-13C) are larger in the cis geometry. The crystal structures of the compounds cis-Pt(2,4-lut)(pm)Cl2, trans-Pt(2,6-lut)(pm)Cl2 and trans,trans-Cl2(2,6-lut)Pt(μ-pm)Pt(Ypy)Cl2 were studied by X-ray diffraction methods and the results have confirmed the configurations suggested by IR and NMR spectroscopies.  相似文献   

18.
Oxo-lipids, a large family of oxidized human lipoxygenase (hLOX) products, are of increasing interest to researchers due to their involvement in different inflammatory responses in the cell. Oxo-lipids are unique because they contain electrophilic sites that can potentially form covalent bonds through a Michael addition mechanism with nucleophilic residues in protein active sites and thus increase inhibitor potency. Due to the resemblance of oxo-lipids to LOX substrates, the inhibitor potency of 4 different oxo-lipids; 5-oxo-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid (5-oxo-ETE), 15-oxo-5,8,11,13-(Z,Z,Z,E)-eicosatetraenoic acid (15-oxo-ETE), 12-oxo-5,8,10,14-(Z,Z,E,Z)-eicosatetraenoic acid (12-oxo-ETE), and 13-oxo-9,11-(Z,E)-octadecadienoic acid (13-oxo-ODE) were determined against a library of LOX isozymes; leukocyte 5-lipoxygenase (h5-LOX), human reticulocyte 15-lipoxygenase-1 (h15-LOX-1), human platelet 12-lipoxygenase (h12-LOX), human epithelial 15-lipoxygenase-2 (h15-LOX-2), soybean 15-lipoxygenase-1 (s15-LOX-1), and rabbit reticulocyte 15-LOX (r15-LOX). 15-Oxo-ETE exhibited the highest potency against h12-LOX, with an IC50 = 1 ± 0.1 μM and was highly selective. Steady state inhibition kinetic experiments determined 15-oxo-ETE to be a mixed inhibitor against h12-LOX, with a Kic value of 0.087 ± 0.008 μM and a Kiu value of 2.10 ± 0.8 μM. Time-dependent studies demonstrated irreversible inhibition with 12-oxo-ETE and h15-LOX-1, however, the concentration of 12-oxo-ETE required (Ki = 36.8 ± 13.2 μM) and the time frame (k2 = 0.0019 ± 0.00032 s−1) were not biologically relevant. These data are the first observations that oxo-lipids can inhibit LOX isozymes and may be another mechanism in which LOX products regulate LOX activity.  相似文献   

19.
Rainbow trout leucocytes contain high levels of neutral lipid (about 70% of total lipid on a wt% basis) consisting of mostly triacylglycerol, free sterols and sterol esters (25%, 15% and 52% of neutral lipid, respectively). The phospholipids, separated by thin-layer chromatography, consisted predominantly of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine, each present at about 30% of the total phospholipid. Radiolabelling of the leucocytes for 1 h with 1 μCi (approx. 6 μM) [1−14C]20:4(n−6), [1−14C]20:5(n−3) or [1−14C]22:6(n−3) each gave similar uptake values (approx. 1 · 105 cpm/107 leucocytes). The incorporation into total phospholipids was highest for 22:6(n−3) and lowest for 20:4(n−6). A higher percentage of radiolabel from [1−14C]22:6(n − 3) was found incorporated into phosphatidylcholine and phosphatidylethanolamine as compared to that from [1−14C]20:4(n − 6) and [1−14C]20:5(n−3), while the reverse situation was found with phosphatidylinositol and phosphatidylserine. The relative rates of incorporation into the different phospholipid classes for all three fatty acids were in the order phosphatidylinositol > sphingomyelin > diphosphatidylglycerol > phosphatidylcholine > phosphatidylethanolamine > phosphatidylserine. Calcium ionophore-challenge did not significantly alter the pattern of phospholipid radiolabel. Ionophore-challenge released large amounts of radiolabel, much of which was recovered after high-performance liquid chromatographic separation as free fatty acid/monohydroxy fatty acids, although only approx. 0.3% was recovered in leukotriene B4 and leukotriene B5 for the [1−14C]20:4(n−6) and [1−14C]20:5(n−3) labelled leucocytes, respectively. Other lipoxygenase products were also radiolabelled and tentatively identified as 20-carboxy-LTB4, 20-hydroxy-LTB4, 6-trans-LTB4, 6-trans-12-epi-LTB4, 6-trans-8-cis-12-epi-LTB4 and the corresponding LTB5 structures. No ‘6-series’ leukotrienes were produced from [1−14C]22:6(n−3), nor was there any evidence for the synthesis of ‘5-series’ leukotrienes via retroconversion of 22:6(n−3) to 20:5(n−3). This latter finding shows that, despite the preponderance of 22:6(n−3) in the membranes of trout leucocytes, this fatty acid is not a substrate for leukotriene generation.  相似文献   

20.
Leukotriene (LT)A4 and closely related allylic epoxides are pivotal intermediates in lipoxygenase (LOX) pathways to bioactive lipid mediators that include the leukotrienes, lipoxins, eoxins, resolvins, and protectins. Although the structure and stereochemistry of the 5-LOX product LTA4 is established through comparison to synthetic standards, this is the exception, and none of these highly unstable epoxides has been analyzed in detail from enzymatic synthesis. Understanding of the mechanistic basis of the cis or trans epoxide configuration is also limited. To address these issues, we developed methods involving biphasic reaction conditions for the LOX-catalyzed synthesis of LTA epoxides in quantities sufficient for NMR analysis. As proof of concept, human 15-LOX-1 was shown to convert 15S-hydroperoxy-eicosatetraenoic acid (15S-HPETE) to the LTA analog 14S,15S-trans-epoxy-eicosa-5Z,8Z,10E,12E-tetraenoate, confirming the proposed structure of eoxin A4. Using this methodology we then showed that recombinant Arabidopsis AtLOX1, an arachidonate 5-LOX, converts 5S-HPETE to the trans epoxide LTA4 and converts 5R-HPETE to the cis epoxide 5-epi-LTA4, establishing substrate chirality as a determinant of the cis or trans epoxide configuration. The results are reconciled with a mechanism based on a dual role of the LOX nonheme iron in LTA epoxide biosynthesis, providing a rational basis for understanding the stereochemistry of LTA epoxide intermediates in LOX-catalyzed transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号