首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alimentary canal formation in the stonefly, Kamimuria tibialis (Plecoptera : Perlidae) is described. The stomodaeum is formed as in other insect embryos. The proctodaeum is derived from the ectodermal fold an the caudal end of the embryo without the contribution of the amnion. The 3 Malpighian tubules develop from the blind end of the proctodaeum. The rectal pad is formed by the thickening of the dorsal wall of the proctodaeum. The midgut epithelium rudiment arises only from the blind end of the proctodaeum, i.e. it is completed by unipolar formation instead of bipolar. The yolk cells do not contribute to the formation of the midgut epithelium. The alimentary canal is transformed during the 1st nymphal instar and becomes functional in the next instar. The stomodaeum is differentiated into 3 parts: pharynx, oesophagus, and proventriculus. The midgut becomes shortened and its epithelium is well developed. Gastric caeca with tapering processes are formed.  相似文献   

2.
The formation of the alimentary canal, nervous system, and of other ectodermal derivatives in the embryo of the primitive moth, Neomicropteryx nipponensis Issiki, is described. The stomodaeum is formed from an invagination in the medioposterior portion of the protocephalon. The proctodaeum arises as an extension of the amnioproctodaeal cavity. The midgut epithelium orginates from anterior and posterior rudiments in blind ends of the stomodaeum and proctodaeum. The decondary dorsal organ is formed in developing midgut. The development of the brain is typical of insects. The ventral nerve cord originates in large part from neuroblasts arising in 3 gnathal, 3 thoracic, and 11 abdominal segments. Intrasegmental median cord cells probably differentiate into both ganglion cells and glial elements of the ventral nerve cord; intersegmental cells appear not to participate in the formation of the nervous system. The stomatogastric nervous system develops from three evaginations in the dorsal wall of the stomodaeum, and consists of the frontal, hypocerebral, and ventricular ganglia, the recurrent nerve, and corpora cardiaca. Five stemmata arise from the epidermis on each side of the head. Five pairs of ectodermal invaginations are formed in the cephalognathal region to produce the tentorium, mandibular apodemes, corpora allata, and silk glands. Prothoracic glands orginate in the prothorax. Mesothoracic spiracles shift anteriorly to the prothorax during development. Oenocytes arise in the first seven abdominal segments. Invaginated pleuropodia are formed in the first abdominal segment.  相似文献   

3.
Embryogenesis of the alimentary tract in two chrysomelid species (Chrysolina pardalina and Melasoma saliceti) is described. The embryonic development of both species lasts 7days at room temperature. Stomodaeum and proctodaeum invaginate at the anterior and posterior ends of the germ band. Together with the ectodermal tissue the endoderm cells also enter into the embryo. The anterior and posterior parts of the alimentary tract wedge into the yolk in the form of conical structures. The endodermal cells remain at the yolk surface and start migration over the yolk mass as two lateral bands of cells. The endoderm is always accompanied by mesoderm. On the fifth day of development the endodermal cells together with the mesoderm layer spread over the ventral and dorsal sides of the yolk mass and form the single layered primordium of the midgut epithelium. On the sixth day of development a basal lamina appears between the endoderm and the mesoderm cells and differentiation of both tissues starts. The endodermal epithelium cells change shape from flat to cuboidal and eventually into columnar. Mesoderm cells differentiate into muscle and tracheae. On the 7thday of development stomodaeum and proctodaeum become lined with cuticle and the midgut becomes covered with microvilli. The yolk cells populating the yolk mass do not contribute to midgut formation in the species studied.  相似文献   

4.
At the end of embryogenesis of Lepisma saccharina L. (Insecta, Zygentoma), when the stomodaeum and proctodaeum are completely formed, the midgut epithelium is replaced by the primary midgut, a yolk mass is surrounded by a cell membrane. Midgut epithelium formation begins in the 1st larval stage. Energids migrate toward the yolk periphery and aggregate just beneath the cell membrane. They are gradually enclosed by cell membrane folds of the primary midgut. Single cells are formed. Succeeding energids join just formed cells. Thus, groups of cells, regenerative cell groups, are formed. Their number gradually increases. The external cells of the regenerative cell groups transform into epithelial cells and their basal regions spread toward the next regenerative cell groups. Epithelial cells of neighboring regenerative cell groups join each other to form the epithelium. At the end of the 2nd larval stage, just before molting, degeneration of newly the formed epithelium begins. Remains of organelles and basal membrane occur between the regenerative cell groups. The new epithelium is formed from the regenerative cell groups, which are now termed stem cells of the midgut epithelium.  相似文献   

5.
The intertidal muricid gastropod Nucella lapillus (Linnaeus)develops entirely within an egg capsule up to the juvenile stage.This study investigates how the embryos have adapted to theabundance of their own yolk (protolecith) and extraembryonicnutrients (nurse eggs, capsule fluid) during five stages ofearly organogenesis The pretorsional preveliger uses protolecith and albumen asnutritive resources. The main portion of the protolecith isstored in the large unequal macro-mere 4D, which is interpretedto be an adaptation to the large content of its own yolk andpersists beyond the ingestion stage. The transitory storageof protolecith makes the predominant resorption of the nutritiveeggs possible. The stomodaeum develops early as an ectodermalinvagination and opens into an anterior buccal part and a posterioroesophageal part. The radular sac is of early pretorsional origin.Some prospective endodermal structures (midgut and hindgut)first become apparent by their histological differentiation During ingestion the differentiation of midgut and cephalopodiumis arrested. The extremely thin epithelium of the midgut surroundsthe swallowed nurse eggs The last stage, an early veliger, has developed all essentialorgans as rudiments, except the coelomic derivates and the pallia]organs. The hindgut opens by a proctodaeal invagination (anus).The embryo undergoes further torsional displacement (Received 20 August 1987;  相似文献   

6.
The origin of midgut epithelium may begin either from yolk cells (energids), tips of stomo- and proctodaeum (ectoderm), inner layer (endoderm) or from both kinds of the above mentioned cells. The origin of the midgut epithelium in wingless insects (Apterygota) has still not been determined. In Thermobia domestica the formation of midgut is much delayed, and it completes in the post-embryonic stage, while the stomo- and the proctodaeum are well-developed in the embryonic period. The energids, which remain inside the yolk, start to migrate to its periphery, where they arrange singly close to cell membrane. The yolk mass with the energids at the 14th day of embryogenesis are referred to as the primary midgut. During the first instar larval stage more and more energids migrate to the yolk periphery and the cell membrane starts to form numerous foldings surrounding the groups of energids, which in turn lead to formation of isolated regenerative cell groups. Eventually the cell membrane invaginations reach the center of the yolk mass. Large cells of the primary epithelium, surrounding the newly formed midgut lumen are formed. The cells of the primary epithelium are filled with yolk and are equipped with microvilli pointing to the midgut lumen. As the yolk is being digested, the process of the primary epithelium cells degeneration begins. The cells are getting shorter and start to degenerate. The definitive midgut epithelium is formed from proliferating regenerative cells. It consists of regularly spaced regenerative cell groups as well as the epithelial cells. The ultrastructure of both these cell groups has been described.  相似文献   

7.
红螯螯虾胚胎发育的研究:Ⅱ.消化系统的发生   总被引:4,自引:0,他引:4  
应用组织切片技术 ,研究了红螯螯虾胚胎发育过程中消化系统的发生。红螯螯虾的消化系统由前肠、中肠和后肠 3部分组成 ,前肠和后肠由外胚层形成 ,而中肠源自原肠期由胚胎表面向囊胚内迁移的中内胚层细胞团。前无节幼体期前肠开始发生 ,至后无节幼体期先后形成口道、食道和胃等结构 ;中肠起始于后无节幼体期的次级卵黄锥 ,包括管状中肠和 1对囊状消化腺 -中肠腺 ;后肠端部是前无节幼体期形成的肛道 ,肛道不断向胚胎前端延伸逐渐形成后肠  相似文献   

8.
Tails of fertilizing spermatozoa persist throughout embryogenesis in Drosophila species and can be observed within the midguts of larvae after hatching. Throughout development, sperm proteins slowly diffuse or are stripped from the giant sperm tail residing within the embryo''s anterior end. The shape and position of the sperm within the embryo are regulated such that, during organ formation, the unused portion of the sperm is enveloped by the developing midgut. This persistent, paternally derived structure is composed of the sperm''s mitochondrial derivatives and appears to be defecated by the larva soon after hatching. These complex sperm-egg interactions may represent mechanisms to avoid intragenomic conflict by ensuring strictly maternal inheritance of mitochondrial DNA (mtDNA).  相似文献   

9.
It is generally accepted that Bacillus thuringiensis Cry toxins insert into the apical membrane of the larval midgut after binding to specific receptors, and there is evidence that the distribution of binding molecules along the midgut is not uniform. By use of the voltage-sensitive dye DiSC3(5) and 125I-labeled Cry1Ac, we have measured the effect of Cry1Ac in terms of permeabilization capacity and of binding parameters on brush border membrane vesicles (BBMV) prepared from the anterior and the posterior regions of the larval midgut from two insect species, Manduca sexta and Helicoverpa armigera. The permeabilizing activity was significantly higher with BBMV from the posterior region than with the one observed in the anterior region in both insect species. Instead, 125I-Cry1Ac bound specifically to BBMV from the two midgut regions, with no significant differences in the binding parameters between the anterior and posterior regions within an insect species. N-acetylgalactosamine inhibition patterns on pore formation and binding differed between anterior and posterior midgut regions and between species, providing evidence of a multifaceted involvement of the sugar in the Cry1Ac mode of action. The analysis of binding and pore formation in different midgut regions could be an effective method to study differences in the mode of action of Cry1Ac toxin in different species.  相似文献   

10.
The complex embryonic phenotype of the six neurogenic mutations Notch, mastermind, big brain, Delta, Enhancer of split and neuralized was analyzed by using different antibodies and PlacZ markers, which allowed us to label most of the known embryonic tissues. Our results demonstrate that all of the neurogenic mutants show abnormalities in many different organs derived from all three germ layers. Defects caused by the neurogenic mutations in ectodermally derived tissues fell into two categories. First, all cell types that delaminate from the ectoderm (neuroblasts, sensory neurons, peripheral glia cells and oenocytes) are increased in number. Secondly, ectodermal tissues that in the wild type form epithelial structures lose their epithelial phenotype and dissociate (optic lobe, stomatogastric nervous system) or show significant differentiative abnormalities (trachea, Malpighian tubules and salivary gland). Abnormalities in tissues derived from the mesoderm were observed in all six neurogenic mutations. Most importantly, somatic myoblasts do not fuse and/or form an aberrant muscle pattern. Cardioblasts (which form the embryonic heart) are increased in number and show differentiative abnormalities; other mesodermal cell types (fat body, pericardial cells) are significantly decreased. The development of the endoderm (midgut rudiments) is disrupted in most of the neurogenic mutations (Notch, Delta, Enhancer of split and neuralized) during at least two stages. Defects occur as early as during gastrulation when the invaginating midgut rudiments prematurely lose their epithelial characteristics. Later, the transition of the midgut rudiments to form the midgut epithelium does not occur. In addition, the number of adult midgut precursor cells that segregate from the midgut rudiments is strongly increased. We propose that, at least in the ectodermally and endodermally derived tissues, neurogenic gene function is primarily involved in interactions among cells that need to acquire or to maintain an epithelial phenotype.  相似文献   

11.
The definitive endoderm forms during gastrulation and is rapidly transformed into the gut tube which is divided along the anterior-posterior axis into the foregut, midgut, and hindgut. Lineage tracing and genetic analysis have examined the origin of the definitive endoderm during gastrulation and demonstrated that the majority of definitive endoderm arises at the anterior end of the primitive streak (APS). Foxh1 and Foxa2 have been shown to play a role in specification of the APS and definitive endoderm. However, prior studies have focused on the role of these factors in specification of foregut definitive endoderm, while their role in the specification of midgut and hindgut definitive endoderm is less understood. Furthermore, previous analyses of these mutants have utilized definitive endoderm markers that are restricted to the anterior endoderm, expressed in extraembryonic endoderm, or present in other germ layers. Here, we characterized the expression of several novel definitive and visceral endoderm markers in Foxh1 and Foxa2 null embryos. In accordance with previous studies, we observed a deficiency of foregut definitive endoderm resulting in incorporation of visceral endoderm into the foregut. Interestingly, this analysis revealed that formation of midgut and hindgut definitive endoderm is unaffected by loss of Foxh1 or Foxa2. This finding represents a significant insight into specification and regionalization of mouse definitive endoderm.  相似文献   

12.
13.
This work presents a detailed morphofunctional study of the digestive system of a phasmid representative, Cladomorphus phyllinus. Cells from anterior midgut exhibit a merocrine secretion, whereas posterior midgut cells show a microapocrine secretion. A complex system of midgut tubules is observed in the posterior midgut which is probably related to the luminal alkalization of this region. Amaranth dye injection into the haemolymph and orally feeding insects with dye indicated that the anterior midgut is water-absorbing, whereas the Malpighian tubules are the main site of water secretion. Thus, a putative counter-current flux of fluid from posterior to anterior midgut may propel enzyme digestive recycling, confirmed by the low rate of enzyme excretion. The foregut and anterior midgut present an acidic pH (5.3 and 5.6, respectively), whereas the posterior midgut is highly alkaline (9.1) which may be related to the digestion of hemicelluloses. Most amylase, trypsin and chymotrypsin activities occur in the foregut and anterior midgut. Maltase is found along the midgut associated with the microvillar glycocalix, while aminopeptidase occurs in the middle and posterior midgut in membrane bound forms. Both amylase and trypsin are secreted mainly by the anterior midgut through an exocytic process as revealed by immunocytochemical data.  相似文献   

14.
All life stages of B. chanayi (Acariformes: Cheyletidae) are characterized by occasional bloodsucking and a long period of digestion. No newly engorged mites were found during the period of their host birds' migration. The fine structure of the digestive tract of a blood-feeding acariform mite is described for the first time. The anterior midgut (AMG) is a place of blood digestion, while the posterior midgut (PMG) is involved in nitrogen metabolism forming guanine crystals as the main end-product. The AMG epithelium consists of digestive cells that probably arise from mitotically active basal cells with high synthesizing activity.As observed in ticks, blood digestion is accompanied by the formation of huge endosomes that serve as places of storage and sorting of ingested material. Digestive cells show different types of endocytotic activity as well as various late endosomes, which implies different subcellular pathways for different blood components. In both midgut regions, elimination of the excretory material occurs by apocrine secretion or by discharging of apical cell fragments (loaded with lysosomes) into the gut lumen. The formation of guanine granules occurs inside the lysosomes of PMG epithelial cells thus having much in common with intracellular digestion. Peculiarities of intracellular blood digestion were analyzed according to the modern hypothesis of endocytosis and compared to what is known in ticks.  相似文献   

15.
16.
Embryonic and morphological development of larvae and juveniles of the amberjack,Seriola dumerili Risso, are described using specimens raised at Yaeyama Station (Ishigaki Island, Okinawa Pref.), Japan Sea Farming Association. The specimens obtained from brood fish (3 females, 3 males) were treated with gonadotropin and spawned on 6th of April 1987. The eggs of amberjack are pelagic, spherical in shape and 1.01–1.17 mm in diameter. The yolk is roughly segmented and has a single oil globule 0.22–0.24 mm in diameter. The perivitelline space is narrow. During development, a few melanophores and no xanthophores were observed on yolk. Hatching took place 35 hrs. 15 min. after spawning out at temperatures 23.1–23.7°C. The newly hatched larvae were 2.84–3.04mm in TL with 27 (13+14) myomeres and an oil globule anteriorly situated beyond the head. 3 days after hatching 4.00 mm TL, the mouth opened. 10 days after hatching 4.26 mm TL, small denticles appeared on the margin of the upper jaw and there were 1 anterior and 2 posterior preopecular spines. At 5.96mm TL, notochord was slightly flexed. Caudal, dorsal and anal fins with rudiments of rays appeared at 8.00 mm TL. The specific numbers of all fin rays and spines were obtained in a juvenile 9.60 mm TL. In a juvenile 34.25 mm TL, 54 days after hatching, the characteristic brown band of amberjack had appeared on head. Some notable changes in relative growth were observed at 5 mm and 15 mm in TL.  相似文献   

17.
Using amaranth dye as a marker solute, the movements of fluids in the gut of Schistocerca gregaria was studied, either by feeding a meal containing the dye or by injecting the dye into the haemolymph, and by comparing the distribution of amaranth with those of naturally-occurring solutes in the alimentary tract.In animals deprived of food for more than 2–4 hr, some of the fluid from the Malpighian tubules moves forward through the solid food matrix in the midgut carrying solutes into the anterior midgut and gastric caeca, where water is absorbed. After a meal the crop empties at a rate which saturates the absorptive capacity of the anterior caeca, producing a net movement of fluid down the midgut and so such a countercurrent system is not observed in animals fed ad lib., where dye introduced into the gut always moves posteriorly.A countercurrent fluid movement confers several advantages on the alimentary system which act to maximise the efficiency of nutrient absorption: the principal disadvantage of the countercurrent system is that noxious solutes, as well as nutrients, will accumulate at high concentrations near the permeable site of nutrient uptake. Thus a countercurrent flow of solutes is observed only when the insect is deprived of food and the need to conserve nutrient resources exceeds that of excretion of noxious substances. Ways in which the site of nutrient absorption may be protected from noxious solutes are discussed.The anterior caeca gradually become bloated with dark fluid as digestion proceeds; this is expelled into the midgut when a fresh meal is ingested.  相似文献   

18.
Musca domestica larvae display in anterior and middle midgut contents, a proteolytic activity with pH optimum of 3.0–3.5 and kinetic properties like cathepsin D. Three cDNAs coding for preprocathepsin D-like proteinases (ppCAD 1, ppCAD 2, ppCAD 3) were cloned from a M. domestica midgut cDNA library. The coded protein sequences included the signal peptide, propeptide and mature enzyme that has all conserved catalytic and substrate binding residues found in bovine lysosomal cathepsin D. Nevertheless, ppCAD 2 and ppCAD 3 lack the characteristic proline loop and glycosylation sites. A comparison among the sequences of cathepsin D-like enzymes from some vertebrates and those found in M. domestica and in the genomes of Aedes aegypti, Drosophila melanogaster, Tribolium castaneum, and Bombyx mori showed that only flies have enzymes lacking the proline loop (as defined by the motif: DxPxPx(G/A)P), thus resembling vertebrate pepsin. ppCAD 3 should correspond to the digestive cathepsin D-like proteinase (CAD) found in enzyme assays because: (1) it seems to be the most expressed CAD, based on the frequency of ESTs found. (2) The mRNA for CAD 3 is expressed only in the anterior and proximal middle midgut. (3) Recombinant procathepsin D-like proteinase (pCAD 3), after auto-activation has a pH optimum of 2.5–3.0 that is close to the luminal pH of M. domestica midgut. (4) Immunoblots of proteins from different tissues revealed with anti-pCAD 3 serum were positive only in samples of anterior and middle midgut tissue and contents. (5) CAD 3 is localized with immunogold inside secretory vesicles and around microvilli in anterior and middle midgut cells. The data support the view that on adapting to deal with a bacteria-rich food in an acid midgut region, M. domestica digestive CAD resulted from the same archetypical gene as the intracellular cathepsin D, paralleling what happened with vertebrates. The lack of the proline loop may be somehow associated with the extracellular role of both pepsin and digestive CAD 3.  相似文献   

19.
The predatory stinkbug Podisus nigrispinus has been utilized in biological control programs. Its midgut is anatomically divided into anterior, middle and posterior regions, which play different roles in the digestive process. We describe the midgut ultrastructure and the secretion of digestive enzymes in the midgut of P. nigrispinus. Midguts were analyzed with transmission electron microscopy and the digestive enzymes amylase, cathepsin L, aminopeptidase and α-glucosidase were immunolocalized. The ultrastructural features of the digestive cells in the anterior, middle and posterior midgut regions suggest that they play a role in digestive enzyme synthesis, ion and nutrient absorption, storage and excretion. The digestive enzymes have different distribution along the midgut regions of the predator P. nigrispinus. Amylase, aminopeptidase and α-glucosidase occur in three midgut regions, whereas cathepsin L occurs in the middle and posterior midgut regions. The anterior midgut region of P. nigrispinus seems to play a role in water absorption, the middle midgut may be involved in nutrient absorption and the posterior midgut region is responsible for water transport to the midgut lumen.  相似文献   

20.
Development of Tylenchorhynchus claytoni from unsegmented egg to hatching takes 135 hr at 22-25 C. The fourth molt lasts 5 to 6 days. During exsheathment the cast cuticle of the larva separated into two unequal parts, breaking near either the anterior or posterior end. The life cycle from egg to egg required from 31 to 38 days at 28 C on alfalfa seedlings and included four molts and four larval stages. Sexual differentiation was apparent in third-stage larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号