首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 植入式脑机接口在神经疾病的治疗方面已经得到了广泛应用,治疗的效果依赖于与神经组织接触的电极。与刚性材料制作的电极相比,碳基微纤维电极尺度小、生物兼容性好、组织炎症反应小,可以减少植入后的异物反应,改善神经记录信号的信噪比,可以长期保持稳定的电极特性。方法 本文设计了一种柔性碳纳米管(carbon nanotubes,CNTs)纤维电极的修饰方法,该方法采用电化学聚合的方式可以将聚3,4-乙烯二氧噻吩(poly(3,4-ethylenedioxythiophene),PEDOT)薄膜沉积到CNTs纤维电极上,作为微电极涂层。为了证明修饰涂层在电极表面具有良好的机械稳定性,对修饰电极进行了超声处理。此外,本文将PEDOT薄膜沉积到ITO玻璃上,评价了PEDOT薄膜的生物相容性。结果 恒电流方式在CNTs纤维电极表面沉积的PEDOT涂层降低了电极的电化学阻抗,提高了电极的电化学性能,且PEDOT沉积的时间越长阻抗减少的幅度越明显。对电极进行超声处理后,电极的电化学阻抗没有产生显著变化,说明超声处理后PEDOT涂层剥离较少,证明了修饰涂层在电极表面具有良好的机械稳定性。最后,细胞实验表明,PEDOT薄膜具有与ITO导电玻璃相当的细胞相容性。结论 PEDOT薄膜可以提高CNTs纤维电极的稳定性,有望提高脑机接口系统的寿命和可靠性,具有应用于长时间记录神经电信号的前景。  相似文献   

2.
When monitoring bioelectric signals the surface electrodes can cause a retroaction on the subject thereby introducing an error of measurement. There are two types of retroaction: physical and psycho-physiological. A physical retroaction due to the hydration process of the skin occurs if 'wet' electrodes are used for the recording of the skin conductance level (SCL) causing a continuous drift of the SCL and a decrease in sensitivity to SCL changes. Therefore a dry electrode was developed with improved performance: It exhibits less sensitivity to motion, is not subject to polarization, and features better SCL long-term stability. When recording the electrocardiogram or the electromyogram a psychophysiological retroaction occurs due to the annoyance caused by the skin-irritating abrading techniques in order to decrease the skin impedance and reduce the motion artifact. In an attempt to abandon the skin preparation whenever permissible without sacrificing the measurement accuracy a performance estimation procedure was developed. Basing on the information on the signal frequency content, the electrode contact area, the required accuracy of measurement and the amplifier input impedance a decision on the necessity of skin preparation is made. Moreover, the results of a study are reported investigating the reduction of motion artifacts by means of electrode design and appropriate electrode jelly formulation.  相似文献   

3.
Deep brain stimulation (DBS) is a common therapy for treating movement disorders, such as Parkinson’s disease (PD), and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP) recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz) in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics). The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications.  相似文献   

4.
Multicellular tumour spheroids that mimic a native cellular environment are widely used as model systems for drug testing. To study drug effects on three-dimensional cultures in real-time we designed and fabricated a novel type of sensor chip for fast, non-destructive impedance spectroscopy and extracellular recording. Precultured spheroids are trapped between four gold electrodes. Fifteen individual 100microm deep square microcavities with sizes from 200 to 400microm allow an optimised positioning during the measurement. Although apoptosis was induced in human melanoma spheroids by Camptothecin (CTT), treated cultures did not show disintegration but displayed increased impedance magnitudes compared to controls after 8h resulting from an altered morphology of the outer cells. Contractions in cardiomyocyte spheroids were monitored when the innovative chip was used for recording of extracellular potentials. The silicon-based electrode array is used as an acute test system for the monitoring of any kind of 3D cell cultures. Since no adherence of cells or labelling is necessary the multifunctional sensor chip provides a basis for improved drug development by high content screenings with reduced costs and assay times. Additional improvements for parallel testing of different substances on one chip are presented.  相似文献   

5.
Voltage clamping with a single microelectrode.   总被引:6,自引:0,他引:6  
A technique is described which allows neurons to be voltage clamped with a single microelectrode, and the advantages of this circuit with respect to conventional bridge techniques are discussed. In this circuit, the single microelectrode is rapidly switched from a current passing to a recording mode. The circuitry consists of: (1) an electronic switch; (2) a high impedance, ultralow input capacity amplifier; (3) a sample-and-hold module; (4) conventional voltage clamping circuitry. The closed electronic switch allows current to flow through the electrode. The switch then opens, and the electrode is in a recording mode. The low input capacity of the preamplifier allows the artifact from the current pulse to rapidly abate, after which time the circuit samples the membrane potential. This cycle is repeated at rates up to 10 kHz. The voltage clamping amplifier senses the output of the sample-and-hold module and adjusts the current pulse amplitude to maintain the desired membrane potential. The system was evaluated in Aplysia neurons by inserting two microelectrodes into a cell. One electrode was used to clamp the cell and the other to independently monitor membrane potential at a remote location in the soma.  相似文献   

6.
Neuroelectronic interfaces are imperative in investigating neural tissues as electrical signals are the main information carriers in the nervous system and metal microelectrodes have been widely used for recording and stimulation of nerve cells. For high performance microelectrodes, low tissue-electrode interfacial impedance and high charge injection limits are essential and nanoscale surface engineering has been utilized to meet the requirements for microelectrodes. We report a single-cell sized microelectrode, which has unique gold nanograin structures, using a simple electrochemical deposition method. The fabricated microelectrode had a sunflower shape with 1–5 (m of micropetals along the circumference of the microelectrode and 500 nm nanograins at the center. The nanograin electrodes had 69-fold decrease of impedance and 10-fold increase in electrical stimulation capability compared to unmodified flat gold microelectrodes. The recording and stimulation performance of nanograin electrodes was tested using dissociated rat hippocampal neuronal cultures. Noise levels were extremely low (2.89 μVrms) resulting in high signal-to-noise ratio for low-amplitude action potentials (18.6–315 μV). Small biphasic current pulses (20–60 μA) could evoke action potentials from neurons nearby electrodes. This new nanostructured neural electrode may be applicable for the development of cell-based biosensors or clinical neural prosthetic devices.  相似文献   

7.
To determine the criteria for the selection of an electrode suitable for a bio-fuel cell (BFC), five electrodes, i.e. silver, aluminum, nickel, stainless steel and carbon fiber cloth were investigated. The performance of the BFC according to the electrode material, including the generated voltage, current density and power density was observed. These results show that the materials used for constructing the electrodes affect the performance of the BFC. An impedance analysis was used to describe the characteristics of the electrodes in the solution. Equivalent circuits of each component such as solution, electrodes-solution interface and electrode were determined from the impedance data. The constant-phase element (CPE) model was applied for data analyzing. It was found that stainless steel, nickel and aluminum behaved like a polarized electrode which has a high electrode-solution interfacial impedance, while carbon fiber cloth and silver had a low impedance like a non-polarized electrode. The impedance data indicated that a higher interfacial impedance will result in a higher loading effect. The results can be summarized that the carbon fiber cloth electrode offers a good electron transfer in the system and thus supplies higher power to the external load.  相似文献   

8.
Electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measure properties of the electrode-tissue interface without additional invasive procedures, and can be used to monitor electrode performance over the long term. EIS measures electrical impedance at multiple frequencies, and increases in impedance indicate increased glial scar formation around the device, while cyclic voltammetry measures the charge carrying capacity of the electrode, and indicates how charge is transferred at different voltage levels. As implanted electrodes age, EIS and CV data change, and electrode sites that previously recorded spiking neurons often exhibit significantly lower efficacy for neural recording. The application of a brief voltage pulse to implanted electrode arrays, known as rejuvenation, can bring back spiking activity on otherwise silent electrode sites for a period of time. Rejuvenation alters EIS and CV, and can be monitored by these complementary methods. Typically, EIS is measured daily as an indication of the tissue response at the electrode site. If spikes are absent in a channel that previously had spikes, then CV is used to determine the charge carrying capacity of the electrode site, and rejuvenation can be applied to improve the interface efficacy. CV and EIS are then repeated to check the changes at the electrode-tissue interface, and neural recordings are collected. The overall goal of rejuvenation is to extend the functional lifetime of implanted arrays.  相似文献   

9.
Micromachined probes, with iridium (Ir) microelectrodes on silicon shanks, were evaluated to assess their suitability for cardiac electrogram recording. The electrochemical activation (anodic oxidation) procedure for the circular Ir microelectrode was investigated using the square wave potential according to the electrode size, number of cycles, and cathodic-anodic potential level of the square wave. Increase in the charge storage capacity was pronounced either in smaller electrodes or with higher potential level of the square wave. The electrode impedance reduced in a similar manner with increasing number of cycle irrespective of the electrode size. With either lower potential level (-0.70/+0.60 V) or smaller number of cycle (200 cycles) than those for the activation of stimulating electrode, the likelihood of overactivation of the recording microelectrode can be minimized. These anodic IrOx film (AIROF) microelectrodes were used for the recording of extracellular electrograms in two different ex vivo cardiac tissue preparations. A single-shank microprobe was applied to the left ventricle of a mouse heart. Both the spontaneous and paced transmural responses propagating between epicardium and endocardium were obtained. Longitudinal cardiac wavefronts propagating along the rabbit papillary muscle were also recorded with a unique multiple-shank design. The measured mean amplitude and the propagation velocity of the extracellular voltage were 12.2 +/- 1.8 mV and 58.9 +/- 2.2 cm/s, respectively (n = 27). These microprobes with precisely defined electrode spacing make a useful tool for the spatial and temporal mapping of electrical properties in isolated heart tissues ex vivo.  相似文献   

10.
脑电图机中电极与头皮接触的好坏对脑电波形质量有很大影响,本文利用AT89C51单片机实现电极与头皮接触阻抗的检测。还通过发光二极管给予医务人员对电极接触好坏直观的指示。  相似文献   

11.
A technique is described which allows neurons to be voltage clamped with a single microelectrode, and the advantages of this circuit with respect to conventional bridge techniques are discussed. In this circuit, the single micro electrode is rapidly switched from a current passing to a recording mode. The circuitry consists of: (1) an electronic switch; (2) a high impedance, ultralow input capacity amplifier; (3) a sample-and-hold module; (4) conventional voltage clamping circuitry. The closed electronic switch allows current to flow through the electrode. The switch then opens, and the electrode is in a recording mode. The low input capacity of the preamplifier allows the artifact from the current pulse to rapidly abate, after which time the circuit samples the membrane potential. This cycle is repeated at rates up to 10 kHz. The voltage clamping amplifier senses the output of the sample-and-hold module and adjusts the current pulse amplitude to maintain the desired membrane potential. The system was evaluated in Aplysia neurons by inserting two microelectrodes into a cell. One electrode was used to clamp the cell and the other to independently monitor membrane potential at a remote location in the soma.  相似文献   

12.
This paper reports the success of amino-functionalization on multi-walled carbon nanotubes (MWCNTs) to promote neuronal cells growth on MWCNT electrode for extracellular recording, attributed to the formation of positive charge of NH(2) molecules on their surfaces. Besides, the surface of MWCNT electrode becomes hydrophilic after amino-functionalization (AF-MWCNTs) which can enhance electrical conductivity because of lower MWCNT/electrolyte interfacial impedance and higher interfacial capacitance. Durability tests show that electrical characteristics of the MWCNTs treated by 2 wt% 1,4-diaminobutane solution (2 wt%-AF-MWCNTs) can last for at least six months in air ambient. The neural recording of crayfish shows that 2 wt%-AF-MWCNTs can provide better capability on detecting action potentials of caudal photoreceptor (CPR) interneuron compared to suction glass pipette from the evidence of a higher S/N ratio (126 versus 23). The amino-functionalized MWCNT electrode is feasible for long-term recording application according to the results of biocompatibility tests. As the MWCNTs were directly synthesized on Si-based substrates by catalyst-assisted thermal chemical vapor deposition (CVD) at a low temperature (400 °C), these self-aligned MWCNT electrodes could be friendly implemented in integrated circuits fabrications.  相似文献   

13.
Three-electrode electrochemical impedance technique was investigated for detection of Salmonella typhimurium by monitoring the growth of bacteria in selenite cystine (SC) broth supplemented with trimethylamine oxide hydrochloride (TMAO.HCl) and mannitol (M). The change in the system impedance during the growth of bacteria was studied using frequency spectral scanning. It was found that the impedance at low frequencies (<10 kHz) mainly came from the double-charged layer capacitance, reflecting the changes at the electrode interface and the adsorption on the electrode surface. While at high frequencies (>10 kHz), the system impedance mainly depended on the medium resistance. The adsorption of bacteria on the electrode surface was detected by measuring low frequency impedance, and verified with Faradic impedance spectroscopy. Enumeration of S. typhimurium using a low frequency (1 Hz) capacitance measurement and a high frequency (1 MHz) resistance measurement were compared. The detection times were determined for quantitative analysis based on the growth curves of bacteria referring to either the medium resistance or electrode capacitance. The regression equations for the detection times (t(d), h) and the initial cell number (N, cells.ml(-1)) were t(d)=-1.24logN+13.4 with R(2)=0.98 and t(d)=-1.40logN+14.46 with R(2)=0.97 for the medium resistance and electrode capacitance methods, respectively.  相似文献   

14.
Automated whole-cell patch-clamp electrophysiology of neurons in vivo   总被引:1,自引:0,他引:1  
Whole-cell patch-clamp electrophysiology of neurons is a gold-standard technique for high-fidelity analysis of the biophysical mechanisms of neural computation and pathology, but it requires great skill to perform. We have developed a robot that automatically performs patch clamping in vivo, algorithmically detecting cells by analyzing the temporal sequence of electrode impedance changes. We demonstrate good yield, throughput and quality of automated intracellular recording in mouse cortex and hippocampus.  相似文献   

15.
An immunosensor with rapid and ultrasensitive response for vascular endothelial growth factor (VEGF) has been built up with 4-aminothiophenol (4-ATP) onto the gold surfaces. Quantitative analysis of VEGF was performed by recording the impedance changing of the gold electrode surface by binding of VEGF. The human vascular endothelial growth factor receptor 1 (VEGF-R1, Flt-1) was used as a biorecognition element for the first time in the literature. VEGF-R1 was covalently immobilized via 4-ATP self-assembled monolayer formed on gold thin film covered surface. Construction of the biosensor was carefully characterised by the techniques such as electrochemistry and electrochemical impedance spectroscopy. In order to characterize impedance data, Kramers–Kronig transform was performed on the experimental impedance data. The limit of detection of the immunosensor for qualitative detection was 100 pg/mL while the LOD for quantitative detection could down to 100 pg/mL by using the VEGF-R1 based biosensor. Finally, artificial serum samples spiked with VEGF was analyzed by the proposed immunosensor to investigate useful of the biosensor for early biomarker diagnosis.  相似文献   

16.
Significant correlation was observed, in normal resting individuals, of interregional variation of classical amplitude-dependent electrical impedance indices of cerebral blood flow (CBF) with three quantitative rheographic measures of cerebral blood flow which have been themselves radioisotopically validated. Since these amplitude-related CBF indices are derived from the Nyboer model relating blood volume changes to change of impedance, the data support the correctness and applicability of this model to the head. Interrelationship among the CBF parameters obtained with the use of this technique was found to be markedly affected by differing electrode placements; it was not apparently affected by extracranial circulation. It is concluded that under proper recording conditions, several assumptions underlying rheoencephalography are consistent and that it may be a useful tool for the study of relative regional cerebral blood flow in normal individuals.  相似文献   

17.
In this paper we describe the status of a silicon-based microelectrode for neural recording and an advanced neural interface. We have developed a silicon neural probe, using a combination of plasma and wet etching techniques. This process enables the probe thickness to be controlled precisely. To enhance the CMOS compatibility in the fabrication process, we investigated the feasibility of the site material of the doped polycrystalline silicon with small grains of around 50 nm in size. This silicon electrode demonstrated a favorable performance with respect to impedance spectra, surface topography and acute neural recording. These results showed that the silicon neural probe can be used as an advanced microelectrode for neurological applications.  相似文献   

18.
Effects of different electrodes on bioelectrical impedance values measured by the Selco bioelectrical impedance plethysmograph (SIF-881, Japan) were investigated using 8 adult females (age: 35.3 +/- 7.6 yr, Ht: 156.9 +/- 3.8 cm, Wt: 57.1 +/- 9.9 kg, and hydrodensitometrically determined body fat: 29.4 +/- 6.0%). The Lectec MP3000 electrode (Liberty Carton, USA) and the Bipolar electrode (Sanwa, Japan) produced significantly higher impedance values when compared to the Disposable electrode (Adovance, Japan) and the ECG electrode (Nihon Kohden, Japan). The coefficient of variation was significantly lower for the Disposable electrode (0.8%) and the ECG electrode (0.2%) than that for the Lectec MP3000 electrode (2.3%) and the Bipolar electrode (4.9%). In conclusion, the ECG electrode provides higher bioelectrical impedance values with the highest reproducibility in the assessment of human body composition by the bioelectrical impedance plethysmography.  相似文献   

19.
Impedance profiles of peripheral and central neurons   总被引:1,自引:0,他引:1  
The electrical impedance of trigeminal ganglion cells (in vivo) and hippocampal CA1 neurons (in vitro) of guinea pigs was measured in the frequency range of 5-1250 Hz using intracellular recording techniques with single microelectrodes and computerized methodology. The transfer functions of the electrode and the electrode-neuron system were computed from the ratio of fast Fourier transforms of the output voltage response from the neuron and input current composed of sine waves with rapidly increasing frequency which displaced membrane potential by 2-5 mV. We believe these to be the first measurements of complex impedance and transfer functions in peripheral and central neurons of vertebrates and the first use of such input current functions. The majority of trigeminal ganglion cells did not exhibit electrical behaviour ascribable to a simple resistance-capacitance (RC) circuit but showed a hump at low frequencies (5-250 Hz) in the computed transfer function, probably attributable to resonance. The transfer function in less than 20% of the trigeminal neurons could be fitted approximately to a theoretical transfer function (resistance in series with a parallel RC circuit model) providing values for electrode resistance, effective input resistance, and effective input capacitance. The transfer functions measured in hippocampal CA1 neurons were characterized by a rapid fall-off in the low frequency range (less than 200 Hz). Impedance locus plots approximate the locus corresponding to a series RC circuit in parallel with a parallel RC circuit.  相似文献   

20.
We describe the design of a programmable neurosurgical stimulator with impedance monitoring facilities. The computer is used both to control a stimulator and for the storage of various parameters employed in the process. The stimulator is designed to minimize tissue damage by injecting net zero charge; its output is a current, independent of load resistance. By measuring electrode voltage, the load impedance can be calculated. Software is provided in order to log patient data, and trajectory details with reference to coordinates calculated from other imaging systems such as CAT scanners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号