首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiological roles of taurine, a product of cysteine degradation and one of the most abundant amino acids in the body, remain elusive. Taurine deficiency leads to heart dysfunction, brain development abnormalities, retinal degradation, and other pathologies. The taurine synthetic pathway is proposed to be incomplete in astrocytes and neurons, and metabolic cooperation between these cell types is reportedly needed to complete the pathway. In this study, we analyzed taurine synthesis capability as reported by incorporation of radioactivity from [(35)S]cysteine into taurine, in primary murine astrocytes and neurons, and in several transformed cell lines (human (SH-SY5Y) and murine (N1E-115) neuroblastoma, human astrocytoma (U-87 MG and 1321 N1), and rat glioma (C6)). Extensive incorporation of radioactivity from [(35)S]cysteine into taurine was observed in rat glioma cells as well as in primary mouse astrocytes and neurons, establishing the presence of an intact taurine synthesis pathway in these cells. Interestingly, exposure of cells to cysteine or cysteamine resulted in elevated intracellular hypotaurine without a corresponding increase in taurine levels, suggesting that oxidation of hypotaurine limits taurine synthesis in cells. Consistent with its role as an organic osmolyte, taurine synthesis was stimulated under hypertonic conditions in neurons.  相似文献   

2.
Cystamine is beneficial to Huntington disease (HD) transgenic mice. To elucidate the mechanism, cystamine metabolites were determined in brain and plasma of cystamine-treated mice. A major route for cystamine metabolism is thought to be: cystamine --> cysteamine --> hypotaurine --> taurine. Here we describe an HPLC system with coulometric detection that can rapidly measure underivatized cystamine, cysteamine and hypotaurine, as well as cysteine and glutathione in the same deproteinized tissue sample. A method is also described for the coulometric estimation of taurine as its isoindole-sulfonate derivative. Using this new methodology we showed that cystamine and cysteamine are undetectable (< or = 0.2 nmol/100 mg protein) in the brains of 3-month-old HD transgenic (YAC128) mice (or their wild-type littermates) treated daily for 2 weeks with cystamine (225 mg/kg) in their drinking water. No significant changes were observed in brain glutathione and taurine but significant increases were observed in brain cysteine. Cystamine and cysteamine were not detected in the plasma of YAC128 mice treated daily with cystamine between the ages of 4 and 12 or 7 and 12 months. These findings suggest that cystamine is not directly involved in mitigating HD but that increased brain cysteine or uncharacterized sulfur metabolites may be responsible.  相似文献   

3.
Developmental patterns and pharmacological and biochemical properties of taurine transport system were investigated using developing primary cultured neurons prepared from mouse cerebral cortex by trypsin treatment. [3H]Taurine was incorporated into neurons via a high-affinity transport system of which the Km value as well as the Vmax value increased during neuronal development in vitro. This transport system was also inhibited by sodium withdrawal from incubation medium and exposures for 15 h to several metabolic inhibitors such as 2,4-dinitrophenol and monoiodoacetate. In addition, [3H]taurine uptake in both neurons cultured for 3 and 14 days was competitively inhibited by beta-alanine, guanidinoethanesulfonate and hypotaurine. Cysteic acid and cysteine sulfinic acid, metabolic intermediates produced in the process of taurine biosynthesis in the brain from cysteine, induced significant reductions in [3H]taurine uptake in both types of cultured neurons, while cysteine, isethionic acid, cysteamine and cystamine exhibited no alterations in [3H]taurine transport. Moreover, non-competitive inhibition of [3H]taurine uptake by cysteic acid was observed in both neurons. These results clearly indicate that taurine uptake was mediated by the sodium- and energy-dependent transport system with high affinity in 14-day-old neurons as well as neurons cultured for 3 days and that both the Km and Vmax values of this transport system increase during neuronal development in vitro. The results described above suggest that the decrease in taurine content observed in developing brain is unlikely to be due to alteration in the capacity of the taurine transport system during neuronal development.  相似文献   

4.
Two sets of taurine receptors on rat heart sarcolemma have been identified. The high affinity taurine receptors (Kd=3.5×10?4M) show a non-cooperative binding profile while the low affinity taurine receptors exhibit positive cooperativity. Taurine binding to the membrane exhibits a typical bell shaped pH profile with maximum binding occurring at pH 8.0. The maximum temperature for binding is 24°C. The effect of various taurine analogues on the receptors was investigated. It was found that binding is prevented by hypotaurine and inhibited to a lesser degree by isethionic acid and cysteine sulfinic acid, while β-alanine was found to increase taurine binding. The effect of several hydrolytic enzymes was also examined and it was shown that several proteases and phospholipase C inhibit binding. The results indicate that the taurine receptors are membrane bound proteins in a phospholipid environment.  相似文献   

5.
The interactions of taurine and its precursor hypotaurine with the GABA-benzodiazepine receptor complex were studied by investigating their effects on GABA and flunitrazepam binding in rat brain membranes. Taurine, and to a lesser degree also hypotaurine, displaced the high- and low-affinity GABA binding. The maximal binding capacities of both sites were decreased in the presence of taurine, while the binding constants remained the same, suggesting noncompetitive interactions. Taurine and hypotaurine affected flunitrazepam binding only at a very high concentration (50 mmol/l), whereas GABA (within the concentration range of 0.1–100 mol/l) significantly enhanced the binding. Taurine inhibited the GABA-stimulated binding dose-dependently. These modulatory effects of taurine on the GABA-benzodiazepine receptor complex could result from interactions with the GABA recognition site but not from direct actions on the benzodiazepine site.  相似文献   

6.
It has been suggested that taurine, hypotaurine and their metabolic precursors (cysteic acid, cysteamine and cysteinesulphinic acid) might act as antioxidants in vivo. The rates of their reactions with the biologically important oxidants hydroxyl radical (.OH), superoxide radical (O2.-), hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) were studied. Their ability to inhibit iron-ion-dependent formation of .OH from H2O2 by chelating iron ions was also tested. Taurine does not react rapidly with O2.-, H2O2 or .OH, and the product of its reaction with HOCl is still sufficiently oxidizing to inactivate alpha 1-antiproteinase. Thus it seems unlikely that taurine functions as an antioxidant in vivo. Cysteic acid is also poorly reactive to the above oxidizing species. By contrast, hypotaurine is an excellent scavenger of .OH and HOCl and can interfere with iron-ion-dependent formation of .OH, although no reaction with O2.- or H2O2 could be detected within the limits of our assay techniques. Cysteamine is an excellent scavenger of .OH and HOCl; it also reacts with H2O2, but no reaction with O2.- could be measured within the limits of our assay techniques. It is concluded that cysteamine and hypotaurine are far more likely to act as antioxidants in vivo than is taurine, provided that they are present in sufficient concentration at sites of oxidant generation.  相似文献   

7.
The mutual interactions and the effects of GABA on the saturable transport components of taurine and hypotaurine were investigated with mouse brain slices. The low-affinity taurine transport was competitively inhibited by both hypotaurine and GABA. Hypotaurine did not alter the kinetic parameters of high-affinity taurine uptake, whereas there occurred some stimulation with GABA, possibly by heteroexchange. Taurine had no significant effects on high-affinity hypotaurine uptake, whereas the low-affinity component was reduced by both taurine and GABA, GABA strongly interfered with the high-affinity hypotaurine uptake, being the preferred substrate in simultaneous uptake experiments. The results confirm that taurine, hypotaurine, and GABA are transported into brain slices by only one two-component system with affinities highest for GABA and lowest for taurine.  相似文献   

8.
Abstract: The synthesis of hypotaurine and taurine was investigated in astroglia-rich primary cultures obtained from brains of neonatal Wistar rats using 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Cell extracts of astroglial cultures analyzed by 1H NMR spectroscopy show prominent signals of hypotaurine. To identify cysteine as precursor for hypotaurine and taurine synthesis in astroglial cells, primary cultures were incubated with [3-13C]cysteine for 24 or 72 h. Cell extracts and incubation media were then analyzed with 13C NMR spectroscopy. Labeled hypotaurine, taurine, glutathione, and lactate were identified in the cell extracts. Within 72 h, 35.0% of the total intracellular hypotaurine and 22.5% of taurine were newly synthesized from [3-13C]cysteine. The presence of [1-13C]hypotaurine and [1-13C]taurine in the incubation medium proves the release of those products of cysteine metabolism into the medium. Minor amounts of the [3-13C]cysteine were used for the synthesis of glutathione in astroglial cells or metabolized to [3-13C]lactate, which was found in cell extracts and media. These results indicate that the formation of hypotaurine and taurine is a major pathway of cysteine metabolism in astroglial cells.  相似文献   

9.
The spontaneous and potassium- or veratrine-stimulated efflux of [35S]hypotaurine from superfused cerebral cortex slices of adult mice was compared with the release of [3H]taurine and [3H]GABA. Initially GABA was the fastest released. Hypotaurine was, however, eventually released fastest, since its spontaneous efflux did not slow down during superfusions as did taurine and GABA effluxes. More than 60 % of all preloaded labelled amino acids still remained in the slices after 80-min superfusions. The effluxes of all three amino acids were stimulated by potassium and veratrine depolarizations: GABA efflux most and hypotaurine efflux least. The veratrine-stimulated release of taurine was long-lasting, while all other responses started and ended abruptly. With respect to efflux properties hypotaurine resembled more GABA than taurine.  相似文献   

10.
Taurine and zinc possess neurotrophic and neuroprotective properties, and they have been demonstrated to interact in the central nervous system (CNS). The aim of this work was to determine taurine, hypotaurine, and zinc levels during postnatal development and any possible significant correlation between them in selective areas of the CNS with differential taurine level regulation and intrinsic capacity to proliferate. Taurine and hypotaurine content (nM/region) and concentration (nM/mg protein) and total zinc levels were determined in the retina, hippocampus, and dentate gyrus of the rat at postnatal days 5, 10, 15, 20, 30, and 50. Taurine and hypotaurine increased during development in the retina without significant correlation between them. In the hippocampus there was a progressive decrease, and in the dentate gyrus there was an initial increase and a posterior decrease of taurine and hypotaurine levels. Correlation between the two amino acids was observed at P10, P15, and P50 for the hippocampus and at P15, P30, and P50 for the dentate gyrus. The variations in total zinc levels followed a biphasic behavior, with an early decrease and later increase. Significant and positive correlation of zinc and taurine was only observed in the hippocampus at P30 and P50 and negative in the dentate gyrus at P30. No significant correlation was obtained for the retina. The maintenance of taurine levels in specific CNS areas does not seem to be related to the availability of the precursor, hypotaurine, which might have a role by itself. There are critical postnatal periods during which there is a preservation of taurine, hypotaurine, or zinc levels. It seems that these requirements could be related to zinc-taurine interactions.  相似文献   

11.
There are only two known thiol dioxygenase activities in mammals, and they are ascribed to the enzymes cysteine dioxygenase (CDO) and cysteamine (2-aminoethanethiol) dioxygenase (ADO). Although many studies have been dedicated to CDO, resulting in the identification of its gene and even characterization of the tertiary structure of the protein, relatively little is known about cysteamine dioxygenase. The failure to identify the gene for this protein has significantly hampered our understanding of the metabolism of cysteamine, a product of the constitutive degradation of coenzyme A, and the synthesis of taurine, the final product of cysteamine oxidation and the second most abundant amino acid in mammalian tissues. In this study we identified a hypothetical murine protein homolog of CDO (hereafter called ADO) that is encoded by the gene Gm237 and belongs to the DUF1637 protein family. When expressed as a recombinant protein, ADO exhibited significant cysteamine dioxygenase activity in vitro. The reaction was highly specific for cysteamine; cysteine was not oxidized by the enzyme, and structurally related compounds were not competitive inhibitors of the reaction. When overexpressed in HepG2/C3A cells, ADO increased the production of hypotaurine from cysteamine. Similarly, when endogenous expression of the human ADO ortholog C10orf22 in HepG2/C3A cells was reduced by RNA-mediated interference, hypotaurine production decreased. Western blots of murine tissues with an antibody developed against ADO showed that the protein is ubiquitously expressed with the highest levels in brain, heart, and skeletal muscle. Overall, these data suggest that ADO is responsible for endogenous cysteamine dioxygenase activity.  相似文献   

12.
The amino acid taurine is essential for the function of skeletal muscle and administration is proposed as a treatment for Duchenne Muscular Dystrophy (DMD). Taurine homeostasis is dependent on multiple processes including absorption of taurine from food, endogenous synthesis from cysteine and reabsorption in the kidney. This study investigates the cause of reported taurine deficiency in the dystrophic mdx mouse model of DMD. Levels of metabolites (taurine, cysteine, cysteine sulfinate and hypotaurine) and proteins (taurine transporter [TauT], cysteine deoxygenase and cysteine sulfinate dehydrogenase) were quantified in juvenile control C57 and dystrophic mdx mice aged 18 days, 4 and 6 weeks. In C57 mice, taurine content was much higher in both liver and plasma at 18 days, and both cysteine and cysteine deoxygenase were increased. As taurine levels decreased in maturing C57 mice, there was increased transport (reabsorption) of taurine in the kidney and muscle. In mdx mice, taurine and cysteine levels were much lower in liver and plasma at 18 days, and in muscle cysteine was low at 18 days, whereas taurine was lower at 4: these changes were associated with perturbations in taurine transport in liver, kidney and muscle and altered metabolism in liver and kidney. These data suggest that the maintenance of adequate body taurine relies on sufficient dietary intake of taurine and cysteine availability and metabolism, as well as retention of taurine by the kidney. This research indicates dystrophin deficiency not only perturbs taurine metabolism in the muscle but also affects taurine metabolism in the liver and kidney, and supports targeting cysteine and taurine deficiency as a potential therapy for DMD.  相似文献   

13.
Coccinellid pupae use an array of defensive strategies against their natural enemies. This study aims to assess the efficiency of gregarious pupation as a defensive mechanism against intraguild predators and cannibals in coccinellid. The study was designed specifically (i) to determine the natural occurrence of gregarious pupation in the field for different coccinellid species, and (ii) to evaluate the adaptive value of gregarious pupation as a defensive mechanism against 2 types of predators (i.e., cannibals and intraguild predators). In the field, gregarious pupation consisted of a group of 2–5 pupae. The proportion of gregarious pupation observed varied according to species, the highest rate being observed with Harmonia axyridis Pallas (Coccinellidae; 14.17%). Gregarious pupation had no impact on the probability that intraguild predators and cannibals locate pupae. Intraguild predation occurred more often in site with gregarious pupation, while cannibalism occurred as often in site with gregarious pupation as in site with isolated pupa. However, for a specific pupa, the mortality rate was higher for isolated pupae than for pupae located in a gregarious pupation site both in the presence of intraguild predators and in the presence of cannibals. The spatial location of pupae within the group had no impact on mortality rate. Since it reduces the risk of predation, it is proposed that gregarious pupation act as a defensive mechanism for H. axyridis pupae.  相似文献   

14.
Effects of taurine and related compounds on Ca-uptake by the disc membranes prepared from dark-adapted frog retina were studied. Taurine stimulated ATP-dependent Ca-uptake and the turnover of 45Ca in the disc membranes without affecting basal activity, but it was not observed with the synaptic plasma membranes from rat brain. The stimulatory effect appears to be specific to taurine, since cysteine sulfinic acid, hypotaurine, isethionic acid, β-alanine and γ-aminobutyric acid (GABA) did not stimulate Ca-uptake. The maximal activation, observed at about 30 mM taurine, was about 3 fold, and the Km value for taurine was 10 mM. These results might suggest that taurine modifies translocation of Ca ion in the rod outer segment.  相似文献   

15.
Phenylpropionamides in the seed of Cannabis sativa L. (PHS) have a protective effect on neuroinflammation and antioxidant activity. In this study, the UHPLC-Orbitrap-fusion-TMS-based metabolomics approach was used to analyze the serum samples and identify potential biomarkers in Streptozotocin (STZ) induced Alzheimer's disease (AD) rats. The results revealed that primary bile acid biosynthesis and taurine and hypotaurine metabolism were significantly correlated with STZ-induced AD rats. In addition, the key enzymes in these two pathways were verified at the protein level. The levels of cysteine dioxygenase type I (CDO1), cysteine sulfinic acid decarboxylase (CSAD), cysteamine (2-aminoethanethiol) dioxygenase (ADO), 7α-hydroxylase (CYP7A1), and sterol 12α-hydroxylase (CYP8B1) were the key enzymes affecting the two pathways in AD rats compared with the control group (CON). Furthermore, after a high-dose group of phenylpropionamides in the seed of Cannabis sativa L. (PHS−H) was administrated, the levels of CDO1, CSAD, CYP7A1, and CYP8B1 were all callback. These findings demonstrate for the first time that the anti-AD effect of PHS is associated with the regulation of primary bile acid biosynthesis and taurine and hypotaurine metabolism in STZ-induced AD rats.  相似文献   

16.
The pupae of the tropical butterfly Danaus chrysippus are either green or pink the switch being operated by a ‘greening’ hormone produced in the larval head. Both environmental and genetic cues are involved in controlling the endocrine mechanism. The environmental factors identified are of two distinct kinds: proximate factors influence pupal colour after the larva has selected its pupation site, whereas ultimate factors are effective at an earlier stage, either prompting choice of pupation site by the larva or priming pupation physiology in a particular direction. Genetic factors preadapt the larva to form a pupa which will be cryptic in the normal or average conditions, climatic or biogeographical, anticipated in its environment. The proximate factors demonstrated are background colour, darkness, light quality (wavelength) and humidity. There is some evidence that substrate texture may also be relevant. Ultimate factors are temperature, humidity and species of larval foodplant. Two closely linked gene loci which govern the phenotype of adult morphs and races either have a pleiotropic effect on pupa colour or are closely linked with other genes which do so. Moreover, the two loci interact epistatically with respect to their pupation effects. Factors producing predominantly green pupae are plant substrates, yellow background, darkness, yellow light, high humidity, high temperature, the b allele at the B locus when homozygous and, on non-plant substrates, the C allele at the C locus. High frequencies of pink pupae result on non-plant substrates, red backgrounds, in blue light, low humidity, low temperatures and in B- and cc genotypes. The C locus alleles, C and c, interact epistatically with the B alleles, their effect on choice of pupation site being determined by linkage phase. Of the two foodplants tested, Calotropis produced a high frequency of green pupae and Tylophora of pinks. The seasonal cycling of rainfall, temperature, availability or condition of foodplant, and gene frequencies are all correlated with oscillations in the frequencies of green and pink pupae. Though genotype influences pupa colour, all genotypes are capable of forming pupae of both colours. The variation can therefore be attributed to an environmental polyphenism superimposed upon a genetic polymorphism. The hormone producing green pupae emanates from the head during the prepupal period. Denied hormonal influence, the pupa is pink. Pupal colour is judged to be aposematic at close range and cryptic at distance.  相似文献   

17.
Summary Two precursors of taurine have been studied: cysteamine and hypotaurine. Cysteamine has been quantified in genital secretions and found in follicular fluids of all species tested. On the contrary cysteamine was not detected (or traces) in tubal fluids of the same species. Addition of 50, 100 or 250M of cysteamine to the maturation medium used in the culturing of bovine oocytes did not improve the cleavage rate nor the embryo's developmental potentialin vitro. Furthermore, at 250M, cysteamine seems to be toxic to the embryo. Addition of 0.5–1 mM hypotaurine to the bovine embryo culture medium improved significantly blastocyst production and quality. The respective roles of these 2 taurine precursors on maturation and embryo development are discussed.  相似文献   

18.
Summary The synthesis of taurine fromN-acetylcysteine has been examined in ratsin vivo and in rat hepatocyte suspensionsin vitro. In ratsin vivo, administration ofN-acetylcysteine significantly increased urinary taurine (3 fold) 24h after dosing and liver glutathione levels. Liver taurine was not increased significantly. In hepatocytes incubated in the presence ofN-acetylcysteine, glutathione concentration increased to a maximum after 1 hour but the increase was not dependent on the concentration ofN-acetylcysteine. In contrast, after an initial lag phase, taurine synthesis increased in relation to the concentration ofN-acetylcysteine and continued for 3 hours. Glutathione synthesis seems to be preferential to taurine synthesis. Taurine synthesis from cysteine sulphinate was greater and from hypotaurine was greatest and maximal after 1 hour. Implications for the mechanism of protection byN-acetylcysteine are discussed.  相似文献   

19.
Summary The proportion of adult Panolis flammea emerging from the overwintering pupae was markedly affected by pupation substrate, waterlogging, temperature and relative humidty. Pupae which had spent the winter in needle litter had a significantly greater survival rate than those in either soil or peat.The greater the length of time spent waterlogged the greater the mortality rate of P. flammea pupae. At temperatures of-20° C, there was 100% pupal mortality within 24 h of exposure.Pupal weight loss was proportional to the length of time spent as a pupa. Female pupae lost proportionately more weight than male pupae. Pupae of both sexes lost more weight at a low relative humidity than at a high relative humidity. At low relative humidities female pupal mortality was higher than that of male pupae.  相似文献   

20.
《Insect Biochemistry》1987,17(4):573-577
Taurine concentration was measured in the tissues of Schistocerca americana gregaria, Blatella orientalis and Tenebrio molitor and was found to be present in all those examined. In the locust Schistocerca gregaria it was found in particularly high concentration in active flight muscle (26 μmol/g) to a lesser extent in the eye (7 μmol/g). The thoracic concentration of taurine in developing locusts showed a strong correlation with the development of flight muscle, increasing from 4.4 to 11.3 μmol/g in the thorax during the first 24 days of adult life. Analysis of the thoracic content of taurine in adults of the three species examined confirmed that high taurine concentrations are associated with fully functional flight muscle. The concentration in the thorax of the flightless flour beetle T. molitor was only 1.79 μmol/g compared to 11.33 μmol/g for the locust. Stress due to flying and picrotoxin poisoning caused the release of taurine from the muscles into the haemolymph, causing the concentration to rise from 1.1 to 2.2 and 5.76 μmol/g respectively. Analysis of the distribution of arginine kinase showed that this release was not due to breakdown of the muscle tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号