首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are two basic mechanisms whereby chemicals produce thyroid gland neoplasia in rodents. The first involves chemicals that exert a direct carcinogenic effect in the thyroid gland and the other involves chemicals which, through a variety of mechanisms, disrupt thyroid function and produce thyroid gland neoplasia secondary to hormone imbalance. These secondary mechanisms predominantly involve effects on thyroid hormone synthesis or peripheral hormone disposition. There are important species differences in thyroid gland physiology between rodents and humans that may account for a marked species difference in the inherent susceptibility for neoplasia to hormone imbalance. Thyroid gland neoplasia, secondary to chemically induced hormone imbalance, is mediated by thyroid-stimulating hormone (TSH) in response to altered thyroid gland function. The effect of TSH on cell proliferation and other aspects of thyroid gland function is a receptor mediated process and the plasma membrane surface of the follicular cell has receptors for TSH and other growth factors. Small organic molecules are not known to be direct TSH receptor agonists or antagonists; however, various antibodies found in autoimmune disease such as Graves' disease can directly stimulate or inhibit the TSH receptor. Certain chemicals can modulate the TSH response for autoregulation of follicular cell function and thereby increase or decrease the response of the follicular cell to TSH. It is thus important to consider mechanisms for the evaluation of potential cancer risks. There would be little if any risk for non-genotoxic chemicals that act secondary to hormone imbalance at exposure levels that do not disrupt thyroid function. Furthermore, the degree of thyroid dysfunction produced by a chemical would present a significant toxicological problem before such exposure would increase the risk for neoplasia in humans.  相似文献   

2.
Synopsis Recent studies of thyroid hormone function are reviewed as they relate to the environmental physiology of teleost fish. In addition, reports dealing with the apparent interdependence of thyroid gland function with that of other endocrine glands are discussed with emphasis on the interrelated endocrine response associated with changing physiological status of teleosts.Seasonal changes in thyroid gland activity are described in several species. Although seasonal alterations in apparent thyroid status are concomitant with changes in ambient temperature, photoperiod and/or gonadal status, their biological significance is not fully understood and direct relationships are for the most part, not proven. Similarly, most reports of thyroid involvement in gonadal development or maturation are based on indirect evidence of the relationship. The exception to this is a study in immature or hypophysectomized goldfish in which thyroxine (T4) was shown to promote ovarian development and maturation, possibly acting collateralistically or synergistically with gonadotropin. Even in this study it is not clear whether the T4 effect is a direct action on the ovarian tissue or an indirect action via the regulation of metabolites necessary for gonad metabolism. Integumentary silvering and retinal porphyropsin formation in salmonids are stimulated by administration of T4 or thyroid extracts. Administration of T4 or triiodothyronine (T3) enhances skeletal and somatic growth in some teleostean species, although the effect on somatic growth is most pronounced when these hormones act synergistically with somatotropin (STH) or androgens. The growth-promoting effects of T4 and T3 may be linked to their apparent involvement in lipid, carbohydrate, protein and vitamin metabolism. alterations in apparent thyroid activity concomitant with changes in ambient temperature have been reported (for example correlated with seasonal ambient thermal changes), although there are marked contradictions in data presented by different investigators. Reported temperature-related effects on thyroid function are probably secondary responses of thyroid metabolism to altered temperatures. Evidence of a direct rate of thyroid hormones in the regulation of migration (and associated behavioural modifications), salmonid smoltification, oxygen consumption, and osmotic or ionic regulation although highly suggestive in a number of areas is inconclusive and requires further critical experimental evaluation.The pituitary control (by thyrotropin) of thyroid secretion of T4 is convincingly shown in several teleosts, and evidence of an inhibitory hypothalamic control of thyrotrop activity is highly suggestive in some species. A thyrotropic effect of somatotropin preparations is well established in several teleostean species; the effect does not appear to be related to contamination of the somatotropin preparations with thyrotropin, and may be an important consideration in explaining the apparently related involvement of T4 (or T3) and somatotropin in growth and metabolism. The apparent thyrotropic property of some gonadotropin preparations, shown in several teleostean species, requires further investigation before the doubts regarding hormone preparation purity can be satisfied. Recent studies of effects of prolactin on thyroid function are highly suggestive of an inhibitory role of prolactin in peripheral monodeiodination of T4 to T3 which secondarily affects thyroid activity in some species. There is no evidence of a direct involvement of corticotropin, melanotropin or fractions of these molecules on thyroid function in teleosts. Moreover, the little evidence in support of a role of gonadal or adrenocortical steroids in thyroid control is either often contradictory or indirect and needs to be evaluated further.Interlake epizootiological studies of thyroid dysfunction in Great Lakes salmonids provide substantive evidence for the presence of a ubiquitous waterborne goitrogen(s) in the Great Lakes environs. The nature of the goitrogen(s), whether naturally-occurring or a man-introduced toxicant, remains to be determined but the possible existence of waterborne goitrogens in natural water systems and their possible effects on experimental studies of teleostean thyroid function have to be evaluated further. If goitrogens are a common component of aquatic environments their presence could explain some of the data discrepancy among different groups of investigators, and could account for some of the apparent seasonal change in teleost thyroid physiology.  相似文献   

3.
Recently we reported that hyperglucagonemia induced by glucagon infusion causes a decline in serum T3 and a rise in reverse T3 in euthyroid healthy volunteers. These changes in T3 and rT3 levels were attributed to altered T4 metabolism in peripheral tissues. However, the contribution of altered release of thyroid hormones by the thyroid gland could not be excluded. Since the release of thyroid hormones is inhibited in primary hypothyroidism and is almost totally suppressed following L-thyroxine replacement therapy, we studied thyroid hormone levels for up to 6 hours after intravenous administration of glucagon in subjects with primary hypothyroidism who were rendered euthyroid by appropriate L-thyroxine replacement therapy for several years. A control study was conducted using normal saline infusion. Plasma glucose rose promptly following glucagon administration demonstrating its physiologic effect. Serum T4, Free T4, and T3 resin uptake were not altered during both studies. Glucagon infusion induced a significant decline in serum T3 (P less than 0.05) and a marked rise in rT3 (P less than 0.05) whereas saline administration caused no alterations in T3 or rT3 levels. Thus the changes in T3 and rT3 were significantly different during glucagon study when compared to saline infusion. (P less than 0.01 for both comparisons). Since, the release of thyroid hormones is suppressed by exogenous LT4 administration in these subjects; we conclude that changes in serum T3 and rT3 observed following glucagon administration reflect altered thyroid hormone metabolism in peripheral tissues and not altered release by the thyroid gland.  相似文献   

4.
SYNOPSIS. Precocial and altricial birds have distinctly differentpatterns of general ontogeny and metabolic/thermoregulatorydevelopment. In my laboratory, we have studied the developmentof thyroid function in Japanese quail (Coturnix japonica) andRing doves (Streptopelia risoria) as examples of precocial andaltricial development, respectively. In this paper, I reviewthe literature and our work on the factors that influence peripheralhormone dynamics in birds. The first section of the paper describesadult peripheral thyroid function to set the stage for the developmentalpicture. Thyroid development is divided into two phases: PhaseI, in which the thyroid gland develops functional capacity butthere is low thyroid activity in the periphery, and Phase II,in which peripheral thyroid function increases and approachesadult levels. In precocial development Phase I occurs duringembryonic life and Phase II begins at the perinatal period.In altricial development, the pattern of thyroid functionaldevelopment is different and delayed. Peripheral thyroid hormonepatterns in both developmental modes are discussed with referenceto the factors that determine their dynamics: hormone availabilityfrom the thyroid gland, total serum hormone concentrations,the roles of serum binding proteins in regulating freehormoneconcentrations, hormone turnover and excretion, hormone receptorsand thyroid hormone metabolism, especially extrathyroidal productionof triiodothyronine from thyroxine.  相似文献   

5.
Appropriate thyroid gland function and thyroid hormone activity are considered crucial to sustain the productive performance in domestic animals (growth, milk or hair fibre production). Changes of blood thyroid hormone concentrations are an indirect measure of the changes in thyroid gland activity and circulating thyroid hormones can be considered as indicators of the metabolic and nutritional status of the animals. Thyroid hormones play a pivotal role in the mechanisms permitting the animals to live and breed in the surrounding environment. Variations in hormone bioactivity allow the animals to adapt their metabolic balance to different environmental conditions, changes in nutrient requirements and availability, and to homeorhetic changes during different physiological stages. This is particularly important in the free-ranging and grazing animals, such as traditionally reared small ruminants, whose main physiological functions (feed intake, reproduction, hair growth) are markedly seasonal. Many investigations dealt with the involvement of thyroid hormones in the expression of endogenous seasonal rhythms, such as reproduction and hair growth cycles in fibre-producing (wool, mohair, cashmere) sheep and goats. Important knowledge about the pattern of thyroid hormone metabolism and their role in ontogenetic development has been obtained from studies in the ovine foetus and in the newborn. Many endogenous (breed, age, gender, physiological state) and environmental factors (climate, season, with a primary role of nutrition) are able to affect thyroid activity and hormone concentrations in blood, acting at the level of hypothalamus, pituitary and/or thyroid gland, as well as on peripheral monodeiodination. Knowledge on such topics mirror physiological changes and possibly allows the monitoring and manipulation of thyroid physiology, in order to improve animal health, welfare and production.  相似文献   

6.
Selenium is an integral component of the enzymes glutathione peroxidase (GPx) and iodothyronine deiodinases. Although selenium nutrition could conceivably affect thyroid function in infants, children and adolescents, available data suggest that the effect of selenium deficiency on thyroid function is relatively modest. In patients with isolated selenium deficiency (such as patients with phenylketonuria receiving a low-protein diet), peripheral thyroid hormone metabolism is impaired but there are no changes in thyrotropin (TSH) or clinical signs of hypothyroidism, suggesting that these patients are euthyroid. Selenium supplementation may be advisable to optimize tissue GPx activity and prevent potential oxidative stress damage. In areas where combined selenium and iodine deficiencies are present (such as endemic goiter areas in Central Africa), selenium deficiency may be responsible for the destruction of the thyroid gland in myxoedematous cretins but may also play a protective role by mitigating fetal hypothyroidism. In these areas, selenium supplementation should only be advocated at the same time or after iodine supplementation. In patients with absent or decreased production of thyroid hormones and who rely solely on deiodination of exogenous L-thyroxine for generation of the active triiodothyronine (such as patients with congenital hypothyroidism), selenium supplementation may optimize thyroid hormone feedback at the pituitary level and decrease stimulation of the residual thyroid tissue.  相似文献   

7.
系统研究了我国本土两栖动物种黑斑蛙(Rana nigromaculata)变态发育过程中甲状腺组织学和甲状腺激素水平的变化,为甲状腺生物学和甲状腺干扰研究提供基础数据。黑斑蛙蝌蚪发育的形态变化: 第26-40阶段,后腿芽生长并逐渐分化出五趾结构;42阶段,开始进入变态高峰期,前肢展开,尾吸收,蝌蚪身体发生巨大形变;46阶段,蝌蚪完全变态成小蛙。随着形态学的变化,甲状腺的组织结构也发生明显的变化: 26-37阶段,甲状腺体积较小,增长缓慢;38阶段甲状腺体积迅速膨大,进入高峰期,甲状腺的发育达到顶峰;随着变态完成,甲状腺又逐渐缩小。甲状腺组织学变化的同时,甲状腺激素水平也相应发生变化: 在变态前期,下颌中3,3',5-三碘代-L-甲腺原氨酸(T3)水平增长缓慢,进入变态期后,T3含量迅速升高,在变态高峰期达到峰值,随后下降。以上结果表明,黑斑蛙发育过程中甲状腺组织学的变化与甲状腺激素水平的波动相吻合。对黑斑蛙甲状腺系统的研究,可为日后使用黑斑蛙开展甲状腺干扰作用的研究提供基础。    相似文献   

8.
Ghrelin is a 28-amino-acid peptide that stimulates pituitary growth-hormone secretion and modulates food-intake and energy metabolism in mammals. It is mainly secreted by the stomach, but it is also expressed in many other tissues such as cartilage or the thyroid gland. In the present study we have analyzed by RT-PCR and using immunohistochemistry and immunofluorescence the expression and tissue distribution of ghrelin and its functional receptor (GHS-R type 1α) in thyroid cell-lines and in normal and pathological rat thyroid tissue. Additionally, by measuring the incorporation of BrdU, we have investigated if, as previously noted for FRTL-5 cells, ghrelin enhances the proliferation rate in the PC-Cl3 rat-thyrocyte cell-line. Finally, we have determined the stimulatory effect of ghrelin on TSH-induced expression of the tissue-specific key genes involved in the synthesis of thyroid hormone: thyroglobulin, thyroperoxidase and sodium-iodine symporter. Our data provide direct evidence that C-cell secreted ghrelin may be involved in the paracrine regulation of the thyroid follicular cell function.  相似文献   

9.
Aging is associated with changes in thyroid gland physiology. Age-related changes in the contribution of peripheral tissues to thyroid hormone serum levels have yet to be systematically assessed. Here, we investigated age-related alterations in the contributions of the liver and kidney to thyroid hormone homeostasis using 6-, 12-, and 24-mo-old male Wistar rats. A significant and progressive decline in plasma thyroxine occurred with age, but triiodothyronine (T(3)) was decreased only at 24 mo. This was associated with an unchanged protein level of the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) in the kidney and with a decreased MCT8 level in the liver at 24 mo. Hepatic type I deiodinase (D1) protein level and activity declined progressively with age. Renal D1 levels were decreased at both 12 and 24 mo but D1 activity was decreased only at 24 mo. In the liver, no changes occurred in thyroid hormone receptor (TR) TRalpha(1), whereas a progressive increase in TRbeta(1) occurred at both mRNA and total protein levels. In the kidney, both TRalpha(1) and TRbeta(1) mRNA and total protein levels were unchanged between 6 and 12 mo but increased at 24 mo. Interestingly, nuclear TRbeta1 levels were decreased in both liver and kidney at 12 and 24 mo, whereas nuclear TRalpha(1) levels were unchanged. Collectively, our data show differential age-related changes among hepatic and renal MCT8 and D1 and TR expressions, and they suggest that renal D1 activity is maintained with age to compensate for the decrease in hepatic T(3) production.  相似文献   

10.
Recently we reported that hyperglucagonemia induced by glucagon infusion causes a decline in serum Triiodothyronine (T3) and a rise in reverse T3 (rT3) in euthyroid healthy volunteers. These changes in T3 and rT3 levels were attributed to altered T4 metabolism in peripheral tissues. However, the contribution of altered release of thyroid hormones by the thyroid gland could not be excluded. Since the release of thyroid hormones is suppressed by exogenous administration of L-thyroxine (L-T4) in appropriate dosage, we studied thyroid hormone levels for up to 6 hours after intravenous administration of glucagon in euthyroid healthy subjects after administration of L-T4 for 12 weeks. A control study was conducted using normal saline infusion. Plasma glucose rose promptly following glucagon administration demonstrating its physiologic effect. Serum T4, Free T4 and T3 resin uptake were not altered during both studies. Glucagon infusion induced a significant decline in serum T3 (P less than 0.01) and a marked rise in rT3 (P less than 0.01) whereas saline administration caused no alterations in T3 or rT3 levels. Thus the changes in T3 and rT3 were significantly different during glucagon study when compared to saline infusion. (P less than 0.01 for both comparisons). Therefore, this study demonstrates that changes in serum T3 and rT3 caused by hyperglucagonemia may be secondary to altered thyroid hormone metabolism in peripheral tissues and not due to altered release by the thyroid gland, since the release of thyroid hormones is suppressed by exogenous L-T4 administration.  相似文献   

11.
During recent decades, benzyl isothiocyanate (BITC) was examined mainly in terms of its cancer chemopreventive action. Although some research has been conducted on goitrogenic activity of many glucosinolate derivatives, little attention has been paid to the BITC impact on the thyroid gland and lipid metabolism strictly associated with it. Therefore, this research project aimed at expanding our knowledge about how non-physiological doses of BITC (widely used in chemotherapy) influence some hormonal and metabolic (lipid) parameters in in vivo and in vitro experiments. The trial was focused on BITC action on thyroid tissue, liver, as well as white adipocyte tissue, at doses which were previously proved to exert a strong anticancer effect (10 mg/kg body weight in vivo and 1, 10 and 100 μmol/L in in vitro trials, respectively). Two-week oral administration of BITC in in vivo trial affected thyroid gland by decreasing total thyroxine and triiodothyronine. However, the obtained lipid profile was not specific for thyroid hormone deficiency because no lipid changes in the blood serum and liver steatosis were observed. BITC per se evoked elevation of basal lipolysis at 1 and 100 μmol/L and limitation of basal lipogenesis at 100 μmol/L in adipocyte tissues in in vitro experiment. BITC did not remain indifferent to liver metabolism by its possible influence on hepatic cholesterol 7α-hydroxylase and 5-deiodinase as well as on adipocytes by its enhanced basal lipolysis and limited lipogenesis independently of epinephrine and insulin action steps, respectively. Additionally, BITC was probably involved in bile flow obstruction.  相似文献   

12.
Histological and electron microscopial investigations of the thyroid gland were performed in white mice after exogeneous administration of intermedin (MSH) and intermedin against the background of aminasin. It may be concluded that while a prolonged injection of MSH results in the stimulation of the thyroid gland, the administration of the hormone in question against the background of aminasin results in the same ultramorphological structural changes of the gland which are observed after injection of aminasin alone, causing a decreased functional activity of the thyroid gland. The effect of intermedin upon the thyroid is supposed to be realized through those hypothalamus structures which are responsible for the regulation of the thyrotropic function of the hypophysis.  相似文献   

13.
The morphological and functional age-dependent changes have been studied in the thyroid gland of infantile (1-month-old), immature (2- and 3-month-old) and sexually mature (6-month-old) male rats. The decrease in thyroid functional activity with ageing was proved. Chemical sympathectomy (guanethidine at a dose of 15 mg/kg intramuscularly for 14 days after birth) was accompanied not only by morphological reconstruction of the thyroid tissue, but also (especially in 1-month-old rats) by a delay in transport-organic phase of iodine metabolism and a decline in thyroid hormone serum level. Later on, the compensatory hormonogenesis reinforcement occurs as a result of partial adrenergic innervation recovery.  相似文献   

14.
《Endocrine practice》2009,15(3):254-262
ObjectiveTo review the pertinent basic and clinical research describing the complex effects of excess thyroid hormone on carbohydrate metabolism.MethodsWe performed a MEDLINE search of the English-language literature using a combination of words (ie, “thyrotoxicosis and diabetes,” “diabetic ketoacidosis and thyroid storm,” “carbohydrate metabolism and hyperthyroid,” “glucose homeostasis and thyrotoxicosis”) to identify key articles addressing various aspects of the thyroid’s influence on carbohydrate metabolism.ResultsThyroid hormone affects glucose homeostasis via its actions on a variety of organs including increased hepatic glucose output, increased futile cycling of glucose degradation products between the skeletal muscle and the liver, decreased glycogen stores in the liver and skeletal muscle, altered oxidative and nonoxidative glucose metabolism, decreased active insulin output from the pancreas, and increased renal insulin clearance. Thyroid hormone also affects adipokines and adipose tissue, further predisposing the patient to ketosis.ConclusionsThyrotoxicosis can alter carbohydrate metabolism in a type 2 diabetic patient to such an extent that diabetic ketoacidosis develops if untreated. Based on the current understanding of this relationship, all diabetic patients should be screened for thyroid dysfunction because correcting hyperthyroidism can profoundly affect glucose homeostasis. Similarly, patients presenting in diabetic ketoacidosis should undergo a thyroid function assessment. (Endocr Pract. 2009;15:254-262)  相似文献   

15.
Osteoblasts function under the control of several hormones and growth factors. Among them, parathyroid hormone (PTH) and steroid hormones have significant effects on bone metabolism. We show that PTH induced the expression of Nur77, a member of the NGFI-B subfamily of nuclear orphan receptors in bone. PTH rapidly and transiently induced Nur77 mRNA in primary mouse osteoblasts that peaked at 1 h and at 10 nM of hormone. Cycloheximide did not affect the induction of Nur77 mRNA, suggesting that protein synthesis is not required for the PTH effect. PTH also induced Nur77 mRNA in calvariae cultures. Finally Nur77 protein expression was induced in nuclear protein extracts of cells treated with PTH. NGFI-B nuclear receptors have been implicated in retinoic acid, vitamin D, and thyroid hormone signaling. We propose that induction of NGFI-B nuclear orphan receptors represents a potential cross-talk mechanism between PTH and steroid hormone signaling to regulate bone metabolism.  相似文献   

16.
Thyroid hormone acts on a wide range of tissues. In the cardiovascular system, thyroid hormone is an important regulator of cardiac function and cardiovascular hemodynamics. Although some early reports in the literature suggested an unknown extrathyroidal source of thyroid hormone, it is currently thought to be produced exclusively in the thyroid gland, a highly specialized organ with the sole function of generating, storing, and secreting thyroid hormone. Whereas most of the proteins necessary for thyroid hormone synthesis are thought to be expressed exclusively in the thyroid gland, we now have found evidence that all of these proteins, i.e., thyroglobulin, DUOX1, DUOX2, the sodium-iodide symporter, pendrin, thyroid peroxidase, and thyroid-stimulating hormone receptor, are also expressed in cardiomyocytes. Furthermore, we found thyroglobulin to be transiently upregulated in an in vitro model of ischemia. When performing these experiments in the presence of 125 I, we found that 125 I was integrated into thyroglobulin and that under ischemia-like conditions the radioactive signal in thyroglobulin was reduced. Concomitantly we observed an increase of intracellularly produced, 125 I-labeled thyroid hormone. In conclusion, our findings demonstrate for the first time that cardiomyocytes produce thyroid hormone in a manner adapted to the cell's environment.  相似文献   

17.
Graves' disease presented as painful goiter   总被引:1,自引:0,他引:1  
Chao CS  Lin SY  Sheu WH 《Hormone research》2002,57(1-2):53-56
Pain in the thyroid gland is rarely present in Graves' disease. We describe a 32-year-old female hyperthyroid Graves' disease patient with an initial manifestation of painful goiter. On physical examination, the thyroid gland was diffusely enlarged and tender. The laboratory examinations showed high serum thyroid hormone and low thyrotropin values. Serum inflammatory markers, including C-reactive protein and erythrocyte sedimentation rate, were elevated. Thyroid ultrasound revealed multiple focal hypoechoic areas. All these findings gave an initial impression of an acute inflammatory and destructive process in the thyroid gland. However, subsequent thyroid scintigraphy demonstrated a diffuse radioactive iodide uptake pattern with positive serum thyrotropin receptor antibodies. Fine-needle aspiration cytology showed only the presence of lymphocytes. She was diagnosed as having Graves' disease and was treated with propylthiouracil, and prednisolone was given for neck pain. Within a few days, the thyroid tenderness dramatically improved, and the erythrocyte sedimentation rate progressively normalized. However, follow-up thyroid function tests still showed high serum thyroid hormone levels. The possible etiologies of a painful thyroid gland in Graves' disease will be discussed.  相似文献   

18.
Iglesias P  Díez JJ 《Cytokine》2007,40(2):61-70
Thyroid hormones act on several aspects of metabolic and energy homeostasis influencing body weight, thermogenesis, and lipolysis in adipose tissue. Adipocytokines are biologically active substances produced by adipocyte with different physiological functions. These substances have multiple effects on several tissues acting on the intermediate and energy metabolism. For these reasons, attention has recently been focused on the possible relationship between adipocytokines, thyroid status, and thyroid dysfunction. Leptin, a signal of satiety to the brain and regulator of insulin and glucose metabolism, reflects the amount of fat storage and is considered as a pro-inflammatory adipocytokine. Adiponectin is inversely related to the degree of adiposity, increases insulin sensitivity, and may have antiatherogenic and anti-inflammatory properties. Resistin impairs glucose homeostasis and insulin action in mice but not in humans. Resistin might be considered a pro-inflammatory adipocytokine and participate in obesity-associated inflammation. Several reports indicate that leptin regulates thyroid function at hypothalamic-hypophyseal level and, conversely, thyroid hormones might control leptin metabolism at least in some animals studies. Both adiponectin and thyroid hormones share some physiological actions as reduction of body fat by increasing thermogenesis and lipid oxidation. Resistin also seems to be regulated by thyroid hormones, at least in rats. Thyroid dysfunction does not significantly affect serum leptin concentrations. Serum levels of adiponectin are no influenced by thyroid hypofunction; however, hyperthyroidism is associated with normal or elevated adiponectin levels. Finally, discordant results in resistin levels in thyroid dysfunction have been reported in humans.  相似文献   

19.
OBJECTIVE AND METHODS: The effect of thyroid hormone on human growth and maturation is considered 'permissive'. To evaluate the effect of a prolonged thyroid hormone defect, especially in the pubertal period, a woman with untreated congenital hypothyroidism underwent studies of thyroid function and bone maturation for the first time at age 38 years 10 months and received thyroid hormone replacement. RESULTS: The karyotype was 45,X/46,XX. Menstruation had occurred for 10 years, from menarche until she was about 31 years old. Epiphyseal closure of the left hand was incomplete. The serum thyroid hormone level was virtually undetectable, and her thyroid gland was not detectable in the normal position by ultrasonography. Her height increased by 3.5 cm in the first 9 months after starting thyroid hormone replacement; after 11 months, closure of the epiphysis was complete. CONCLUSION: Thyroid hormone is necessary to achieve bone maturation and epiphyseal closure, but its role is only permissive.  相似文献   

20.
《Bioscience Hypotheses》2008,1(4):195-199
An increased incidence of thyroid cancer has been reported in many parts of the world including the United States during the past several decades. Recently emerging evidence has demonstrated that polyhalogenated aromatic hydrocarbons (PHAH), particularly polybrominated diphenyl ethers (PBDE), alter thyroid hormone homeostasis and cause thyroid dysfunction. However, few studies have been conducted to test whether exposure to PBDE and other PHAH increases the risk of thyroid cancer. Here, we hypothesize that elevated exposure to PHAH, particularly PBDE, increases the risk of thyroid cancer and may explain part of the increase in incidence of thyroid cancer during the past several decades. In addition, genetic and epigenetic variations in metabolic pathway genes may alter the expression and function of metabolic enzymes which are involved in the metabolism of endogenous thyroid hormones and the detoxification of PBDE and other PHAH. Such variation may result in different individual susceptibilities to PBDE and other PHAH and the subsequent development of thyroid cancer. The investigation of this hypothesis will lead to an improved understanding of the role of PBDE and other PHAH in thyroid tumorigenesis and may provide a real means to prevent this deadly disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号