首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 143 毫秒
1.
Summary 3-D-(-) hydroxybutyrate dehydrogenase (EC 1.1.1.30) from rat-liver mitochondria was purified in the form of the soluble, phospholipid-free apoenzyme by a procedure involving: (1) solubilization of the membrane bound enzyme by controlled digestion of membrane phospholipids with porcine pancreas phospholipase A2; (2) stabilization and separation of the released apoenzyme as a complex with egg-lecithin by gel filtration on Sephadex G-100; and (3) specific displacement of the apoenzyme from the enzyme-lecithin complex by treatment withBothrops atrox venom phospholipase A2 (in the absence of Ca2+ ions) and subsequent separation of the displaced apoenzyme by gel filtration on Sephadex G-100. The method described is adequate for samples containing about 40 mg of mitochondrial protein. The yield in activity is 42% of that present in mitochondria and the degree of purification of the apodehydrogenase is about 170 fold. The purified apodehydrogenase shows one single sharp band when submitted to SDS polyacrylamide gel electrophoresis, with a mobility corresponding to a molecular weight of 38000 daltons. Gel filtration of the apoenzyme on Sephadex G-100 shows two active peaks with molecular weights of 76000 and 38500 daltons, indicating two different states of aggregation, namely, monomer and dimer. The corresponding diffusion coefficients are 7.73 (monomer) and 5.70 (dimer) × 10–7. The apodehydrogenase preparation is devoid of phospholipids and is catalytically inactive. It can be reactivated by addition of egg lecithin or phospholipid mixtures containing lecithin in a suitable physical state. Reactivation occurs after formation of an active apodehydrogenase phospholipid complex.Abbreviations HBD 3-D-(-) hydroxybutyrate dehydrogenase - apoHBD 3-D-(-) hydroxybutyrate dehydrogenase apoenzyme - SMP submitochondrial particles - DFP diisopropylfluorophosphate - BSA bovine serum albumin - MPL mitochondrial phospholipids - L-diC14 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine - lysoC14 1-myristoyl-sn, glycero-3-phosphorylcholine - D-diC10 2.3-didecanoyl-sn-glycero-1-phosphorylcholine - tlc thin layer chromatography - SDS sodium dodecylsulfate Dedicated to ProfessorLuis F. Leloir on the occasion of his 70th birthday.  相似文献   

2.
Prevous studies have revealed that the replacement of the C-2 ester group in phosphatidylcholine by the carbamyloxy function renders the resulting lipids, without affecting the properties of the liposomes, resistant to hydrolysis by phospholipase A2 (Gupta, C.M. and Bali, A. (1981) Biochim. Biophys. Acta 663, 506–515). As an extension of this work, the effect of serum on the stability of liposomes, prepared from 1-palmitoyl-2-heptadec-10-cis- enylcarbamyloxyphosphatidylcholine (carbamylphosphatidylcholine), has been examined. The stability has been measured in terms of (a) bilayer permeability to solutes, and (b) the lipid transfer to serum proteins, Replacement of egg phosphatidylcholine in liposomes by the carbamyl analog prevented serum-induced leakage of the entrapped solutes and also inhibited the lipid (phospholipid and cholesterol) transfer. Manipulation of the cholesterol content of the liposomes had no effect on the stability. These observations indicate that the interaction of serum proteins with liposomes probably involves a highly specific binding of the proteins to the liposome surface.  相似文献   

3.
Reaction of 1-fattyacyl-sn-glycero-3-phosphorylcholine with triphenylphosphine — carbon tetrachloride gave 3-fattyacyl-2-chloro-2-deoxy-sn-glycero-1-phosphorylcholine together with small amounts of other chlorodeoxy isomers. 1-Chloro-1-deoxy-2-palmitoyl-rac-glycero-3-phosphorylcholine was prepared by total synthesis from 3-chloro-2-iodopropyl palmitate. The main step in the synthesis involves the nucleophilic displacement of iodide at C-2 with dibenzyl phosphate anion, which proceeds with an acyloxy migration, leading to the key intermediate 1-chloro-1-deoxy-2-palmitoyl-rac-glycero-3-(dibenzyl phosphate). Hydrogenolysis of this phosphate triester, followed by esterification with choline acetate gave the final product. The properties of the products support an earlier conclusion that the so-called “cyclic lysolecithin” is a mixture of isomeric acyl-chloro-deoxy-glycero-phosphorylcholines in which 1-chloro-1-deoxy-2-acyl-glycero-3-phosphorylcholine is the major component.  相似文献   

4.
The membrane-destabilizing effect of the peptide melittin on phosphatidylcholine membranes is modulated by the presence of cholesterol. This investigation shows that inclusion of 40 mol % cholesterol in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes reduces melittin's affinity for the membrane. It is significant that the presence of cholesterol does not increase the amount of membrane-associated melittin needed to cause maximum leakage from, or major structural rearrangements of, the liposomes. Furthermore, comparison of microscopy and leakage data suggests that melittin-induced leakage occurs via different mechanisms in the cholesterol-free and cholesterol-supplemented systems. In the absence of cholesterol, leakage of carboxyfluorescein takes place from intact liposomes in a manner compatible with the presence of small melittin-induced pores. In the presence of cholesterol, on the other hand, adsorption of the peptide causes complete membrane disruption and the formation of long-lived open-bilayer structures. Moreover, in the case of cholesterol-supplemented systems, melittin induces pronounced liposome aggregation. Cryotransmission electron microscopy was used, together with ellipsometry, circular dichroism, turbidity, and leakage measurements, to investigate the effects of melittin on phosphatidylcholine membranes in the absence and presence of cholesterol. The melittin partitioning behavior in the membrane systems was estimated by means of steady-state fluorescence spectroscopy measurements.  相似文献   

5.
Rat serum, active in the hydrolysis of the tumor-promoting phorbol diester, 12-O-tetradecanoylphorbol-13-acetate (TPA), was examined with regard to lipid interferences of [3H]TPA hydrolysis and enzyme substrate specificity. The enzymatic hydrolysis of TPA could be enhanced 8-fold, ever crude serum, by using a lipid-free acetone powder of rat serum. Addition of lipid to the lipid-free acetone powder produced potent inhibition of TPA hydrolysis. The inclusion of multilamallar liposomes resulted in similar inhibition, and isolation of liposomes by high-speed centrifugation showed that 95% of the radiolabeled TPA was associated with the fatty pellet. Substrate specificity studies demonstrated that the serum activity hydrolyzes the long-chain ester of TPA and the long-chain primary acyl group of diacylglycerols. TPA was hydrolyzed at approximately twice the rate of dioleoylglycerol; however, the most reactive substrates were those synthetic analogs of diacylglycerol containing a short-chain ester group at the sn-2 position. Palmitic acid was liberated from [1-14C]palmitoyl-2-acetyl-sn-glycerol and [1-14C]palmitoyl-2-butyryl-sn-glycerol at 120- and 33-tinies the rate of TPA hydrolysis, respectively. Lipase resistant 1-hexadecyl-2-[3H]acetylglycerol was also used as substrate, but the sn-2 ester moiety showed poor lability. The diacylglycerol analogs are new lipase substrates and, in view of their similarities to the fatty acyl portion of TPA, it is thought that these compounds could serve as protein kinase C activators.  相似文献   

6.
Hydrolysis of 1,2-dioleoyl-sn-glycero-3-phosphomethanol (DOPM), 1,2-dioleoyl-sn-glycero-3-phosphoethanol (DOPEt), 1,2-dioleoyl-sn-glycero-3-phosphoethyleneglycol (DOPEG), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) catalyzed by phospholipase A2 (PLA2) from porcine pancreas was studied in single-component and binary model bilayer membranes (liposomes). The presence of anionic phosphatidylalkanols increases the rate of hydrolysis of zwitterionic DOPC in liposomes by the action of PLA2. The rate of formation of lysoforms of anionic (acidic) lipids at the initial reaction stage in single-component liposomes increased in the following sequence: DOPEG < DOPM < DOPEt (compared with that for the zwitterionic DOPC). In binary liposomes formation of lyso-DOPC increased in the presence of acidic lipids in the following sequence: DOPM < DOPEt < DOPEG. This indicates that the size of polar fragment of the second substrate and the presence of free hydroxy groups in the head of DOPEG may possibly activate DOPC hydrolysis by the action of PLA2 in the presence of anionic phospholipids including cardiolipin; the studied phospholipids model fragments of the latter.  相似文献   

7.
—1,2-Diacyl-, 1-alk-1′-eny1-2-acyl- and 1-alky1-2-acyl-sn-glycero-3-phosphorylcholine specifically labelled with different fatty acids at the 2 position, were prepared enzymically using the acyltransferase system of rabbit sarcoplasmic reticulum. The substrates were submitted to hydrolysis by phospholipase A2 (phospholipid acyl-hydrolase, EC 3.1.1.4) obtained from normal and brain tissue affected with subacute sclerosing panencephalitis. In the diseased tissue an increase of phospholipase A2 activity ranging from 46 to 54% could be observed in comparison to the control brain for all substrates investigated. Among the investigated substrates phospholipase A2 had the highest affinity for the 1,2-diacylcompound, whereas alkenylacyl- and alkylacyl-sn-glycero-3-phosphorylcholine were cleaved at almost similar rates. The hydrolysis rate of choline-plasmalogen and the corresponding diacyl compound by the enzyme was greatly influenced by the fatty acid moiety located at the 2 position of the substrates.  相似文献   

8.

Background

Pichia fermentans DiSAABA 726 is a dimorphic yeast that reversibly shifts from yeast-like to pseudohyphal morphology. This yeast behaves as a promising antagonist of Monilia spp. in the yeast-like form, but becomes a destructive plant pathogen in the pseudohyphal form thus raising the problem of the biological risk associated with the use of dimorphic yeasts as microbial antagonists in the biocontrol of phytopathogenic fungi.

Methods

Pichia fermentans DiSAABA 726 was grown in urea- and methionine-containing media in order to induce and separate yeast-like and pseudohyphal morphologies. Total RNA was extracted from yeast-like cells and pseudohyphae and retro-transcribed into cDNA. A rapid subtraction hybridization approach was utilized to obtain the cDNA sequences putatively over-expressed during growth on methionine-containing medium and involved in pseudohyphal transition.

Results

Five genes that are over-expressed during yeast-like/pseudohyphal dimorphic transition were isolated. One of these, encoding a putative phospholipase C, is involved in P. fermentans filamentation. In fact, while the inhibition of phospholipase C, by means of 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphorylcholine (Et-18), is accompanied by a significant reduction of pseudohyphae formation in P. fermentans, the addition of exogenous cAMP fully restores pseudohyphal growth also in the presence of Et-18.

Conclusion

Phospholipase C is part of a putative “methionine sensing machinery” that activates cAMP-PKA signal transduction pathway and controls P. fermentans yeast-like/pseudohyphal dimorphic transition.

General significance

Phospholipase C is a promising molecular target for further investigations into the link between pseudohyphae formation and pathogenicity in P. fermentans.  相似文献   

9.
1,2-Bis[4-(1-pyreno)butanoyl]-sn-glycero-3-phosphorylcholine was synthesized as a fluorogenic substrate for phospholipase A2. It has a critical micellar concentration of 7.3 μm and gives only excimer fluorescent emission at 480 nm in aqueous micellar dispersion. When hydrolyzed by phospholipase A2, the products give only monomer emission which is monitored best at 382 and 400 nm. Conditions were developed for an assay for phospholipase A2 using this substrate. The assay was sensitive to as little as 8 ng of pure porcine pancreatic phospholipase A2.  相似文献   

10.
High-field (i.e., 94 GHz) electron paramagnetic resonance is used to characterize the nonaxial ordering of spin-labeled lipid chains in membranes containing cholesterol. Employing high magnetic fields (and microwave frequencies) allows investigation of both the lateral and transverse ordering of the phospholipid chains by cholesterol, from the x-y and z-elements, respectively, of the spin-label g-tensor. Transverse ordering is described by the conventional order parameter, P2(cosβ), where β is the instantaneous inclination of the chain axis to the membrane normal; and lateral ordering is described by the order parameter cos2( − ), where is the azimuthal angle about the chain axis and is the mean azimuthal orientation about which angular fluctuations take place. To obtain high positional resolution, phosphatidylcholines spin labeled at all odd and even positions from n = 4 to n = 14 in the sn-2 chain (1-acyl-2-[n-(4,4′-dimethyloxazolidine-N-oxyl)]stearoyl-sn-glycero-3-phosphocholine) are used at probe amounts in membranes of dimyristoyl phosphatidylcholine containing either high (40 mol %) or low (5 mol %) concentrations of cholesterol. At high-cholesterol content, lateral ordering of the spin-labeled lipid chains is detected over a wide range of temperature throughout the liquid-ordered phase. The transverse profile of lateral -ordering with position, n, of chain labeling follows the profile of the rigid steroid nucleus of cholesterol. It becomes progressively averaged toward the terminal methyl group of the sn-2 chain, in the region of the flexible hydrocarbon chain of cholesterol. At low-cholesterol content, lateral chain ordering is prominent at low temperature, but diminishes at progressively higher chain positions with increasing temperature. The nonaxial lipid ordering may be related to the formation of in-plane lipid domains in membranes containing cholesterol and saturated lipids.  相似文献   

11.
Plantaricin A (plA) is a 26-residue bacteria-produced peptide pheromone with membrane-permeabilizing antimicrobial activity. In this study the interaction of plA with membranes is shown to be highly dependent on the membrane lipid composition. PlA bound readily to zwitterionic 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) monolayers and liposomes, yet without significantly penetrating into these membranes. The presence of cholesterol attenuated the intercalation of plA into SOPC monolayers. The association of plA to phosphatidylcholine was, however, sufficient to induce membrane permeabilization, with nanomolar concentrations of the peptide triggering dye leakage from SOPC liposomes. The addition of the negatively charged phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol POPG (SOPC/POPG; molar ratio 8:2) enhanced the membrane penetration of the peptide, as revealed by (i) peptide-induced increment in the surface pressure of lipid monolayers, (ii) increase in diphenylhexatriene (DPH) emission anisotropy measured for bilayers, and (iii) fluorescence characteristics of the two Trps of plA in the presence of liposomes, measured as such as well as in the presence of different quenchers. Despite deeper intercalation of plA into the SOPC/POPG lipid bilayer, much less peptide-induced dye leakage was observed for these liposomes than for the SOPC liposomes. Further changes in the mode of interaction of plA with lipids were evident when also the zwitterionic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphoethanolaminne (POPE) was present (SOPC/POPG/POPE, molar ratio 3:2:5), thus suggesting increase in membrane spontaneous negative curvature to affect the mode of association of this peptide with lipid bilayer. PlA induced more efficient aggregation of the SOPC/POPG and SOPC/POPG/POPE liposomes than of the SOPC liposomes, which could explain the attenuated peptide-induced dye leakage from the former liposomes. At micromolar concentrations, plA killed human leukemic T-cells by both necrosis and apoptosis. Interestingly, plA formed supramolecular protein-lipid amyloid-like fibers upon binding to negatively charged phospholipid-containing membranes, suggesting a possible mechanistic connection between fibril formation and the cytotoxicity of plA.  相似文献   

12.
2-Azido-2-deoxy-1-O-hexadecyl-sn-glycero-3-phosphorylcholine was prepared in good yield from D-mannitol via 3-O-hexadecyl-2-O-methanesulfonyl-1-O-triphenylmethyl-sn-glycerol. Nucleophilic displacement of the 2-methanesulfonate function by benzoate or azide ion proceeded with inversion of configuration (Sn2) without racemization. Hydrogenation of the azidophospholipid gave 2-amino-2-deoxy-1-O-hexadecyl-sn-glycero-3-phosphorylcholine which is a versatile intermediate for the preparation of amide analogs of platelet-activating factor and related derivatives. The synthesis of 2-deoxy-2-fluoro-1-O-hexadecyl-sn-glycero-3-phosphorylcholine was also described.  相似文献   

13.
The lamellar repeat distances of aqueous dispersions of rac-1,2-dioctadec-9′-cis-enyl-glycero-3-phosphorylcholine (dietherlecithin) and 1,2-dioctadec-9′-cis-enoyl-sn-glycero-3-phosphorylcholine (diesterlecithin) have been measured by X-ray diffraction as a function of water concentration. The point of maximum hydration was found to be 43% (w/w) and 40% (w/w) for dietherlecithin and diesterlecithin respectively; the corresponding lamellar repeat distances being 62.3 Å and 60.5 A. Incorporation of cholesterol above maximum hydration results in the initial increase in the lamellar repeat distance with a maximum around cholesterol concentrations of 25 and 33 mol % for dietherlecithin and die diesterlecithin respectively.The apparent partial specific volumes of the two lecithins and for lecithin-cholesterol mixtures in sonicated aqueous dispersions were measured. Values of 1.024 cm3 · g?1 and 0.987 cm3 · g?1 were obtained for diether- and diesterlecithin, respectively, at 20°C. Diesterlecithin-cholesterol mixtures showed a very small change in partial specific volume while mixtures of dietherlecithin-cholesterol showed a very marked decrease with increasing proportions of cholesterol.From these data a series of structure parameters are derived for the two lecithins and possible implications for the nature of the lecithin-cholesterol interaction are discussed.  相似文献   

14.
Lysophospholipase D (EC 3.1.4.-) activity was demonstrated in rat kidneys, intestines, lungs, testes, and liver. The liver enzyme was studied in greatest detail and its labeled products were identified by chemical and Chromatographic techniques. This enzyme hydrolyzes 1-[1-14C]hexadecyl-sn-glycero-3-phosphoethanolamine and 1-[1-14C]hexadecyl-sn-glycero-3-phosphocholine to yield 1-[1-14C]hexadecyl-sn-glycero-3-phosphate; the initial product is subsequently dephosphorylated by a phosphohydrolase in microsomes to form 1-[1-14C]hexadecyl-sn-glycerol. The possibility that phospholipase C and a phosphotransferase were responsible for the formation of 1-[1-14C]hexadecyl-sn-glycero-3-phosphate was ruled out. Neither 1-[1-14C]hexadecyl-2-acyl-sn-glycero-3-phosphoethanolamine nor 1-[1-14C]hexadecyl-2-acyl-sn-glycero-3-phosphocholine was hydrolyzed. The enzyme requires Mg2+, is inhibited by Ca2+, and is stimulated by high salt concentrations; it is localized in the microsomal fraction and has a pH optimum between 7.0 and 7.6. Inhibition by sulfhydryl reagents and protection by glutathione and dithiothreitol suggest that a sulfhydryl group is required for activity. The enzyme is inhibited by detergents and by organic solvent extraction. It appears to be tightly bound to the microsomes, since repeated freeze-thawing or sonication did not release the activity, and trypsin digestion (either in the presence or in the absence of 0.04% deoxycholate) did not destroy the activity. Lysophospholipase D was previously known to occur only in brain (R. L. Wykle and J. M. Schremmer, 1974, J. Biol. Chem., 249, 1742–1746).  相似文献   

15.
Conjugated linoleic acids (CLA) are known to exert several isomer-specific biological effects, but their mechanisms of action are unclear. In order to determine whether the physicochemical effects of CLA on membranes play a role in their isomer-specific effects, we synthesized phosphatidylcholines (PCs) with 16:0 at sn-1 position and one of four CLA isomers (trans 10 cis 12 (A), trans 9 trans 11 (B), cis 9 trans 11 (C), and cis 9 cis 11 (D)) at sn-2, and determined their biophysical properties in monolayers and bilayers. The surface areas of the PCs with the two natural CLA (A and C) were similar at all pressures, but they differed significantly in the presence of cholesterol, with PC-A condensing more than PC-C. Liposomes of PC-A similarly showed increased binding of cholesterol compared to PC-C liposomes. PC-A liposomes were less permeable to carboxyfluorescein compared to PC-C liposomes. The PC with two trans double bonds (B) showed the highest affinity to cholesterol and lowest permeability. The two natural CLA-PCs (A and C) stimulated lecithin-cholesterol acyltransferase activity by 2-fold, whereas the unnatural CLA-PCs (B and D) were inhibitory. These results suggest that the differences in the biophysical properties of CLA isomers A and C may partly contribute to the known differences in their biological effects.  相似文献   

16.

Background

Xanthohumol is expected to be a potent anti-atherosclerotic agent due to its inhibition of cholesteryl ester transfer protein (CETP). In this study, we hypothesized that xanthohumol prevents atherosclerosis in vivo and used CETP-transgenic mice (CETP-Tg mice) to evaluate xanthohumol as a functional agent.

Methodology/Principal Findings

Two strains of mice, CETP-Tg and C57BL/6N (wild-type), were fed a high cholesterol diet with or without 0.05% (w/w) xanthohumol ad libitum for 18 weeks. In CETP-Tg mice, xanthohumol significantly decreased accumulated cholesterol in the aortic arch and increased HDL cholesterol (HDL-C) when compared to the control group (without xanthohumol). Xanthohumol had no significant effect in wild-type mice. CETP activity was significantly decreased after xanthohumol addition in CETP-Tg mice compared with the control group and it inversely correlated with HDL-C (%) (P<0.05). Furthermore, apolipoprotein E (apoE) was enriched in serum and the HDL-fraction in CETP-Tg mice after xanthohumol addition, suggesting that xanthohumol ameliorates reverse cholesterol transport via apoE-rich HDL resulting from CETP inhibition.

Conclusions

Our results suggest xanthohumol prevents cholesterol accumulation in atherogenic regions by HDL-C metabolism via CETP inhibition leading to apoE enhancement.  相似文献   

17.
18.
Liposomes survive exposure to biological fluids poorly, extruding trapped enzymes, drugs, or solutes upon interaction with serum or plasma constituents. We have quantified the disruptive effects of human serum on liposomes and have studied whether various modifications in their phospholipid composition might produce liposomes with an increased carrier potential for applications in vivo. Multilamellar liposomes (phosphatidylcholine 70:dicetyl phosphate 20: cholesterol 10) were prepared with 3H-labeled phosphatidylcholine as the lipid phase marker and [14C]inulin and horseradish peroxidase as aqueous phase markers. Gel exclusion chromatography showed that 32 ± 3% of [14C]inulin and 27 ± 7% of horseradish peroxidase were lost after 1 h incubation with 10% (v/v) human serum. Loss of aqueous solutes was reduced to 20 ± 5%/h and 17 ± 2%/h, respectively, after treatment with decomplemented serum (56°C, 30 min). Loss induced by serum was concentration and time dependent: to 57 ± 2% at 1 h and 67 ± 14% at 24 h, with 50% serum; plasma was slightly less perturbing whereas human serum albumin was not at all disruptive. By incorporating sphingomyelin (35 mol%) into multilamellar liposomes, the leakage of [14C]-inulin in the presence of 10% serum was reduced to 12 ± 4%/h; increasing the molar percentage of cholesterol to 35% also stabilized the lipid bilayers, reducing leakage to 20 ± 7%/h. Both small and large unilamellar vesicles could not be stabilized against serum-mediated leakage by the incorporation of sphingomyelin. The data suggest that cholesterol and sphingomyelin enhance liposomal integrity in the presence of serum or plasma and promise to yield enhanced survival of drug-laden lipid vesicles in biological fluids in vivo.  相似文献   

19.
The hydrolysis of phosphatidylethanolamine, phosphatidylcholine, lysophosphatidylcholine, and trioleoylglycerol by Leptospira biflexa strain Urawa was studied in vitro. Phospholipase A1 was identified by the formation of 32P- and 14C-labeled lyso-derivatives from 32P-phosphatidylcholine, 32P-phosphatidylethanolamine, or 1-acyl-2-[1-14C]oleoyl-sn-glycero-3-phosphorylcholine. Phospholipase A1 activity was independent of lipase in the microorganism since 14C-labeled trioleoylglycerol was scarcely attacked under the same conditions in which the phospholipids were hydrolyzed. Lysophospholipase activity was also demonstrated using 32P- and non-labeled lysophosphatidylcholine. The activity of phospholipase A1 was found in a broad range of pH but no optimal pH was determined. The pH optimum of lysophospholipase was 8.0. Both enzymes were labile to heat. Phospholipase C activity, however, could not be detected because no radioactive di- and monoacylglycerol was found in the experiment with 1-acyl-2-[1-14C]-oleoyl-sn-glycero-3-phosphorylcholine as the substrate. It was inferred that phosphatidylethanolamine, which was the major component of phospholipids in leptospirae, was hydrolyzed serially by phospholipase A (A1 and/or A2?) and lysophospholipase to glycerophosphorylethanolamine via 2-acyl-type-lyso-derivative as one metabolic pathway of the substrate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号